Autonomously learning about one’s own body and its interaction with the environment is a formidable challenge, yet it is ubiquitous in biology: every animal’s pup and every human infant accomplish this task in their first few months of life. Furthermore, biological agents’ curiosity actively drives them to explore and experiment in order to expedite their learning progress. To bridge the gap between biological and artificial agents, a formal mathematical theory of curiosity was developed that attempts to explain observed biological behaviors and enable curiosity emergence in robots. In the talk, I will present the hierarchical curiosity loops model, its application to rodent’s exploratory behavior and its implementation in a fully autonomously learning and behaving reaching robot.