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A fundamental result of thermodynamic geometry is that the optimal, minimal-work protocol that drives a
nonequilibrium system between two thermodynamic states in the slow-driving limit is given by a geodesic of
the friction tensor, a Riemannian metric defined on control space. For overdamped dynamics in arbitrary
dimensions, we demonstrate that thermodynamic geometry is equivalent to L2 optimal transport geometry
defined on the space of equilibrium distributions corresponding to the control parameters. We show that
obtaining optimal protocols past the slow-driving or linear response regime is computationally tractable as
the sum of a friction tensor geodesic and a counterdiabatic term related to the Fisher information metric.
These geodesic-counterdiabatic optimal protocols are exact for parametric harmonic potentials, reproduce
the surprising nonmonotonic behavior recently discovered in linearly biased double well optimal protocols,
and explain the ubiquitous discontinuous jumps observed at the beginning and end times.
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Introduction—A consequence of the second law of
thermodynamics is that finite-time processes require work
to be irretrievably lost as dissipation. Recent studies in
stochastic thermodynamics have aimed to characterize
minimal-work protocols, which have applications for nano-
scopic engineering [1–12] and for understanding biophysi-
cal systems [13–18]. In this Letter we unify disparate
geometric approaches and arrive at a novel framework for
obtaining and better understanding thermodynamically
optimal protocols.
The problem statement is this: given a configuration

space x∈Rd, inverse temperature β, and potential energy
function UλðxÞ parametrized by λ∈M, what is the optimal
protocol λ�ðtÞ connecting the parameter values λi and λf in
a finite time τ that minimizes the work

W½λðtÞ� ¼
Z

τ

0

dλμ

dt

�
∂Uλ

∂λμ

�
dt? ð1Þ

Here, M ⊆ Rn is an orientable m-dimensional manifold,
locally resembling Rm everywhere with m ≤ n. We use
Greek indices to denote local coordinates of λ∈M, and the
Einstein summation convention (i.e., repeated Greek indi-
ces within a term are implicitly summed). The ensemble
average h·i is over trajectories XðtÞjt∈ ½0;τ� that start in
equilibrium with λi and evolve via some specified Langevin
dynamics under UλðtÞjt∈ ½0;τ�.
Schmiedl and Seifert [19] showed that optimal protocols

minimizing Eq. (1) have intriguing discontinuous jumps at

the beginning and end times, which have proven to be
ubiquitous [5,19–21,23–30]. Furthermore, optimal proto-
cols can even be nonmonotonic in time [5,27].
Sivak and Crooks demonstrated through linear response

[31] that in the slow-driving limit (τ ≫ τR, an appropriate
relaxation timescale), optimal protocols are geodesics of a
symmetric positive-definite [32] friction tensor defined in
terms of equilibrium time-correlation functions. Treating
the friction tensor as a Riemannian metric induces a
geometric structure on the space of control parameters,
known as “thermodynamic geometry.” This approach is
computationally tractable, as the friction tensor can be
obtained through measurement, and geodesics on M can
be determined by solving an ordinary differential equation.
Geodesic protocols have been studied for a variety of
systems including the Ising model [33–36], barrier crossing
[15–17], bit erasure [2,37], and nanoscopic heat engines
(after allowing temperature to be controlled) [9–12,38], but
unfortunately their performance can degrade past the slow-
driving regime [27].
Alternatively, when the ensemble of trajectories is addi-

tionally constrained to end in equilibrium with λf, finding
the work-minimizing protocol for overdamped dynamics is
equivalent to the Benamou-Brenier formulation of the L2

optimal transport problem [39,40]—finding the dynamical
mapping between the two distributions that has minimal
integrated squared distance [41]—which itself yields a
Riemannian-geometric structure [42–44]. The Benamou-
Brenier solution is a time-dependent distribution and time-
dependent velocity field that solves a continuity equation,*Contact author: adrizhong@berkeley.edu
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which in this Letter we explicitly identify as a desired
probability density evolution and the additional counter-
diabatic forcing needed to effectuate its faster-than-quasi-
static time evolution (as studied in so-called engineered
swift equilibration [45–47], counterdiabatic driving [48],
and shortcuts to adiabaticity [49–57]). Remarkably, optimal
protocols obtained in this manner are exact for arbitrary
protocol durations τ [39]. Unfortunately, this approach
involves solving coupled partial differential equations
(PDEs) in configuration space (Rd), which is typically
infeasible for dimension d≳ 5. Furthermore, the control
space M must be sufficiently expressive in order to
implement the optimal transport solution, which is often
overly restrictive [58].
For overdamped dynamics in arbitrary dimension, [38]

