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Abstract

The brain represents the world through the activity of neural populations; however, whether the computational goal of sensory
coding is to support discrimination of sensory stimuli or to generate an internal model of the sensory world is unclear.
Correlated variability across a neural population (noise correlations) is commonly observed experimentally, and many studies
demonstrate that correlated variability improves discriminative sensory coding compared to a null model with no correlations.
However, such results do not address whether correlated variability is optimal for discriminative sensory coding. If the computa-
tional goal of sensory coding is discriminative, than correlated variability should be optimized to support that goal. We assessed
optimality of noise correlations for discriminative sensory coding in diverse datasets by developing two novel null models, each
with a biological interpretation. Across datasets, we found that correlated variability in neural populations leads to highly subopti-
mal discriminative sensory coding according to both null models. Furthermore, biological constraints prevent many subsets of
the neural populations from achieving optimality, and subselecting based on biological criteria leaves red discriminative coding
performance suboptimal. Finally, we show that optimal subpopulations are exponentially small as the population size grows.
Together, these results demonstrate that the geometry of correlated variability leads to highly suboptimal discriminative sensory
coding.

NEW & NOTEWORTHY The brain represents the world through the activity of neural populations that exhibit correlated variabili-
ty. We assessed optimality of correlated variability for discriminative sensory coding in diverse datasets by developing two novel
null models. Across datasets, correlated variability in neural populations leads to highly suboptimal discriminative sensory coding
according to both null models. Biological constraints prevent the neural populations from achieving optimality. Together, these
results demonstrate that the geometry of correlated variability leads to highly suboptimal discriminative sensory coding.

correlated variability; neurophysiology; null models; sensory coding

INTRODUCTION

The brain represents the sensory world through the coordi-
nated firing of neural populations. But what is the computa-
tional goal of the brain’s sensory representations? Traditionally,
neural populations in early sensory areas have been thought to
transform features of stimuli and transmit them to downstream

cortical areas where they may be read out (i.e., decoded, discri-
minated). Indeed,many studies of sensory areas seek to analyze
what sensory features are transmitted in the brain and with
what fidelity. Alternatively, a generative sensory code would
enable neural population activity to generate an internal model
of the sensory world that may support diverse downstream
tasks. Understanding population neural activity necessitates
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analyzing the joint activity of many neural units, beyond sin-
gle-neuron analysis. Normative theories, which formalize opti-
mality criteria, are powerful tools in these analyses, as they can
establish principles for explaining features of experimentally
observed neural activity at the population level. Therefore, it is
important to develop methods for quantitatively assessing nor-
mative theories based on the features observed in neural data.
One prominent feature of neural activity is variability: neural
recordings exhibit trial-to-trial fluctuations in response to the
same stimulus. From a normative perspective, the geometry of
variability in neural activity impacts how optimally a popula-
tion of neurons can discriminate stimuli (1, 2). However, the
optimality of correlated variability for discriminative sensory
coding in experimental neural population data has not been
assessed.

Many studies have characterized pairwise correlations
in the trial-to-trial variability of the firing rates of simulta-
neously recorded neurons, often called correlated variabil-
ity or noise correlations (3–9). The correlated variability
observed in experimental studies typically depends on
how neuronal responses are modulated by features of sen-
sory stimuli (i.e., sensory tuning) (10–12). Although corre-
lated variability is typically considered in simultaneous
single-neuron electrophysiology measurements, it has
been observed in calcium imaging recordings (13) and
larger-scale measurements such as electrocorticography
recordings (9). For example, Fig. 1, A and B, show the sin-
gle-trial variability in Ca2þ responses (DF/F) for two simul-
taneously recorded mouse retinal ganglion cells (RGCs;
each dot is the neuronal response on a single trial) in
response to drifting bar stimuli (Fig. 1D). The RGCs’ corre-
lated variability for a single stimulus is shown in Fig. 1E,
which plots the single-trial responses (dots) for these neu-
rons against each other for two stimuli (colors; large dots
indicate means, ovals correspond to 2 SD covariances).
Correlated variability has many possible biological sources
in neural populations (6, 7, 14–18), some of which the nerv-
ous system may be able to modify. Understanding the
impact of correlated variability on population coding is im-
portant for revealing the principles governing neural compu-
tation (1, 2, 4). In particular, if the computational goal of
sensory representations is to enable discriminating stimuli,
then the sensory code should be optimal for that goal.

Correlated variability can have diverse impacts on the fidel-
ity of a neural code for discriminating stimuli. Theoretical and
computational studies have determined how the interplay
between correlated variability and tuning properties affects
population coding (2, 8, 15, 19–23). Figure 1C illustrates the
mean response curve (black line, defined by the mean firing
rate of the neurons in response to various stimuli) from two
hypothetical simultaneously recorded neurons across a range
of stimulus values (3 neighboring stimuli are demarcated with
black dots). From a discriminative perspective, if the corre-
lated variability has low variance (Fig. 1C, blue ellipse) perpen-
dicular to the mean stimulus response curve (Fig. 1C, black
line), the impact on coding will be less detrimental than hav-
ing high variance (Fig. 1C, orange ellipse) parallel to the mean
stimulus response curve. This is because the trial-by-trial fluc-
tuation (blue ellipse) in response to the central stimulus (large
black dot) will minimally overlap with the response to the
nearby stimuli (small black dots). In early sensory areas, such

as retina and primary visual cortex (V1), studies have found
that correlated variability enhances discriminative coding (6,
16, 24–28). Outside of early sensory areas, both the structure of
correlated variability and its impact on discriminative coding
are heterogeneous (4, 12, 29). Brain states can change corre-
lated variability and therefore its effect on discriminative cod-
ing (30–32). Rumyantsev et al. (33) showed a case where
correlated variability was substantially worse than the shuffle
null model, suggesting that noise correlations can be detri-
mental to discriminative coding. These studies leave open the
possibility that correlated variability is optimal for discrimina-
tive coding in sensory areas; however, this has not been
evaluated.

The impact of correlated variability on discriminative cod-
ing is typically assessed by comparing the linear Fisher infor-
mation (LFI) of the experimentally observed correlations to
the distribution of LFI under the shuffle null model, a null
distribution with the same per-neuron variability but no cor-
relations across neurons (1, 2, 29). LFI quantifies how accu-
rately neural population activity can be used to discriminate
(i.e., decode) two stimuli. Many previous studies have
shown, by using the shuffle null model, that the structure of
correlated variability can benefit discriminative coding (6,
16, 24–28). However, comparing the experimentally observed
correlated variability with the zero-correlation version is
only one comparison for determining optimality; there are
potentially other covariance structures that are not captured
by the shuffle null model. In principle, the brain’s correlated
variability could have produced better (or worse) discrimina-
tive coding properties. Furthermore, it is unclear whether
zero-correlation population activity is the only reasonable
null distribution, highlighting the importance of developing
other null models (34) that span the space of covariance
structures. Testing normative theories of stimulus coding in
neural datasets requires understanding whether the geome-
try of experimental correlated variability is optimal; how-
ever, a methodological framework for testing the optimality
of correlated variability is currently lacking.

Here, we ask the specific question: does the experimen-
tally observed geometry of correlated variability in neural
population data result in optimal discriminative coding?
To test the optimality of correlated variability in experi-
mentally observed neural responses, we developed two
null models. The uniform correlation (UC) null model and
the factor analysis (FA) null model each define a null distri-
bution of correlated variability and have particular bio-
logical interpretations. Using these null models, we test
the optimality of neural coding in newly acquired data
recorded from retinal ganglion cells (RGCs, Retina), pre-
viously recorded neurons in primary visual cortex (V1),
and newly acquired electrocorticography (ECoG) data on
primary auditory cortex (PAC) (Fig. 1, D–L). These datasets
span species, brain areas, and recording modalities used in
many previous studies. Our main finding is that the experi-
mentally observed geometry of correlated variability leads to
highly suboptimal discriminative coding across all datasets
and both null models. Furthermore, the degree of subopti-
mality worsens as a function of the number of neural units
considered in the neural population. We find that for a large
fraction of subpopulations of the recorded units, achieving
optimality would push the neural responses into regimes that
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violate biological constraints. However, even when neural
units are subsampled to optimize for biological criteria, they
remain highly suboptimal. Finally, direct selection of optimal
discriminative subpopulations shows that the optimal popula-
tion is exponentially small as a function of neural dimension-
ality. Our results demonstrate that the traditional null model
of correlated variability cannot be used to assess the optimality
of discriminative coding in data and that biological constraints
limit the ability of neural activity to achieve optimal correlated
variability. Together, our results show that the geometry of
correlated neural response variability leads to highly subopti-
mal discriminative sensory coding.

