Cognitive decision processes are generally seen as classical Bayesian probabilities, but better suited to quantum mathematics. For example: 1) Psychological conflict, ambiguity and uncertainty can be viewed as (quantum) superposition of multiple possible judgments and beliefs. 2) Measurement (e.g. answering a question, reaching a decision) reduces possibilities to definite states (‘constructing reality’, ‘collapsing the wave function’). 3) Previous questions influence subsequent answers, so sequence affects outcomes (‘contextual non-commutativity’). 4) Judgments and choices may deviate from classical logic, suggesting random, or ‘non-computable’ quantum influences. Can quantum cognition operate in the brain? Do classical brain activities simulate quantum processes? Or have biomolecular quantum devices evolved? In this talk I will discuss how a finer scale, intra-neuronal level of quantum information processing in cytoskeletal microtubules can accumulate, operate upon and integrate quantum information and memory for self-collapse to classical states which regulate axonal firings, controlling behavior.