showed that the friction tensor may be obtained via a
perturbative expansion of the Benamou-Brenier objective
function. Here, we derive an even stronger result, that
thermodynamic geometry is in fact equivalent to optimal
transport geometry, in the sense that the friction tensor and
the Benamou-Brenier problem restricted to equilibrium
distributions parametrized by λ have identical geodesics
and geodesic distances. Surprisingly, we find that a
counterdiabatic component may be calculated using the
Fisher information metric from information geometry [59–
61]. We demonstrate that protocols obtained by adding this
counterdiabatic term to thermodynamic geometry geode-
sics are analytically exact for parametric harmonic oscil-
lators, reproduce recently discovered nonmonotonic
behavior in certain optimal protocols [27], and satisfyingly
explain the origin of jumps at beginning and end times.
Preliminaries—For each λ∈M there is a corresponding

equilibrium distribution

ρeqλ ðxÞ ¼ expf−β½UλðxÞ − FðλÞ�g; ð2Þ

where FðλÞ ¼ −β−1 ln
R
exp½−βUλðx0Þ� dx0 is the equilib-

rium free energy of the potential energy Uλð·Þ. For ease of
notation we will denote ρeqi ¼ ρeqλi , ρ

eq
f ¼ ρeqλf , and ΔF ¼

FðλfÞ − FðλiÞ.
We consider overdamped Langevin equations, such that

trajectories XðtÞ∈Rd follow the stochastic ODE

dXðtÞ ¼ −∇UλðtÞðXðtÞÞ dtþ
ffiffiffiffiffiffiffiffiffiffi
2β−1

q
dBðtÞ; ð3Þ

where BðtÞ∈Rd is an instantiation of standard Brownian
motion [62]. Here, we will consider only isothermal
protocols, so without loss of generality we set β ¼ 1.
The probability density ρðx; tÞ corresponding to Eq. (3)

undergoes a time evolution expressible either as a Fokker-
Planck equation or a continuity equation of a gradient field

∂ρ

∂t
¼ LλðtÞρ or

∂ρ

∂t
¼ ∇ · ðρ∇ϕÞ; ð4Þ

where Lλ is the Fokker-Planck operator [63]

Lλρ ¼ ∇2ρþ∇ · ðρ∇UλÞ; ð5Þ

while ϕ is a scalar field that depends on both ρ and λ

ϕðx; tÞ ¼ ln ρðx; tÞ þ UλðtÞðx; tÞ: ð6Þ

The adjoint operator L†
λ acts on a scalar field ψðxÞ via [64]

½L†
λψ �ðxÞ ¼ ρeqλ ðxÞ−1∇ · ½ρeqλ ðxÞ∇ψðxÞ�: ð7Þ

Finally, fμðxÞ ≔ −∂UλðxÞ=∂λμ is the conjugate force to λμ.
The excess conjugate force is then

δfμðxÞ ¼ −
�
∂UλðxÞ
∂λμ

−
�
∂Uλ

∂λμ

�
eq

λ

�
¼ ∂ ln ρeqλ ðxÞ

∂λμ
: ð8Þ

Thermodynamic geometry—In the slow-driving limit,
the excess work, defined as the work [Eq. (1)] minus the
equilibrium free energy difference Wex ¼ W − ΔF, is [65]

Wex½λðtÞ� ≈
Z

τ

0

dλμ

dt
dλν

dt
gμνðλðtÞÞ dt; ð9Þ

where

gμνðλÞ ¼
Z

∞

0

hδfμðXðt0ÞÞδfνðXð0ÞÞieqλ dt0 ð10Þ

is the symmetric positive-definite [32] friction tensor. Here,
h·ieqλ denotes an equilibrium average (i.e., Xð0Þ ∼ ρeqλ , and
trajectories undergo Langevin dynamics [Eq. (3)] with
constant λ).