METHODS

Data Availability

The preprocessed and trialized Retina and trialized PAC
datasets are available at https://zenodo.org/records/14342290.
The raw PAC data are available at https://crcns.org/data-sets/
ac/ac-7 (R32_B7.nwb). The V1 data are available at https://
crcns.org/data-sets/vc/pvc-11.

Code Availability

Code to reproduce the analysis and figures is available at
https://github.com/BouchardLab/noise_correlations.

Neural Recordings

We examined correlated variability in a diverse set of data-
sets, spanning distinct brain regions, animal models, and re-
cording modalities. We used calcium imaging recordings
from mouse retinal ganglion cells, single-unit recordings
frommacaque primary visual cortex, and micro-electrocorti-
cography (μECoG) recordings from rat auditory cortex. We
briefly describe the experimental and preprocessing steps
for each dataset. See Fig. 1 and Table 1 for summaries of the
datasets, including the recording modalities, stimulus types,
number of simultaneously recorded units, number of dis-
tinct stimuli, and number of trials per stimulus. For the reti-
nal and auditory cortex datasets, all procedures were
performed in accordance with established animal care proto-
cols approved by the University of California-Berkeley/
Lawrence Berkeley National Lab Institutional Animal Care
and Use Committee.

Recordings frommouse retina.
Mouse retina data were collected via ex vivo two-photon cal-
cium imaging in an isolated retina preparation (35). The ret-
ina was bulk loaded with Cal-520 AM dye with a previously
described multicell bolus loading technique (36) and then
imaged with ScanImage software (37) at 2.96 Hz in the gan-
glion cell layer of a 425 � 425-μm area of ventral retina.

A B C

D E F

G H I

J K L

Figure 1. Correlated variability is a pervasive neu-
ral phenomenon. A and B: mean activity as a
function of the angle of visually presented ori-
ented bars (larger red circles) and trial-to-trial var-
iability (small dots, with small x-axis offsets for
visualization) for 2 retinal ganglion cell (RGC) neu-
rons (corresponding to neuron 1 and neuron 2,
respectively, in E). DF/F, Ca2þ response. C: illus-
tration of mean stimulus response curve (black
line), less detrimental correlated variability (blue
ellipse), and more detrimental correlated variabili-
ty (orange ellipse) for 2 model neurons. The large
black dot is the mean stimulus response corre-
sponding to the covariances. The small black
dots are the mean responses for neighboring
stimuli. D–L: each row refers to a different experi-
mental dataset, and columns refer to an aspect
of the dataset. D–F: calcium imaging recordings
from mouse RGCs in response to drifting bars.
G–I: single-unit spike counts recorded from pri-
mary visual cortex of macaque monkey in
response to drifting gratings. J–L: micro-electro-
corticography recordings [z-scored high-gamma
(Hc) response] from rat primary auditory cortex in
response to tone pips at varying frequencies. D,
G, and J depict the recording region and stimulus
for each dataset. E, H, and K show the activity of
2 random RGCs/neurons/electrodes in the popu-
lation to 2 neighboring stimuli. Individual points
denote the unit activity on individual trials, and
covariance ellipses denote the noise covariance
ellipse at 2 standard deviations. F, I, and L plot
the distribution of pairwise noise correlations, cal-
culated for each pair of units across stimuli.
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Visual stimuli were delivered via an ultraviolet LED (375 nm)
coupled to a digital micromirror device and were presented
on the flyback of the fast-axis scanning mirror during a scan
to interleave the stimuli with imaging (35, 38). Visual
responses were elicited via 600 � 600-μm bars drifting for
2.93 s at 750 μm/s in one of six directions (spanning 0�

to 300�), with a 5-s intertrial interval. Each direction was
presented 114 times, for a total of 684 trials per cell.
Fluorescence signals from 832 manually selected regions
of interest were baseline subtracted and normalized to
calculate a DF/F0 time series. Of these regions of interest,
54 were used for further analysis after determination of direc-
tional tuning via permutation testing and manual screening.
Per-trial RGC activity used in the analysis here is the maxi-
mum DF/F0 value. Retina data were collected by M. T.
Summers. Further details on surgical, experimental, and pre-
processing steps can be found in Refs. 38, 39.

Recordings frommacaque primary visual cortex.
Primary visual cortex (V1) data comprised spike-sorted units
simultaneously recorded in anesthetized macaque monkey.
The data were obtained from the Collaborative Research in
Computational Neuroscience (CRCNS) data sharing website
(40) and were recorded by Kohn and Smith (41). This dataset
contains recordings from three monkeys, of which the main
text presents results from the first (results on the 2 other
monkey datasets are qualitatively similar). Recordings were
obtained with a 10� 10 grid of silicon microelectrodes
spaced 400 μm apart and covering an area of 12.96 mm2. The
monkey was presented with grayscale sinusoidal drifting
gratings, each for 1.28 s. Twelve unique drifting angles (span-
ning 0� to 330�) were each presented 200 times, for a total of
2,400 trials per monkey. Spike counts were obtained in a
400-ms bin after stimulus onset. A total of 106 units were
isolated in the monkey presented in the main text. These
units were chosen by the original authors such that 1) their
signal-to-noise ratio (the ratio of the average waveform am-
plitude to the standard deviation of the waveform noise) was
at least 2.75, 2) the best grating stimulus evoked at least 2
spikes/s, and 3) the variance-to-mean response ratio did not
exceed 10. Further details on the surgical, experimental, and
preprocessing steps can be found in Refs. 11, 42.

Recordings from rat primary auditory cortex.
Primary auditory cortex (PAC) data comprised cortical sur-
face electrical potentials (CSEPs) recorded from rats with
a custom fabricated micro-electrocorticography (μECoG)
array. The μECoG array consisted of an 8� 16 grid of 40-μm-
diameter electrodes. Anesthetized rats were presented with
50-ms tone pips of varying amplitude (8 different levels of
attenuation, from 0 dB to –70 dB) and frequency (30 fre-
quencies equally spaced on a log scale from 500 Hz to 32
kHz). We only used samples for the lowest three levels of

attenuation, since these evoked the largest responses. Each
frequency-amplitude combination was presented 20 times,
for a total of 3 � 30 � 20 ¼ 1,800 samples. The response for
each trial was calculated as the z-scored to baseline, high-c
band amplitude of the CSEP, calculated using a constant-Q
wavelet transform. The maximum of the per-trial high-c ac-
tivity was used in the analysis here. Of the 128 electrodes, we
used 65, selecting those that recorded from primary auditory
cortex. Data was recorded by M. E. Dougherty and K. E.
Bouchard. Further details on the surgical, experimental, and
preprocessing steps can be found in Refs. 43, 44.

Linear Fisher Information Measures Coding Fidelity

A commonly used measure of coding fidelity in the con-
text of decoding is the Fisher information, which provides a
limit on how accurately a readout of a neural representation
can be used to determine the value of the stimulus (45).
Formally, the Fisher information is a lower bound on the var-
iance of an unbiased estimator for the stimulus. In practice,
the Fisher information is analytically intractable. An alterna-
tive measure is the linear Fisher information (LFI). The LFI
acts as a suitable lower bound to the Fisher information and
is themost commonly usedmeasure of coding fidelity in cor-
related variability analyses (1, 6, 15, 16, 19, 46–48).

Experimental neuroscience datasets only consider dis-
crete sets of stimuli. In particular, the derivative of the aver-
age neural activity must be estimated by considering the
neighboring pairs of stimuli. Thus, in practice, we calculate
the coarsened linear Fisher information (49), which is
defined for two stimuli s1 and s2 as

Icoarseðf1; f2;R1;R2Þ ¼ f1 � f2
Ds

� �T
R1 þ R2

2

� ��1 f1 � f2
Ds

� �
ð1Þ

where f1 ¼ f(s1), f2 ¼ f(s2), R1 ¼ R(s1), R2 ¼ R(s2), and Ds is the
stimulus difference between s1 and s2, whose form may
depend on the stimulus structure. In addition, we use the
unbiased LFI estimator (48) for the observed LFI values as
well as for those sampled from null models. Note that since
the corrections to the naive estimator only depend on the
dimensionality of the neural population and number of sam-
ples, the corrections only impact the raw LFI values and not
percentiles. In this work, we use the terms “coarsened LFI”
and “LFI” interchangeably.