FIG. 1. Algorithm 1 reproduces the exact optimal protocol
(black) for the variable-stiffness harmonic oscillator (depicted
here, λi ¼ 1, λf ¼ 5, and τ ¼ 0.5) found in [19], as the sum of
geodesic (dashed blue) and counterdiabatic (shaded red) compo-
nents. The geodesic γðsÞ connects γð0Þ ¼ λi to γð1Þ ¼ γf (blue
star) solving Eq. (21).
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Remarkably, the friction tensor induces a Riemannian
geometry on control space ðM; gÞ known as “thermody-
namic geometry,” with squared thermodynamic length
between λA; λB ∈M given by minimizing the path action

T 2ðλA; λBÞ ¼ min
λðsÞjs∈ ½0;1�

�Z
1

0

dλμ

ds
dλν

ds
gμνðλðsÞÞ ds

���� satisfying λð0Þ ¼ λA; λð1Þ ¼ λB

	
: ð11Þ

In the slow-driving limit, optimal protocols λ�ðtÞ connect-
ing λi and λf in time τ are time-rescaled versions of
geodesics of Eq. (11), and the optimal excess work scales
inversely with protocol time W�

ex ≈ T 2ðλi; λfÞ=τ [65,66].

While this geometric framework is both mathematically
elegant and computationally tractable, geodesic protocols
are fundamentally approximate; their performance often
degrades for sufficiently small protocol times, in some
cases performing even worse than a linear interpolation
protocol [27].
Optimal transport geometry—Optimal transport

is traditionally formulated as finding the transport map
sending a distribution ρA to another ρB that minimizes an
integrated (L2) squared distance. This minimal integrated
squared distance defines the squared L2-Wasserstein
metric distance between probability distributions, which
was shown in [41] to also be the minimum of a path
action

W2
2½ρA; ρB� ¼ min

ρs;ϕsjs∈ ½0;1�

�Z
1

0

Z
ρsðxÞj∇ϕsðxÞj2 dx ds

���� satisfying ∂ρs
∂s

¼ ∇ · ðρs∇ϕsÞ; ρ0 ¼ ρA; ρ1 ¼ ρB

	
: ð12Þ

Here, ρsð·Þjs∈ ½0;1� is a trajectory of configuration space
probability densities PðRdÞ [67], and ϕsð·Þjs∈ ½0;1� is a
trajectory of scalar fields that yield gradient velocity fields
vs ¼ −∇ϕs satisfying the continuity equation ∂sρs ¼ −∇ ·
ðρsvsÞ [68]. This so-called Benamou-Brenier formulation
of optimal transport [Eq. (12)] reveals a Riemannian
structure on the space of probability distributions known
as Otto calculus [42–44]: on this manifold of probability
distributions M ≔ PðRdÞ, a “point” is a probability dis-
tribution ρ∈M, a “tangent space vector” is a gradient
velocity field identifiable (up to a constant offset) by a
scalar field ϕ∈TρðMÞ, and geodesics are the argmin
of Eq. (12).
For overdamped dynamics, the work-minimizing proto-

col satisfying boundary conditions ρð·; 0Þ ¼ ρeqi and
ρð·; τÞ ¼ ρeqf is a time-scaled solution of Eq. (12) for
ρA ¼ ρeqi , ρB ¼ ρeqf , assuming sufficiently expressive con-
trol (described in the following paragraph) [39]. [See the
Supplemental Material (SM) for a concise derivation [69].]
From the continuity equation form of ∂ρð·; tÞ=∂t [Eqs. (4)
and (6)], the optimal protocol λ�ðtÞ for finite time τ can be
expressed in terms of ρ�s and ϕ�

s that solve Eq. (12), as
satisfying (up to a constant offset)

Uλ�ðtÞðxÞ ¼ − ln ρ�t=τðxÞ þ τ−1ϕ�
t=τðxÞ: ð13Þ

The first term corresponds to the Benamou-Brenier geo-
desic ρ�s , and the second one with ϕ�

s is a counterdiabatic
term that drives the probability distribution solving Eq. (4)
to match the geodesic ρð·; tÞ ¼ ρ�t=τ (see [72]).
Remarkably, this solution is exact for any finite τ, and it

provides a geometric interpretation for these work-
minimizing protocols as optimal transport geodesics