Assessing the Optimality of Neural Data with Null
Models

Information theoretic analyses of neural data often ask
whether the observed neural data are “optimal.” In the case of
correlated variability, the question can be posed as: are the
observed covariances optimal from a decoding perspective?
We quantified the coding fidelity with the linear Fisher infor-
mation (LFI, Eq. 1). In this case, LFI can be infinitely large if

Table 1. Experimental dataset summary

Dataset Animal Recording Stimulus Units Stimuli Trials/Stim

Retina Mouse (isolated) Calcium imaging Drifting bars 54 6 114
V1 Macaque Utah array Drifting gratings 106 12 200
PAC Rat μECoG Tone pips 65 30 60

PAC, primary auditory cortex; V1, primary visual cortex; μECoG, micro-electrocorticography.
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R ! 0 [or at least if the subspace of R�1 defined by dfðsÞ
ds

diverges]. This answer is likely unsatisfying because neural
systems have many sources of variability, and so expecting a
neural system to become noiseless or exactly remove noise
from a subspace seems implausible. Therefore, when assess-
ing the optimality of correlated variability, one must decide
which aspects of the correlated variability the neural system
couldmodify andwhich aspects will remain fixed.

In this section, we develop the formalism that will allow
us to assess the optimality of observed correlated neural
variability. The formalism consists of first defining a co-
variance parameterization for R, which is composed of
constraints (fixed parameters) and degrees of freedom
(free parameters). These constraints and degrees of free-
dom define the space of allowed correlated variability.
Ideally, these constraints and degrees of freedom have
some biological interpretation, e.g., fixed private variabili-
ty or input from other regions of the brain (7, 14). Then, a
null model is defined by combining a covariance parame-
terization with a null distribution over the degrees of free-
dom. The distribution of some measure, such as the LFI,
under the null model can be used to assess the optimality
of the observed neural data.

We first review the commonly used fixed-marginal con-
straint for correlated variability using our formalism and
then define the commonly used shuffle and novel uniform
correlation (UC) null models. Finally, we propose the factor
analysis covariance parameterizations and associated null
model for assessing optimality, which has more biological
interpretability. In the following sections we use the termi-
nology that we define here:

• Covariance parameterization: a parameterization of R
that can combine various constraints (fixed parameters)
and degrees of freedom (free parameters)

• Constraints: elements of the covariance parameteriza-
tion that are estimated from data and fixed

• Degrees of freedom: elements of the covariance parame-
terization that can potentially be modified or optimized
to analyze a null model or optimality

• Optimality: values for the degrees of freedom in a covar-
iance parameterization that maximize a specified objec-
tive. Here we assess optimality using the linear Fisher
information (LFI), although this formalism can be
applied to other objectives

• Null distribution: distribution of a covariance parame-
terization’s degrees of freedom

• Null model: combines a covariance parameterization
with a baseline or uniform correlation null distribution
over the degrees of freedom.

The standard constraint considered for understanding
correlated neural variability is to keep the per-neuron mar-
ginal distributions fixed. Since the LFI only depends on the
covariance of the correlated variability, the fixed-marginal
parameterization is equivalent to constraining the per-neu-
ron variances to be constant [equivalently, the diagonal of R
is kept constant, diag (R)¼ r2]. The corresponding degrees of
freedom in this parameterization are the positive-definite
pairwise correlation matrix, r, specifically the symmetric,
off-diagonal entries, rij for i = j, which can vary. Under this

parameterization, the observed covariance structure can be
compared to other proposed distributions of correlations.

When considering the structure that generates R, it is de-
sirable that the constraints and degrees of freedom be bio-
logically interpretable. This can be achieved by considering
the equations that define the mean-centered, single-trial
response in terms of the degrees of freedom being consid-
ered. For the fixed-marginal parameterization, the distribu-
tion of the single-trial responses, ft(s), can be written in
terms of a multivariate normal distribution with the mean
response, f(s), where the covariance is the element-wise
product of the constrained marginal standard deviations,
rrT, and the free correlations, q,

f tðsÞ ¼ fðsÞ þ e
e � Nð0;rrT � qÞ ð2Þ

This equation is difficult to directly interpret as a network
model, but the correlations could be seen as coming from
recurrent activity within the observed neurons.

Given a parameterization (fixed-marginal) and a measure
of coding fidelity (LFI), it is possible to find optimal covari-
ance structures as a function of the free parameters. In gen-
eral, the value (or distribution of values) for the degrees of
freedom that lead to optimality can be derived analytically
or optimized numerically. For the fixed-marginal parameter-
ization, this corresponds to finding the points q̂, such that

q̂ ¼ arg max
q

LFI
dfðsÞ
ds

;diagðRÞ; q
� �

ð3Þ

Hu et al. (22) characterize the optima of the fixed-marginal
parameterization, although they do not provide a construc-
tive way of finding the global optima. We optimize q numeri-
cally to find optima. We find that the optimization process
findsmany local maxima for q̂ in practice.

Novel Null Models Allow the Assessment of Optimality
in Neural Data

So far, we have laid out a formalism to define the optimal
degrees of freedom for a specified covariance parameteriza-
tion. However, it is unlikely that observed neural data will
precisely match the predicted optimal degrees of freedom,
even if the biological system is behaving optimally, so the pre-
dictions from Eq. 3 cannot be used directly to assess optimal-
ity in data. To assess the optimality of a observed population
of neurons, a null model must be constructed for a corre-
sponding parameterization. In this formalism, constructing a
null model corresponds to assuming a null distribution for
the degrees of freedom of the covariance parameterization.
The null distribution should correspond to some notion of
“uniform” or “baseline” for the degrees of freedom.

For example, the shuffle null model, based on the fixed-
marginal parameterization, posits that the baseline distribu-
tion of correlations is zero. The shuffle null model compares
the LFI of the observed response to the distribution of LFIs
where the individual neural responses are independently
trial shuffled, that is, with fixed-marginal variability, no
underlying pairwise correlations, and empirical pairwise cor-
relations only arising from finite sampling effects. Under
this choice of null model, the observed LFI can be beneficial
if it has a high percentile under the null distribution that has
no correlations. The shuffle null model provides a limited
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baseline comparison for the observed LFI. To assess optimal-
ity, the distribution of parameters should be uniform over
the space of allowed covariance matrices, which is the moti-
vation for the uniform correlation null model.

Across a population, the median observed percentile across
subpopulations and stimuli can be used to categorize a data-
set as optimal (median percentile�2/3), near-chance (median
percentile between 1/3 and 2/3), or suboptimal (median per-
centile<1/3). This categorization is motivated by simplicity in
having few categories. However, it is also desirable to not
have the optimal and suboptimal categories share a bound-
ary. If they do, small changes in percentiles can switch
between optimal and suboptimal. In our case, since the null
model defines “near-chance,” having three categories is natu-
ral. The near-chance boundaries could be set in a number of
ways besides the choice for an even division into thirds. A
Kolmogorov–Smirnov test could compare the distribution of
percentiles to a uniform distribution. However, given the
large number of subpopulations and stimuli we use, empiri-
cally no distributions of percentiles in these datasets would be
near-chance for P value thresholds in sensible ranges. Said
another way, almost no empirical distributions of percentiles
are statistically similar to a uniform distribution. A looser test
could be to test whether a binomial distribution with P ¼ 0.5
would lead to the observed distribution of percentiles catego-
rically above and below 0.5. We find that with P values in sen-
sible ranges this gives boundaries comparable to the division
into thirds, but the boundaries differ across datasets because
of the variation in the number of subpopulations and stimuli.

In some cases, it may also be possible to define a distribu-
tion over optimal covariances and categorize whether the
observed LFI is likely under the optimal covariance distribu-
tion. For instance, if there is a unique optimal covariance,
the Wishart distribution could be used to create a sampling
distribution of optimal LFIs that the observed LFIs could be
compared against. This is not possible in our case since there
is not generally a unique optimal covariance. The Wishart
distribution could be used to understand the sampling distri-
bution of optimal covariance matrices, which is required for
assessing real data.

Uniform correlation and factor analysis null models.
We derive null distributions for linear Fisher information
(LFI) by defining null distributions over covariancematrices.
For the factor analysis (FA) null model, the covariance con-
straints are on the diagonal private variability and the mag-
nitude of the shared variability. This leaves the rotation of
the shared variability as the free parameter to form a dis-
tribution over. The maximum entropy distribution over
rotations can then be defined uniquely by the uniform
distribution according to the Haar measure (50). In this
sense, the FA null model was derived according to the
maximum entropy principle. For the uniform correlation
(UC) model, our understanding is that there is no equivalent
Haar measure to uniquely define a uniform distribution over
correlation matrices (51), so we cannot claim that the UC null
model provides a maximum entropy distribution. The partic-
ular uniform distribution used is specifically designed to
have uniform distributions of joint pairwise correlations (52).
However, the uniform distribution defined this way is intui-
tively higher entropy than the shuffle null model.

Our first contribution is the uniform correlation null
model based on the fixed-marginal parameterization, where
the correlations are chosen randomly from a uniform distri-
bution over correlation matrices (52). This tests whether the
observed correlations are optimal with respect to all possible
correlations, rather than only comparing against zero corre-
lations. To our knowledge, this null model has not been con-
sidered before. Evaluating data under this null model
provides a stronger assessment of the optimality of the
observed correlated variability than the shuffle null model.

At another extreme, we could attribute all trial-to-trial var-
iability to external sources that the network can shape or fil-
ter. To prevent trivial solutions, we can restrict the network
to only changing the loading of the variability onto the neu-
rons (through a rotation, R). This model was previously dis-
cussed (22), but not analyzed because of its incompatibility
with the fixed-marginal constraint.

As a parsimonious combination of the fixed-marginal con-
straint and pure rotation degrees of freedom, we propose
using a factor analysis (FA) model to parameterize the corre-
lated variability. Factor analysis decomposes the observed
correlated variability into two components: the first is per-
neuron private variability, represented as a diagonal matrix
diag r2FA

� �
, and the second is a low-rank shared variability

component, LT
FALFA, where LFA 2 ℝk�d;k < d. The FA null

model has private variability and the spectrum of the shared
component as constraints and the rotation of the shared
components as the degrees of freedom, combining aspects of
the fixed-marginal and rotation null models. The single-trial
response can be written as a function of the mean response
fðsÞ, private variances r2FA, low-rank external sources zFA,
loadingmatrix LFA, and rotationmatrixR

f tðsÞ ¼ fðsÞ þ RTLT
FAzFA þ eFA

zFA � Nð0; 1Þ
eFA � Nð0;diagðr2FAÞÞ

ð4Þ

To our knowledge, there is no closed-form solution for R̂
in the FA model to maximize LFI. Instead, to optimize the
FA model, the rotation can be numerically optimized by
gradient ascent. To construct the FA null model, a uni-
form distribution (Haar distribution) over special orthog-
onal rotations (53) is applied to the rotations.

To estimate the initial r2FA and LFA, we fit a factor analysis
model to the samples (54). In fitting the model we had two
requirements. The first is that we wanted the dimensionality
of the shared component, k, to be as large as possible so that
the observed covariance can be modeled as accurately as
possible. In opposition to this, we wanted the factor analysis
model parameters to be identifiable, meaning that the pri-
vate variance estimate is unique, which places a limit, which
depends on d, on how large k can be (55). In practice, we find
the largest k that is lower than the identifiability bound
where different initializations return the same parameters.
Note that factor analysis is never identifiable in two dimen-
sions, so we do not consider d¼ 2.

Population Statistics across Subpopulations and Stimuli
Measure Optimality under a Null Model

Each dataset can be described by a D � N design matrix X,
whereD is the total number of samples andN is the number of
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units in the population (Fig. 2F). We considered distributions
of LFI across subpopulations and stimuli, or subcompo-
nents of the design matrix. To create subpopulations and
stimuli, we first selected a subpopulation of size d by sub-
sampling d units from the population at random, resulting
in the D � d design matrix Xd (Fig. 2F). Next, we created
the subpopulation and stimulus by further subsampling
the design matrix according to a specific stimulus pairing.
Specifically, we chose two neighboring stimuli, s1 and s2
(Fig. 2F), and isolated the samples of Xd corresponding to
those stimuli, thereby creating a pair of design matrices

Xd
s1 ;X

d
s2

h i
. The subpopulation and stimulus maps to the task

of discriminating between two neighboring stimuli using a
subpopulation’s responses across trials to those stimuli,
which can be visualized in the neural space (Fig. 2G).

For each dataset, we considered subpopulation dimen-
sions d ¼ 3–20. As we only allowed neighboring stimulus
pairings, the number of available stimulus pairings for a sub-
population was 6 (retinal), 12 (V1), and 29 (PAC). Note that
the retinal and V1 stimulus sets are circular, providing an
additional stimulus pairing. In the retinal and V1 datasets,
we drew 1,000 subpopulations for each dimension d and

considered all stimulus pairings per subpopulation, resulting
in 1,000 � 6 ¼ 6,000 subpopulations and stimuli for the reti-
nal dataset and 1,000 � 12 ¼ 12,000 subpopulations and
stimuli for the V1 dataset. To manage computation time, we
considered 3,000 unique subpopulations and stimuli for the
PAC dataset, selecting both the subpopulation and stimulus
pairing at random for each subpopulation and stimulus.

For each subpopulation and stimulus, we calculate its
observed LFI, defined as Icoarseðf1; f2;R1;R2Þ. Specifically, we
computed

Iobs Xd
s1
;Xd

s2

� �
¼ Icoarse mean Xd

s1

� �
;mean Xd

s2

� �
; cov Xd

s1

� �
; cov Xd

s2

� �� �

ð5Þ

¼ fds1 � fds2
Ds

 !T

Rd
s1
þ Rd

s2

2

� ��1
fds1 � fds2

Ds

 !
ð6Þ

where ½fds1 ; f
d
s2 	 are the subpopulation and stimulus average

responses, ½Rd
s1 ;R

d
s1 	 are the subpopulation and stimulus cova-

riances, and Ds is the stimulus difference, or Ds ¼ js1 � s2j.
When necessary, the stimulus difference was taken as a

Figure 2. Novel methods for assessing
the optimality of neural codes. A–C: null
models of correlated variability. Solid pur-
ple ellipses denote idealized trial-to-trial
variability observed about the mean stim-
ulus activity (solid point). Samples from the
null models are depicted by dashed ellip-
ses. A: the shuffle null model maintains
per-neuron variance and samples correla-
tions near 0. B: the uniform correlation
(UC) null model maintains per-neuron var-
iance and samples uniform correlations.
C: the factor analysis (FA) null model com-
bines a fixed private variability (estimated
from the experimental data, left inset) with
shared variability (right inset) that can be
rotated to form null samples (dash styles
are consistent between the teal shared
variabilities in the right inset and the pur-
ple null samples in the main panel). D: for
a synthetic 2-dimensional (2-D) dataset,
the linear Fisher information [LFI, arbitrary
units (a.u.)] for the UC parameterization as
a function of the pairwise correlation, r, is
shown at top; bottom plots are the covari-
ance and samples as a function of r. E: for
a synthetic 2-D dataset, the LFI for the FA
parameterization as a function of the rota-
tion angle, R(h), is shown at top; bottom
plots are the covariance and samples as a
function of h. F: to calculate an observed
LFI or percentile under a null model, d
units were randomly subsampled from the
population. Then, 2 neighboring stimuli, s1
and s2, were chosen. The subpopulation
and stimulus pairing together constitute a

pair of design matrices Xd
s1
;Xd

s2

h i
. These

matrices are the inputs into a LFI calcula-
tion or null model analysis and form the
basis for the distributions of calculated
quantities. G: responses in the retinal data
for the depicted stimulus pairing (colors)
from F.
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circular difference (retinal and V1 datasets). Since the LFI
is scaled by the units of the stimulus difference, it is only
meaningful to compare observed LFIs within a particular
stimulus type. In this work, since all datasets use a different
stimulus, the LFIs may not have a meaningful relationship
across datasets.

Each null model acts on the design matrices of a subpopu-
lation and stimulus and outputs a distribution of covariance
matrices. For example, the fixed-marginal null model shuf-
fles the data within the design matrix, producing new design

matrices Xd0
s1 ;X

d0
s2

h i
and corresponding covariances Rd0

s1 ;R
d0
s2

h i
.

We then calculate the LFI using the new covariance matri-
ces. Each null model can be summarized as such: a
sampled transformation is applied to the observed subpo-
pulation and stimulus, producing new sampled covariance
matrices and therefore a sample of LFI from the null. The
shuffle null model transformed the data directly, so we
write its LFI as

IFM Xd
s1
;Xd

s2

� �
¼ Iobs shuffle Xd

s1

� �
; shuffle Xd

s2

� �� �
: ð7Þ

Meanwhile, the uniform and factor analysis null models
transform the covariance parameterization directly, so we
write their LFIs as

IUðXd
s1
;Xd

s2
Þ ¼ Icoarse fds1 ; f

d
s2
; sampleUðRd

s1
Þ; sampleUðRd

s2
Þ

� �
ð8Þ

IFA Xd
s1
;Xd

s2

� �
¼ Icoarse fds1 ; f

d
s2
; rotateFA Rd

s1

� �
; rotateFA Rd

s2

� �� �
: ð9Þ

Equations 7 and 9 capture a single application of a null
model. Specifically, shuffle(·) shuffles the neural data,
sampleU(·) samples a random off-diagonal correlation
structure and applies it to the covariance, and rotateFA(·)
applies a rotation to the shared component of the covari-
ance. However, we were interested in characterizing the
entire distribution of the null model. Thus, for each subpo-
pulation and stimulus, we applied 1,000 samples of the
null model to obtain a null model distribution of LFIs. We
then calculated observed percentiles as the fraction of
samples for which the observed LFI exceeded the null
model LFI. Thus, each observed subpopulation and stimu-
lus has its own corresponding observed percentile per null
model. When summary statistics are reported such as the
median LFI, median percentile, or optimal fraction, 95%
bootstrap confidence intervals from 1,000 boot strap
resamples are reported (56).