connecting ρeqi to ρeqf . Through the time-scaling t ¼ τs,
it follows that W�

ex ¼ W2
2½ρeqi ; ρeqf �=τ is a tight lower bound

for excess dissipation in this additionally constrained
setting [74,75]. However, there are two important caveats
to this approach: first, solving Eq. (12) involves PDEs on
configuration space, which generally for dimension d≳ 5
is computationally intractable (although, see [76–79] for
sophisticated modern machine learning methods, as well as
[58]). Second, the control parameters must be sufficiently
expressive in the sense that for all t∈ ð0; τÞ there has to be a
λ∈M that satisfies Eq. (13). Worse yet, there might not be
any admissible protocols that can satisfy the terminal
constraint ρð·; τÞ ¼ ρeqf [58].
Without the terminal condition, this problem is no longer

overconstrained. The optimal excess work can be expressed
as a minimum over ρf ¼ ρð·; τÞ (see the SM [69]),

W�
ex ¼ min

ρf
W2

2½ρeqi ; ρf�=τ þDKLðρfjρeqf Þ; ð14Þ

where the additional KL-divergence cost

DKLðρAjρBÞ ≔
Z

ρAðxÞ ln
ρAðxÞ
ρBðxÞ

dx ð15Þ

is the dissipation from the equilibration ρf → ρeqf that
occurs for t > τ (see [80]). Optimal protocols λ�ðtÞ are
also obtained via Eqs. (12) and (13), but now with ρA ¼ ρeqi
and ρB ¼ ρ�f that minimizes Eq. (14). Without the restric-
tive terminal constraint, protocols that approximate
Eq. (13) are allowed (in the case of limited expressivity),
and may be near-optimal in performance [29,34].
Demonstrating equivalence of geometries—We start by

expressing Eq. (10) with the time propagator (e.g., see
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Chapter 4.2 of [63])

gμνðλÞ ¼
Z

∞

0

Z
ρeqλ ðxÞδfμðxÞeL

†
λ t

0
δfνðxÞ dx dt0

¼ −
Z

ρeqλ ðxÞδfμðxÞfL†
λg−1½δfν�ðxÞ dx: ð16Þ

The second line comes from taking the time integral, where
the inverse operator fL†

λg−1 is defined in terms of a
properly constructed Green’s function [Eq. (40) in [84] ].
This expression is the lowest order tensor found in a
perturbative expansion of the Fokker-Planck equation [84].

By formally defining ϕμ ¼ fL†
λg−1δfμ as (up to a

constant offset) the scalar field solving L†
λϕμ ¼ δfμ, it is

straightforward to show with Eqs. (7) and (8) that, for any
protocol λðsÞjs∈ ½0;1�,

∂ρeqλðsÞ
∂s

¼ ∇ · ðρeqλðsÞ∇ϕsÞ; where ϕsðxÞ ¼
dλμ

ds
ϕμðxÞ: ð17Þ

Applying δfμ ¼ L†
λϕμ and Eq. (7) to Eq. (16) shows

that the thermodynamic distance [Eq. (11)] may be
expressed as

T 2ðλA; λBÞ ¼ min
λðsÞ;ϕsjs∈ ½0;1�

�Z
1

0

Z
ρeqλðsÞðxÞj∇ϕsðxÞj2 dx ds

���� satisfying ∂ρeqλðsÞ
∂s

¼ ∇ · ðρeqλðsÞ∇ϕsÞ; λð0Þ ¼ λA; λð1Þ ¼ λB

	
: ð18Þ

This is our first major result: this expression is equivalent
to the squared L2-Wasserstein distance [Eq. (12)] with the
constraint that ρsjs∈ ½0;1� is a trajectory of equilibrium
distributions ρeqλðsÞjs∈ ½0;1�. In other words, thermodynamic

geometry induced by the friction tensor [Eq. (10)] onM is
equivalent to optimal transport geometry restricted to the
equilibrium distributions Peq

MðRdÞ corresponding to M
[85], and thus share the same geodesics and geodesic
distances.
Up until now, thermodynamic geometry has prescribed

optimal protocols as friction tensor geodesics joining λi and
λf, which are approximate for finite τ. Optimal transport
solutions require solving PDEs, but yield exact optimal
protocols containing both geodesic and counterdiabatic
components [Eq. (13)]. Our unification of geometries
suggests that thermodynamic geometry protocols may be
made exact by including a counterdiabatic term.
Geodesic-counterdiabatic optimal protocols—From

here we consider the control-affine parametrization [86]