Estimating the population means and covariance will
have some variability due to the finite number of trials used
for estimation. Although we use the unbiased LFI estimator
(48) for the observed LFI values, there may still be a depend-
ence of the LFI or percentile medians or variability on the
number of trials. Empirically, we find that the UC and FA
null models’ LFI and percentile estimates are insensitive to
trial subsampling in the V1 dataset (200 trials per stimulus)
when sampled to 50% (100 trials) and 25% (50 trials) of the
original number of trials. The shuffle null model percentiles
show a qualitative chance, but this does not change the
interpretation of the analysis (results not shown). We do
expect the estimates to break down as the number of trials
approaches the subpopulation dimensionality (n ¼ 20),

which does constrain the types of experimental design
required for this analysis.

Optimal Fraction Calculation

The optimal fraction of a population was calculated in the
following way. Given a set of subpopulations and stimuli at a
particular dimension, the observed percentiles were calculated.
Then, the percentiles were sorted from largest to smallest. The
optimal fraction of the percentiles is initially set as the largest
single percentile. Starting from this, the median percentile of
the optimal fraction is calculated. If the median is �2/3, the
next smallest percentile is included in the optimal fraction and
the process continues to iterate. If the optimal fraction is <2/3,
the process terminates. This defines the largest possible frac-
tion of the percentiles that can be retained and have their me-
dian be �2/3. For reference, the top 2/3 of a uniform
distribution (i.e., [1/3, 1]) of percentiles hasmedian equal to 2/3.

Measures of Biological Plausibility

We calculated the mean Fano factors (FFs) for a subpopu-
lation and stimulus, based on the per-unit variance and
responsemeans

FF ¼ 1
d

Xd
i¼1

RiiðsÞ
f ðsÞi

ð10Þ

of the observed and optimal covariances matrices directly
from themean response and covariancematrix parameters.

We calculated the negative density (ND) as follows. For
each subpopulation and stimulus, we calculated f 1%i , the
neural activity at the 1st percentile, for each neuron i. We
then computed CDFiðf 1%i Þ, the cumulative density at f 1%i , for
a Gaussian obtained from either the observed covariance or
the optimal covariance under the null model. The ND, then,
was defined as the maximum CDFi among the neurons in
the subpopulation.

Distance and Tuning Ranking Subpopulations and
Stimuli for Subselection

For the Retina and PAC datasets, we have access to the
spatial locations of the RGC/electrode. For distance-based
subselection, we compute the average pairwise distance
between neural units for each subpopulation and stimulus.
The subpopulations and stimuli are ranked by this distance,
and the 10% of subpopulations and stimuli with the smallest
average distance are selected.

For tuning-based subselection, the stimuli are ranked for
each neural unit based on the mean neural activity (tuning).
The rank was used because it is less sensitive to absolute fir-
ing rates compared to using the activity per stimuli, which
would bias the subselection toward subpopulations and
stimuli that contain neural units with high firing rates. We
then sort the subpopulations and stimuli by their average
tuning rank across subpopulations and calculate percentile
statistics for the 10% of subpopulations and stimuli that
have the highest tuning ranking.

RESULTS
To assess the optimality of correlated variability for dis-

criminative sensory coding in neural population data, we
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used three neural datasets that span animal models, sensory
recording areas, and recording modalities (Fig. 1). The newly
recorded Retina dataset is calcium imaging frommouse reti-
nal ganglion cells (RGCs) (Fig. 1, D–F). The stimuli are drift-
ing bars at 6 angles, with each stimuli being presented 114
times. The previously recorded V1 dataset is spike-sorted,
single-unit electrophysiology recordings in macaque V1
(Fig. 1,G–I) (41). The stimuli are drifting gratings at 12 angles,
with each stimuli being presented 200 times. The newly
recorded primary auditory cortex (PAC) dataset is high-
gamma amplitude (Hc) from μECoG over rat primary auditory
cortex (Fig. 1, J–L). The stimuli are tone pips at 30 different
frequencies, with each stimuli being presented 60 times. We
refer to RGCs/neurons/electrodes as neural units. The neural
units have various levels of pairwise noise correlations, r,
across datasets (Fig. 1, F, I, and L), which is a key quantity for
analyzing correlated variability. This diversity likely encom-
passes the diversity in the brain and allows us to interpret
potentially heterogeneous results across datasets in terms of
the heterogeneity of pairwise noise correlations. See METHODS

for more details on dataset recording and preprocessing.

Novel Methods for Assessing the Optimality of Neural
Data for Discriminative Sensory Coding

An abundance of work has aimed to assess whether exper-
imentally observed correlated variability is beneficial or det-
rimental for discriminative coding (4, 6, 9–12, 16, 19, 24–32).
These studies often quantify the discriminability or fidelity
of a neural code with the linear Fisher information (LFI; see
METHODS) (48), which is a measure of how well the neural ac-
tivity could be used to discriminate (i.e., decode) different
stimuli. We used LFI as it provides a tractable limit on the
amount of stimulus “information” that can be transmitted to
downstream brain areas (e.g., retina to V1, V1 to V2, etc.) for
(linear) decoding, which is important for application to ex-
perimental data and connects with prior literature (see
METHODS). Typically, the impact of correlated variability is
assessed by comparing the experimentally observed LFI to a
distribution of LFIs generated from the shuffle null model.
Trial-shuffling the data will produce a distribution over co-
variance matrices [R(s)] where the pairwise correlations are
all centered near zero (Fig. 2A, observed covariance ellipse
is filled, corresponding shuffle covariance ellipse is
dashed). The neurobiological interpretation of the shuffle
null model is that the causes of correlated variability have
been removed: recurrent connections among the observed
population or between the larger partially observed popula-
tion have been severed or shared sources have been removed.
However, the shuffle null model does not compare the
observed correlations to a broad range of potential nonzero
correlations. In principle, neural circuits that are not optimal
for discriminative coding of sensory stimuli could support a
range of covariance structures with nonzero pairwise cor-
relations, many of which could produce higher LFI than
having zero correlations. In this case, using the shuffle
null model would overestimate the level of optimality in
neural data, and therefore it cannot be used to assess the
optimality of the experimentally observed correlations. To
our knowledge, the optimality of correlated variability for
discriminative sensory coding has not been directly eval-
uated on neural data before.

Our goal was to determine the optimality of correlated var-
iability for discriminative coding in experimental data. To
assess optimality of data, one must compare observed data
with distributions from null models. A null model should be
chosen to adequately span covariance structures. Defining
the covariance structures can be motivated from the maxi-
mum entropy principle: we can choose features of interest
from the data to constrain in the null model distribution and
then let the unconstrained parts of the distribution vary
according a maximum entropy distribution (i.e., a distribu-
tion that is least structured). Defining and choosing the
features of interest to constrain may depend on the experi-
mental context, including the types of neurons being
recorded, their location in the brain, or the recording modal-
ity. Thus, it is beneficial if the parameters of the null model
have a biological interpretation.We developed two nullmod-
els that allow us to assess the optimality of experimental
neural responses: the uniform correlation (UC) null model
and the factor analysis (FA) null model. These null models
have different assumptions about the relationships between
neurons. As described below, although there are potentially
many possible null models, the UC and FA null models were
chosen based onmaximum entropy principle considerations
of the covariance matrix, the ability to sample from these co-
variance matrices for hypothesis testing, as well as their
interpretation in terms of connectivity.