UλðxÞ ¼ UfixedðxÞ þUoffsetðλÞ þ λμUμðxÞ; ð19Þ

and control space λ∈M ¼ Rm. It follows from the
equivalence of thermodynamic and optimal transport
geometries that the optimal protocol should have the form

λ�ðtÞ ¼ γðt=τÞ þ τ−1ηðt=τÞ; ð20Þ

namely the sum of a geodesic term and a counterdiabatic
term that correspond to the two terms in Eq. (13), where
ρ�s js∈ ½0;1� and ϕ�

s js∈ ½0;1� solve Eq. (12) with ρA ¼ ρeqi and
ρB ¼ ρ�f from Eq. (14). Here, γðsÞwill be a geodesic of gðλÞ
joining γð0Þ ¼ λi to γð1Þ ¼ γf, where

γf ¼ argmin
λ

T 2ðλi; λÞ=τ þDKLðρeqλ jρeqf Þ: ð21Þ

We show in Appendix A that the counterdiabatic term is

ηðsÞ ¼ h−1ðγðsÞÞgðγðsÞÞ
�
dγðsÞ
ds

�
; ð22Þ

where, intriguingly, h is the Fisher information
metric [87]

hμνðλÞ ¼
Z

ρeqλ ðxÞδfμðxÞδfνðxÞ dx; ð23Þ

which also induces a Riemannian geometry on the space of
parametric equilibrium probability distributions ðM; hÞ
known as “information geometry” [59–61]. Equation (22)
is exact in cases of sufficient expressivity [i.e., when Eq. (13)
can be satisfied]; otherwise, ηðsÞ is the full solution projected
onto M.
This is our second major result: the equivalence be-

tween thermodynamic and optimal transport geometries
implies that optimal protocols beyond linear response
require counterdiabatic forcing, and can be obtained
for control-affine potentials [Eq. (19)] [88] via the
following:

Algorithm 1. Geodesic-counterdiabatic opt. protocols for
control-affine potentials [Eq. (19)].

Input: λi, λf, protocol time τ, metrics gμνðλÞ, hμνðλÞ [Eqs. (10),
(23)], KL divergence DKLð·jρeqf Þ [Eq. (15)].

1: Solve geodesic γðsÞjs∈ ½0;1� connecting γð0Þ ¼ λi and γð1Þ ¼ γf
[obtained from Eq. (21)] under gμν.

2: Calculate counterdiabatic term ηðsÞ ¼ h−1g½dγ=ds�.
3: Return optimal protocol λ�ðtÞ ¼ γðt=τÞ þ τ−1ηðt=τÞ.
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We emphasize that this procedure does not require
solving any configuration-space PDEs. Moreover, in the
limit τ → ∞, the counterdiabatic component in Eq. (20)
vanishes and Eq. (21) is solved by γf ¼ λf, and thus
geodesic protocols from thermodynamic geometry are
reproduced.
Examples—We show in Appendix B that Algorithm 1

reproduces exact optimal protocols solved in [19] for
controlling a parametric harmonic potential. Figure 1
illustrates an optimal protocol for UλðxÞ ¼ λx2=2. Notice
that at t ¼ 0 the counterdiabatic term is suddenly turned on,

while at t ¼ τ the geodesic ends at γf ≠ λf and the
counterdiabatic term is suddenly turned off. Seen in this
light, the discontinuous jumps in optimal protocols λ�ðtÞ
arise from the sudden turning on and off of counterdiabatic
forcing, and the discontinuity of the geodesic at t ¼ τ. We
note that starting in equilibrium at t ¼ 0 and suddenly
ending control at t ¼ τ are both unnatural in biological
settings; these generic discontinuous jumps can be seen as
artifacts of the imposed boundary conditions.
Surprisingly, nonmonotonic optimal protocols have been

found for the linearly biased double well [27]