In the UC null model, neural units maintain their private
mean and variance for a particular stimulus but have the
freedom to change their multivariate pairwise correlations
(q). The uniform correlation null model maintains the per-
neural unit distributions of activity (i.e., means and varian-
ces), like the shuffle null model. In contrast to the shuffle
null model, which samples the correlations around zero
(Fig. 2A), the uniform correlation null model samples the
multivariate correlations uniformly (Fig. 2B, dashed lines
are samples with different correlations) (52). Depending on
the correlations, the sampled covariances could achieve a
range of coding fidelity as assessed by the LFI [Fig. 2D, covar-
iance structures shown below the plot lead the LFI as a func-
tion of the scalar pairwise correlation (q)]. At extreme values
of correlation, the LFI can take on the highest values
(Fig. 2D) (22). Biologically, changing the pairwise correlations
could be achieved through changing recurrent connectivity
within the network of observed neural units (or their larger
partially observed network) or by restructuring shared sour-
ces of variability. In the uniform null model only the correla-
tions are independent of the mean firing rate. Our biological
interpretation is that rather than “breaking” or zeroing-out
the recurrent connections as in the shuffle null model, the
UC null model instead randomly draws those connection
strengths from a uniform distribution.

Motivated by experimental findings that the variability in
population responses has private and shared components (7,
14), we also developed a factor analysis (FA) null model. The
FA null model decomposes the experimentally observed co-
variance into independent private variances and shared vari-
ability (7, 15). The private variance is fixed (Fig. 2C, gray
ellipse in left inset), and the shared variability’s weighting on
different neural units can be changed (i.e., a rotation;
Fig. 2C, dashed teal ellipses in right inset are sampled rota-
tions of the shared variability). Biologically, this models each
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neuron having fixed private variability and incoming shared
variability that could be weighted in different ways. As the
shared variability is rotated, the covariance structure varies,
and the LFI takes on a smaller range of values than in the UC
null model (Fig. 2E, covariance structures shown below the
plot generate the LFI as a function of rotation angle, R(h)].
The factor analysis null model weakens the relationship
between mean firing rates and variability compared to the
uniform null model; however, the private variability is
held fixed, which will induce a relationship between the
means and the covariance structure. Our biological inter-
pretation of this is that low-rank shared variability from
the factors is being generated by unobserved neural activ-
ity, unrelated to the task. Analogously to the shuffle and
UC null models, the interpretation of rotating this activity
is that we are randomizing the connections between the
unobserved neurons and the observed neurons while
keeping the private variability of the observed neurons
fixed. Together, these null models define the potential
space of covariances based on two different, complemen-
tary biological motivations and constraints, and therefore
provide two suitable tests of optimality.

To use the null models for hypothesis testing in neural
data, for each neural dataset (retinal ganglion cells, V1 neu-
rons, electrodes over primary auditory cortex), we randomly
subsampled the recorded populations of neural units of
varying population size (d). We combined the subpopulation
with a variety of neighboring stimulus pairings to obtain a
subset of the neural responses (Fig. 2F; see METHODS). This
subsample of neural responses would be the input to the
task of constructing a decoder for neighboring stimuli across
trials (Fig. 1, E, H, and K, and Fig. 2G). Rather than explicitly
constructing a decoder, we quantified an optimal linear
decoder’s performance with linear Fisher information (LFI).
LFI quantifies the amount of stimulus information that is
available in the subpopulation that could be linearly read
out by downstream populations. Specifically, for each data-
set, we subsampled populations of varying numbers of
neural unit population sizes (d ¼ 3–20; see METHODS) and
calculated the LFI for each. We refer to this quantity as
the observed LFI. Next, we sampled the null models 1,000
times for each experimental subpopulation and calculated
the LFI for each sample (see METHODS). Thus, for each ex-
perimental subpopulation, we obtained a single experi-
mentally observed LFI and a corresponding distribution
of LFIs for each null model. The 1,000 null LFIs constitute a
null distribution to compare the experimentally observed LFI
against. In particular, we define the “null percentile” as the
fraction of the 1,000 null LFIs that are less than or equal to
the observed LFI. Higher null percentiles indicate that the
observed LFI is larger than more samples from the null
model.

The Geometry of Correlated Variability Leads to
Suboptimal Discriminative Sensory Coding

With the uniform correlation (UC) and factor analysis (FA)
null models, we assessed the optimality of the neural code for
discriminating stimuli. To characterize the optimality of a
wide range of subpopulation and stimulus settings, we per-
formed a large-scale analysis evaluating the LFI in both the
experimentally observed data and null models (see METHODS).

We initially compared the experimentally observed LFI to the
distribution of LFI from the null models on a population level.
Specifically, for the experimental data, we compute the me-
dian LFI across subpopulations and stimuli for varying sizes
of subpopulations (Fig. 3, A–C, black lines). For the shuffle,
uniform correlation (UC), and factor analysis (FA) null mod-
els, we first calculate the median LFI from the null distribu-
tion for each subpopulation and stimulus and then report the
median across subpopulations and stimuli (Fig. 3, A–C, gray,
blue, and orchid lines, respectively).

As expected, the experimentally observed LFIs across sub-
populations and stimuli grew with the subpopulation size,
indicating that increasing the size of the neural population
improved stimulus decoding (Fig. 3, A–C, black lines). Raw
LFI values were highest for PAC, lower for V1, and lowest for
retina (Fig. 3, A–C, black lines), although LFI carries inverse
stimulus parameter-squared units and so care must be taken
when comparing LFI values across stimuli. Similar to the ex-
perimental data, the median null model LFIs grew with sub-
population size. The shuffle null model exhibited comparable
discriminability relative to the experimental LFI at lower sub-
population sizes (Fig. 3, A–C, gray lines). In contrast, both the
uniform correlation and factor analysis null models exhibited
considerably larger median LFIs than the observed data, with
the disparity increasing with subpopulation size. Therefore,
on average, the stimuli were more easily discriminable using
the covariances sampled from the UC and FA null models
than the experimentally determined covariances. We further
observed differences across datasets. For example, the factor
analysis null model (Fig. 3, A–C, orchid lines) exhibited LFIs
similar to the uniform correlation null model for the PAC
dataset. However, in the Retina and V1 data, the factor analy-
sis LFIs were more comparable to the observed and shuffle
LFIs. Overall, Fig. 3, A–C, demonstrates that the uniform cor-
relation and factor analysis null models produce LFIs that
generally exceed the LFIs of the observed data, suggesting
that the neural code is suboptimal for sensory discrimination.

Although the differences between the null model LFIs and
observed LFIs were large, the preceding analysis was done at
a population level rather than comparing each subpopula-
tion and stimulus LFI with its own null distribution.
Therefore, we quantified the optimality per subpopulation
and stimulus, relative to a null model, with its observed null
percentile. To calculate the population optimality measure,
the median null percentile across subpopulations and stim-
uli is taken. A higher null percentile indicates that the
observed LFIs are greater than a larger fraction of the null
LFIs. To operationalize the notion of population coding opti-
mality, we define three categories for optimality based on
the median of the experimental distribution of null percen-
tiles. If the median is >2/3 the population is optimal (Opt), if
the median is between 1/3 and 2/3 the population is near-
chance (NC), and if the median is<1/3 the population is sub-
optimal (Sub). Alternative categorizations could be used, but
we chose the even splitting into thirds for simplicity (see
METHODS for details).

We found that each null model exhibits distinct LFI distri-
butions, with further variation depending on the dataset and
subpopulation and stimulus. Example null model distribu-
tions for individual three-neuron subpopulations and stim-
uli are depicted in Fig. 3, D–F (vertical black line indicates
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the experimental LFI; gray, blue, and orchid lines are the
shuffle, UC, and FA null model LFI distributions, respec-
tively). The uniform correlation null distributions often have
long tails at high LFI and are truncated for visualization. The
broader range of LFIs from the UC null model is likely due to
the wide range of possible null correlation structures. These
examples highlight that the null percentiles can vary across
null models for a dataset (Fig. 3, D–F, insets). The heteroge-
neity in observed null percentiles motivated examining their
distribution across all subpopulations and stimuli. Thus, for
each dataset we computed the distribution of observed null
percentiles across the subpopulations and stimuli per subpo-
pulation size (d¼ 3 to d¼ 20). Themedian observed null per-
centile (calculated across subpopulations and stimuli) as a
function of subpopulation size is shown in Fig. 3, G–I.
Consistent with other studies (6, 13, 16), we found that the
shuffle null model (gray lines) often had large observed null
percentiles, indicating that the shuffle null model often sug-
gests benefits of experimentally observed correlations versus
having no correlations. However, it would be misleading to
interpret these results as a test of optimality. Indeed, com-
pared to the uniform correlation (blue lines) and factor anal-
ysis (orchid lines) null models, the experimental data
exhibited suboptimal null percentiles (Fig. 3, G–I, blue and
orchid lines). All null percentiles decreased with subpopula-
tion size, implying that the neural representations become

less optimal for sensory discrimination as the number of
neurons increases, becoming essentially 0 by dimension 15
(Fig. 3, G–I, blue and orchid lines), indicating that consider-
ing larger populations was not necessary. In theory, this
decrease is expected, as eventually differential correlations
induce information saturation in the populations. However
recent work indicates that we should not expect to see the
impact of differential correlations until much higher dimen-
sions (33, 49, 57). Indeed, saturation of the LFI was not evi-
dent in Fig. 3, A–C. This indicates that the suboptimality
observed in Fig. 3, G–I, is not due to differential correlation
but from some other biological cause that is occurring at
small population sizes.