UλðxÞ ¼ E0½ðx2 − 1Þ2=4 − λx�; ð24Þ
for certain values of E0 and τ [e.g., τ ¼ 0.2 in Fig. 2(a) for
E0 ¼ 16]. Figure 2(b) illustrates protocols numerically
obtained from Algorithm 1 (details given in the SM
[69]). Because of the limited expressivity of the controls,
these protocols are not identical to the exact optimal
protocols obtained by solving PDEs [27] [Fig. 2(a)].
However, they reproduce significant properties (e.g., dis-
continuous jumps and nonmonotonicity, becoming exact in
τ → 0 and τ → ∞), and lead to improved performance over
geodesic protocols [Fig. 2(c)]. Figure 2(d) illustrates the
nonmonotonic τ ¼ 1 protocol as a sum of geodesic and
counterdiabatic terms. The tensors g and h [Fig. 2(e)] yield
necessarily monotonic geodesics [Fig. 2(f)], and nonmo-
notonic counterdiabatic forcing [Fig. 2(g)] that leads to
nonmonotonic optimal protocols.
Discussion—We have demonstrated the equivalence

between overdamped thermodynamic geometry on M—
previously seen as an approximate framework—and L2

optimal transport geometry on equilibrium distributions
Peq

MðRdÞ ⊂ PðRdÞ. The resulting geodesic-counterdiabatic
optimal protocols from Algorithm 1 are exact for para-
metric harmonic traps, and explain both the ubiquitous
discontinuous jumps and the nonmonotonic behavior
observed in optimal protocols.
We note that [57] presents a geodesic-counterdiabatic

PDEs approach for underdamped dynamics. Additionally,
underdamped optimal control has recently been related to a
modified optimal transport problem [89,90]. We expect that
the metric tensor in [57], the friction tensor [Eq. (10)] for
underdamped dynamics [66], and the optimal transport
specified in [89,90] may also be geometrically unified
through methods similar to ours.
An interesting future direction will be to apply our

findings to heat engines [9–12,38] and active matter
systems [18,91], which have been studied with approxi-
mate geodesic protocols. We hope that the insight that
minimal-work protocols require both geodesic and counter-
diabatic components will prove to be useful in under-
standing the cyclic and fundamentally nonequilibrium
processes that occur in biological systems.

FIG. 2. (a) Exact optimal protocols obtained in [27] from
solving PDEs, for the linearly biased double well [Eq. (24);
E0 ¼ 16] for different protocol durations τ including the fast
protocol τ → 0 [26] (solid yellow) and the friction tensor
geodesic protocol (dark purple). (b) Geodesic-counterdiabatic
protocols numerically obtained from Algorithm 1. (c) Geodesic-
counterdiabatic protocols (blue stars) outperform the geodesic
protocol (red circles) for all τ; cf. performance of exact optimal
protocols (black). We examine the reduction in performance at
τ ∼ 2 in the SM [69]. (d) The τ ¼ 1 protocol numerically obtained
via Algorithm 1 (here γf ¼ 0.0291), same coloring as Fig. 1.
(e) The friction and Fisher information tensors yield (f) the
geodesic γðsÞ (here λA ¼ −1, λB ¼ 1) and (g) the nonmonotonic
counterdiabatic forcing ηðsÞ.

PHYSICAL REVIEW LETTERS 133, 057102 (2024)

057102-5



Acknowledgments—This work greatly benefited from
conversations with Adam Frim. A. Z. was supported by the
Department of Defense (DOD) through the National
Defense Science and Engineering Graduate (NDSEG)
Fellowship Program. M. R. D. thanks Steve Strong and
Fenrir LLC for supporting this project. This work was
supported in part by the U.S. Army Research Laboratory
and the U.S. Army Research Office under Contract
No. W911NF-20-1-0151.

[1] G. Diana, G. B. Bagci, and M. Esposito, Phys. Rev. E 87,
012111 (2013).

[2] P. R. Zulkowski and M. R. DeWeese, Phys. Rev. E 89,
052140 (2014).

[3] K. Proesmans, J. Ehrich, and J. Bechhoefer, Phys. Rev. Lett.
125, 100602 (2020).

[4] K. Proesmans, J. Ehrich, and J. Bechhoefer, Phys. Rev. E
102, 032105 (2020).

[5] S. Whitelam, Phys. Rev. E 108, 044138 (2023).
[6] T. Schmiedl and U. Seifert, Europhys. Lett. 81, 20003

(2007).
[7] I. A. Martínez, É. Roldán, L. Dinis, and R. A. Rica, Soft

Matter 13, 22 (2017).
[8] D. Martin, C. Nardini, M. E. Cates, and É. Fodor, Europhys.

Lett. 121, 60005 (2018).
[9] P. Abiuso and M. Perarnau-Llobet, Phys. Rev. Lett. 124,

110606 (2020).
[10] K. Brandner and K. Saito, Phys. Rev. Lett. 124, 040602

(2020).
[11] A. G. Frim and M. R. DeWeese, Phys. Rev. E 105, L052103

(2022).
[12] A. G. Frim and M. R. DeWeese, Phys. Rev. Lett. 128,

230601 (2022).
[13] P. Geiger and C. Dellago, Phys. Rev. E 81, 021127 (2010).
[14] C. Dellago and G. Hummer, Entropy 16, 41 (2013).
[15] D. A. Sivak and G. E. Crooks, Phys. Rev. E 94, 052106

(2016).
[16] J. N. E. Lucero, A. Mehdizadeh, and D. A. Sivak, Phys. Rev.

E 99, 012119 (2019).
[17] S. Blaber and D. A. Sivak, Europhys. Lett. 139, 17001

(2022).
[18] L. K. Davis, K. Proesmans, and É. Fodor, Phys. Rev. X 14,

011012 (2024).
[19] T. Schmiedl and U. Seifert, Phys. Rev. Lett. 98, 108301

(2007).
[20] The discontinuities in the protocol are also taken into

account in the integral Eq. (1).
[21] Gomez-Marin et al. found that optimal protocols for under-

damped dynamics have even worse regularity [22]; at
starting and end times, they have Dirac impulses!.

[22] A. Gomez-Marin, T. Schmiedl, and U. Seifert, J. Chem.
Phys. 129 (2008).

[23] H. Then and A. Engel, Phys. Rev. E 77, 041105 (2008).
[24] M. V. S. Bonança and S. Deffner, Phys. Rev. E 98, 042103

(2018).
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End Matter

Appendix A: Counterdiabatic driving expression—In
this appendix we derive our expression for the
counterdiabatic term [Eq. (22)]. Per definition, the
counterdiabatic term ϕsðxÞ ¼ ημðsÞUμðxÞ is constructed
to solve the continuity equation

∂ρeqγðsÞ
∂s

ðxÞ ¼ ∇ · ½ρeqγðsÞðxÞ∇ϕsðxÞ�: ðA1Þ

We can divide by ρeqλ ðxÞ and plug in ∂s ln ρ
eq
γðsÞ ¼

½dγðsÞ=ds�δfμðxÞ to obtain

dγμ

ds
δfμðxÞ ¼ −ηνðsÞ½L†

γðsÞδfν�ðxÞ; ðA2Þ

where we have used the fact that UνðxÞ¼−δfνþconst, and
that the adjoint operator [Eq. (7)] satisfies L†

λ ½ψ þ c� ¼
L†
λ ½ψ � for any scalar field ψðxÞ and constant c∈R.
Because of the limited expressivity of available

controls in a given problem, it might not be possible to
satisfy Eq. (A2). However, this potential insolubi-
lity is resolved by applying a projection operator to
both sides

dγμ

ds

Z h
−ρeqγðsÞðxÞδfαðxÞfL†

γðsÞg−1
i
δfμðxÞ dx ¼ −ηνðsÞ

Z h
−ρeqγðsÞðxÞδfαðxÞfL†

γðsÞg−1
i
½L†

γðsÞδfν�ðxÞ dx; ðA3Þ

which yields

gαμðγðsÞÞ
�
dγμ

ds

�
¼ hανðγðsÞÞηνðsÞ; ðA4Þ

using the friction tensor and Fisher information metric
expressions Eq. (16) and Eq. (23). Optimal transport
geometry measures “horizontal” displacement while in-
formation geometry measures “vertical” displacement [92],
so g and h can be seen to give the conversion between the
left and right hand sides of Eq. (A1) [93].
Because the Fisher information metric is symmetric and

positive-definite (assuming [32]), we can apply its inverse
to Eq. (A4), thus reproducing Eq. (22).