Figure 3, G–I, also highlight differences across datasets.
The shuffle null model had the lowest observed null percen-
tiles among the three datasets for the Retina data, starting
near-chance for small subpopulation sizes and dropping
below 1/3 around d ¼ 7 (Fig. 3G, gray lines). For the V1 data,
the shuffle null model clearly exhibited the highest observed
null percentiles, indicating the coding benefits of correla-
tions compared to zero correlations for small subpopulation
sizes up to d ¼ 15 (Fig. 3H, gray lines). In the primary audi-
tory cortex data, the shuffle null model exhibited intermedi-
ate observed null percentiles, with a larger spread in
confidence intervals, indicating a higher heterogeneity in
the null percentiles (Fig. 3I, gray shaded region). Meanwhile,

A B C

D E F

G H I

Figure 3. The geometry of correlated
variability leads to suboptimal discrimina-
tive sensory coding. Each column corre-
sponds to one of the datasets. Color key
is preserved across all panels. A–C: the
median linear Fisher information (LFI) is
plotted (solid lines, log scale y-axis) as a
function of the subpopulation size (x-axis)
for the observed correlated variability and
null model samples (colors in legend).
Shaded regions indicate the 95% confi-
dence interval (CI) of the median LFI (note
that CIs are often comparable to the me-
dian line width). FA, factor analysis; PAC,
primary auditory cortex; UC, uniform cor-
relation; V1, primary visual cortex. D–F:
histograms of null LFIs are shown for the
shuffle, UC, and FA null models for 1 sub-
population and stimulus for each dataset.
The observed LFI is denoted by the black
vertical line in each plot. Null percentiles
for each null model are reported. G–I: me-
dian observed subpopulation and stimu-
lus null percentiles are shown (solid lines)
as a function of subpopulation size, for
each dataset and null model. Shaded
regions indicate the 95% CI of the median
observed null percentile (note that CIs are
often comparable to the median line
width). Black dashed lines divide optimal
(Opt), near-chance (NC), and suboptimal
(Sub) regions.
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the observed null percentiles for the uniform correlation and
factor analysis null models were more similar across the
three datasets, with slightly differentmagnitudes. In particu-
lar, the retinal data exhibited the largest observed null per-
centiles for the factor analysis null model (orchid), whereas
the PAC data exhibited the smallest, going to zero around
d¼ 5. The uniform correlation null model (blue) had the low-
est null percentiles for the Retina dataset and similar null
percentiles for the V1 and PAC datasets. This behavior
roughly tracked the distribution of pairwise correlations
among the three datasets (Fig. 1, E, H, and K): the retinal
data had the lowest average noise correlation, and the
PAC data had the highest average noise correlation.
Critically, across all datasets and subpopulation sizes, the
null percentiles for both the uniform correlation and fac-
tor analysis null models were <1/3. This indicates that the
geometry of correlated variability leads to suboptimal
discriminative sensory coding and that the suboptimality
becomes more pronounced with increasing neural popu-
lation size.

Optimal Correlated Variability for Sensory
Discrimination Is Typically Biologically Inaccessible

The results of the preceding section indicate that the ge-
ometry of correlated variability is highly suboptimal, as
opposed to near-chance or optimal. We next sought to
understand why this was the case. For the uniform correla-
tion model, we summarize findings about optimal correla-
tions from Hu et al. (22). For the factor analysis model, we
compared the structure of the observed covariances to those
of the optimal covariances.

When the per-neural unit variability is fixed, as in the
shuffle and uniform correlation null models, Hu et al. (22)
showed that the optimal covariance structure will lie on the
boundaries of the allowed values of q for several measures of
coding fidelity, including the LFI (Fig. 2D). The authors dis-
cussed that points on the boundary may fall outside of bio-
logically allowed regions. Consistent with this, we found that
optimal correlation matrices for the uniform correlation null
model often had absolute pairwise correlations close to 1,
which was never observed in the single-unit (Retina and V1)
experimental datasets (data not shown) although the PAC
datasets had more pairwise correlations near 1. Thus, the
optimal correlated variability structure suggested by the uni-
form correlation null model may be biologically inaccessible.
Meanwhile, the factor analysis model allows the distribution
of highest pairwise correlations to be modified (and gener-
ally increased) but does not extend near 1, suggesting that
the distribution of noise correlations achieved by the factor
analysis null model is more biologically realistic.

Both the shuffle and uniform correlation null models will
necessarily reproduce the observed single-unit statistics,
because they only change the correlations. Therefore,
both of these null models will reproduce the Fano factors
(FFs, variance

mean ) and negative densities (ND, fraction of activity
below the smallest responses of the experimental activity) of
the observed data. The factor analysis null model, however,
can produce covariance ellipses that have different single-
unit distributions. Thus, some FA-optimal covariances may
orient variance in the negative or low-activity regions of the

neural response. For the factor analysis null model, we quan-
tified the degree to which the biological inaccessibility of
optimal covariances related to the percentiles of the experi-
mental data for each subpopulation and stimulus. The Fano
factor quantifies the variability of neural units relative to
their average activity. Typically, Fano factors for single-unit
firing rates have been observed to be near 1 (58–61), in line
with the approximately Poisson nature of firing rates. Thus, a
large deviation from the Fano factors observed in the experi-
mental data indicates that the single-unit properties of the
optimal covariances are biologically implausible. First, we
examined whether the observed Fano factors diverged from
the Fano factors achieved by the FA-optimal covariance on
each subpopulation and stimulus via their absolute log
ratio (see METHODS). Large values of this quantity indicate
greater difference between optimal and experimental sin-
gle-unit distributions, suggesting less biological plausibil-
ity. Relatedly, a sample covariance that has negative neural
activity can be interpreted as less biologically plausible,
because negative activity is either unachievable (for single-
unit count variables) or highly unlikely (calcium imaging
DF/F or baseline z-scored μECoG). Therefore, the second
quantity we examined was the absolute difference in nega-
tive density (ND), which captures the degree to which the
FA-optimal covariance had negative neural activity (see
METHODS). Larger values of the negative density imply less
biological plausibility. We used these two measures of bio-
logical plausibility to assess when the observed neural
responses can be optimal according to the FA null model.

We determined whether the Fano factor (FF) and negative
density (ND) distributions of the optimal covariances from
the FA null model are related to the suboptimality of the
experimentally observed neural code. To do this, we directly
compared the optimal FA null model Fano factors to the ex-
perimental Fano factors in Fig. 4, A–C. Across subpopula-
tions and stimuli, for d ¼ 3, Fig. 4, A–C shows two-
dimensional (2-D) histograms of the absolute log ratio of
Fano factors against the FA percentile, with darker colors
corresponding to higher log density of samples. For each his-
togram, we additionally plot the median percentile as a func-
tion of the log ratio in blue. We found that when the Fano
factors closely matched (i.e., the log ratio was close to 0), the
percentiles spanned a broad range between 0 and 1 (median
percentiles: 0.51, 0.41, 0.15 for the lowest bin across datasets).
However, FA-optimal covariances commonly deviated from
the observed Fano factors, and when they did, the observed
percentiles dropped below 0.5 and were often near 0.
Likewise, for negative density (ND), we directly compared
the optimal FA null model NDs to the experimentally
observed NDs in Fig. 4, D–F. Across subpopulations and
stimuli, for d ¼ 3, Fig. 4, D–F, show 2-D histograms of the
absolute difference in NDs against the FA percentile, with
darker colors corresponding to higher log density. For each
histogram, we additionally plot the median percentile as a
function of ND difference in red. We found that when the
difference was close to zero the percentiles spanned a broad
range between 0 and 1 (median percentiles: 0.47, 0.60, 0.31
for the lowest bin across datasets). However, the NDs of FA-
optimal covariances commonly deviated from the observed
ND, and when they did, the experimentally observed percen-
tiles were typically closer to 0. Thus, as the biological
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accessibility of the optimal covariance decreased, so did the
optimality of the observed neural code.