Appendix B: Analytic reproduction of harmonic
oscillator optimal protocols—In this appendix we show
that Algorithm 1 exactly reproduces the optimal
protocols for harmonic potentials first found in [19].
We first consider a variable-center harmonic poten-

tial in one dimension UλðxÞ ¼ ðx − λÞ2=2, both the fric-
tion and Fisher information tensors are spatially constant
gðλÞ ¼ fðλÞ ¼ 1 due to translation symmetry. For any λf,
the KL divergence is given by DKLðρeqλ jρeqf Þ ¼R
ρeqλ ðxÞ ln½ρeqλ ðxÞ=ρeqf ðxÞ� dx ¼ ðλ − λfÞ2=2, while the

squared thermodynamic length is given by T 2ðλi; λÞ ¼
ðλ − λiÞ2. Without loss of generality we fix λi ¼ 0.
Following Algorithm 1, we obtain γf ¼ ð1þ 2=τÞ−1λf
with geodesic γðsÞ ¼ sγf, and ηðsÞ ¼ γf. Ultimately, this
yields the optimal protocol

λ�ðtÞ ¼ ½λf=ð2þ τÞ�t|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
geodesic

þ 1=ð2þ τÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
counterdiabatic

; for t∈ ð0; τÞ; ðB1Þ

which yields the original analytic solution reported by
Schmiedl and Seifert λ�ðtÞ ¼ λfð1þ tÞ=ð2þ τÞ, Eq. (9) in
[19] (note that they use t to denote protocol duration and τ
to denote time, which is swapped with respect to our
notation). However, we now have a refined interpretation of
this optimal protocol, as consisting of a geodesic compo-
nent that connects λi to γf ≠ λf, and a counterdiabatic
component necessary to achieve the geodesic trajectory for
finite protocol durations τ.
We now solve for the optimal protocol for a variable-

stiffness harmonic trap UλðxÞ ¼ λx2=2. We will defer
solving for γf until after obtaining the analytic form for
λ�ðtÞ. The friction tensor for this potential has previously
been shown to be gðλÞ ¼ 1=4λ3 [65], and the Fisher infor-
mation metric can be calculated to be hðλÞ ¼ hx4=4ieqλ −
ðhx2=2ieqλ Þ2 ¼ 1=2λ2. As shown in [65], by switching to
standard deviation coordinates σ ¼ λ−1=2, the friction
tensor is constant g̃ðσÞ ¼ 1, and thus geodesics are σðsÞ ¼
ð1 − sÞσA þ sσB with thermodynamic length T̃ 2ðσA; σBÞ ¼
ðσB − σAÞ2, where σA ¼ λ−1=2i and σB ¼ γ−1=2f . This yields
the geodesic

γðsÞ ¼ ½ð1 − sÞσA þ sσB�−2; ðB2Þ

with the corresponding counterdiabatic term given by

ηðsÞ ¼ ðσA − σBÞ=½ð1 − sÞσA þ sσB�: ðB3Þ

Plugging these into λ�ðtÞ ¼ γðt=τÞ þ τ−1ηðt=τÞ leads to the
interpretable optimal protocol expression

λ�ðtÞ ¼ ½1=σ�ðtÞ�2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
geodesic

þ τ−1½Δσ=σ�ðtÞ�|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
counterdiabatic

; ðB4Þ
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where σ�ðtÞ ¼ σi þ ðt=τÞΔσ is the linear interpolation
between the endpoints σi ¼ λ−1=2i and σi þ Δσ ¼ γ−1=2f .
Finally we solve for γf via

γf ¼ argmin
λ

T 2ðλi; λÞ=τ þDKLðρeqλ jρeqf Þ; ðB5Þ

using T 2ðλi; λÞ ¼ ðλ−1=2i − λ−1=2Þ2 (recall that λ−1=2 ¼ σ is
the standard deviation) and DKLðρeqλ jρeqf Þ ¼ ð1=2Þ½ðλf=λ −
1Þ þ lnðλ=λfÞ� [94]. This yields

γf ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2λiτ þ λiλfτ

2

q
− 1Þ2=λiτ2; ðB6Þ

or when expressed in σ coordinates

Δσ ¼ σi

0
B@1þ λfτ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λkτ þ λiλfτ

2
q
2þ λfτ

1
CA: ðB7Þ

Substituting this expression into Eq. (B4) reproduces the
exact optimal protocol, Eqs. (18) and (19) in [19]. (Note
that they use t to denote protocol duration and τ to denote
time, which is swapped with respect to our notation).
Figure 1 illustrates the obtained exact optimal protocol

for this problem [Eqs. (B4) and (B7)] as a sum of geodesic
and counterdiabatic components. This clarifies the origin of
the jumps in optimal protocols: at t ¼ 0, the counter-
diabatic component is suddenly turned on, and at t ¼ τ it is
abruptly turned off.
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