We summarized the relationship between biological plausi-
bility and percentile for both FF and ND. At each subpopula-
tion size d, we calculated the Spearman rank correlation
between the observed percentile and each measure of biologi-
cal plausibility (Fig. 4, G–I). For each dataset, we observed
negative correlations that were significantly lower than zero
across subpopulation sizes (P < 10, 1-sample t test). These
negative correlations imply that observed percentiles are
smaller (i.e., the neural code is more suboptimal) when
optimal correlated variability is biologically inaccessible.
Together, these results indicate that the optimal cova-
riances under the FA null model for neural populations of
3 or more neurons (d � 3) are not biologically accessible.

Optimal Subpopulations for Sensory Discrimination Are
Exponentially Small

The results in the preceding section show that a majority of
experimental subpopulations and stimuli could not attain
optimal covariances according to the UC and FA null models
because of biological constraints. However, it is possible that
although amajority of experimental subpopulations and stim-
uli are suboptimal there is a subset that are optimal, and these
specific subpopulations are somehow utilized by the nervous
system. If this was the case, the uniform sampling strategy
over neural units might underestimate optimality as utilized
by the nervous system. For example, in the retina, if we are
imagining that a downstream region like V1 is discriminating
the stimuli, then a more retinotopic sampling strategy, where
retinal ganglion cells aremore likely to be considered in a sub-
population if they are located spatially near each other in the

retina, would be preferable. Alternatively, synaptic learning
rules (e.g., Hebbian plasticity, “neurons that fire together,
wire together”) in downstream areas may select for neural
populations that are tuned for similar stimuli. The responses
to the preferred stimuli would be high, and therefore we
expect less Fano factor and negative density violation. Thus,
it is possible that subpopulations and stimuli subselected by
these criteria will be more optimal than subpopulations and
stimuli sampled uniformly.

To test whether biologically motivated sampling of subpo-
pulations and stimuli improved the null percentiles, we per-
formed distance- and tuning-based subselection of the neural
populations. For the Retina and PAC datasets, we had access
to the spatial locations of the RGCs/electrodes. We subse-
lected 10% of subpopulations and stimuli with the smallest
average physical distance. Similarly, we subselected the 10%
of subpopulations and stimuli that had the most similar pre-
ferred stimuli (see METHODS for details on subselection). We
found that distance-based subselection did not reveal an opti-
mal or near-chance subset of subpopulations and stimuli
(Fig. 5, A and C, dotted lines and hatched shaded regions).
Similarly, for the Retina and V1 datasets, the tuning-based
subselection did not reveal an optimal subset of subpopula-
tions and stimuli and the percentiles only improved to near-
chance for the PAC dataset at d ¼ 3 (Fig. 5, A–C, solid lines
and shaded regions). Furthermore, subselection directly
based on the FF and ND criteria also did not find optimal or
near-chance percentiles (results not shown).

Although these subselection criteria are biologically moti-
vated, the previous results do not address whether any subpo-
pulation of the neural units across stimuli has optimal
null percentiles and, if so, how small the subpopulation is.

A B C

D E F

G H I

Figure 4. Optimal correlated variability for
sensory discrimination is typically biologi-
cally inaccessible. Each column corresponds
to a separate dataset. Two-dimensional (2-
D) histograms are plotted with a log-density
color scale with shared color bar. Color key
in I is shared across panels. A–C: 2-D histo-
gram across subpopulations and stimuli of
the observed null percentile under the factor
analysis (FA) null model vs. the absolute
log ratio of the observed and FA-optimal co-
variance Fano factors (FFs) for d ¼ 3. Blue
line is the median binned null percentile as
a function of the absolute log ratio of
observed and FA-optimal covariance FFs.
PAC, primary auditory cortex; V1, primary vis-
ual cortex. D–F: 2-D histogram across sub-
populations and stimuli of the null percentile
under the FA null model vs. the absolute dif-
ference of negative densities (NDs) of the
observed and FA-optimal covariance FFs for
d ¼ 3. Red line is the median binned null
percentile as a function of the absolute dif-
ference in NDs. G–I: the Spearman correla-
tion coefficient between the null percentile
and absolute log FF ratio or absolute differ-
ence of NDs, respectively, is shown as a
function of subpopulation size. Dashed
black line indicates zero correlation.
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Intuitively, given the combination of a large enough neural
population, variety of stimuli, and enough subpopulations
and stimuli, one would expect at least a small fraction of the
subpopulations and stimuli to have optimal null percentile
statistics by chance. To estimate the size of the optimal sub-
population, we calculated the optimal fraction of the neural
population, that is, the largest fraction of subpopulations and
stimuli that could be retained and still achieve optimal null
percentile statistics (median�2/3) (Fig. 5,D–F). If the optimal
fraction is smaller, optimal subpopulations are more rare.
As a reference, if the distribution of null percentiles was
uniform, the largest two-thirds of the percentiles could be
retained and their median would be 2/3, which is optimal
(Fig. 5, D–F, black dashed line). At d ¼ 3 for the FA null
model (Fig. 5, D–F, orchid line), across datasets between
14% and 37% of the entire population was optimal if subse-
lected. The optimal fraction according to the FA null model
dropped below 10% by d ¼ 4–9 and below 2% by d ¼ 13–15
across datasets. At larger subpopulation sizes, the optimal
subpopulation continued to become exponentially small,
although the PAC dataset had a slower decrease. According
to the uniform correlation null model, for the Retina and V1
datasets, less than �0.1% of the population was optimal for
sensory discrimination since almost no subpopulation was
found from the finite samples. At d ¼ 3 for the PAC dataset,
20% of subpopulations and stimuli would be considered
optimal, but that dropped below 1% by d ¼ 7 and continued
to decrease to the smallest possible estimated value by
d ¼ 12, since no subpopulations were found for larger

subpopulation sizes. Finally, an alternative analysis of
peaks in the null percentiles near 1 in excess of what would
be expected from a uniform distribution confirmed that
there were exponentially small optimal subpopulations.
Together these results show that correlated variability
is suboptimal for sensory discrimination in the neural
recordings considered here. Furthermore, biologically
motivated selection criteria are not able to find the expo-
nentially small optimal subpopulations.

DISCUSSION
Determining the principles of the neural code is critical

for a complete understanding of brain function (62).
Correlated variability is prevalent in neural recordings
and has been the subject of numerous studies seeking to
understand its mechanistic sources and implication for
neural coding. Many previous studies have found that the
experimentally observed correlations can be a benefit to
discriminative sensory coding compared to having zero
correlations (6, 13, 16, 24, 25, 27). This suggests that the
correlated variability could in fact be optimal. However,
the shuffle null model used in these studies is not able to
assess optimality. Rumyantsev et al. (33) showed a case
where correlated variability was substantially worse than
the shuffle null model, suggesting that noise correlations
can be detrimental to sensory coding. Since the shuffle
null model covers a more restrictive distribution of cova-
riances than the FA or UC null models used here, if

A B C

D E F

Figure 5.Optimal subpopulations are exponentially small. Color key in A is shared across panels. A–C: for the uniform correlation (UC) and factor analy-
sis (FA) null models, subpopulations and stimuli were subselected to maximize the units’ tuning (solid lines, highest 10% subselected). Additionally, for
the Retina and primary auditory cortex (PAC) datasets, subpopulations and stimuli were subselected to minimize the average pairwise distance between
the retinal ganglion cell (RGC) regions of interest (ROIs) in a subpopulation and stimulus (dashed lines, lowest 10% subselected). The median percentiles
are shown as a function of dimension. Black dashed lines indicate the 1/3 and 2/3 null percentile range. Shaded regions indicate the 95% confidence
interval (CI) of the median percentiles. NC, near-chance; Opt, optimal; Sub, suboptimal; V1, primary visual cortex. D–F: for each subpopulation size, the
largest possible fraction of subpopulation and stimulus percentiles such that their median is�2/3 is plotted. Shaded regions indicate 95% CI. For the uni-
form correlation null model, subpopulation sizes where no samples exceeded the 2/3 threshold are not plotted. Black dashed line indicates the optimal
fraction if null percentiles were drawn from a uniform distribution. Gray dotted line indicates the minimum nonzero optimal fraction that can be estimated
because of finite sampling.
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observed noise correlations have LFIs lower than those
from the shuffle null model, it is likely that they will also
have LFIs lower than those from the FA or UC null model.
However, this is only an indirect test of optimality accord-
ing to the FA or UC null model. Thus, to the best of our
knowledge, the optimality of correlated variability for dis-
criminative sensory coding in neural data has not previ-
ously been directly assessed.

Here, we developed two null models that allow the dis-
criminative optimality of experimentally observed corre-
lated variability to be directly assessed: the uniform
correlation (UC) and factor analysis (FA) null models.
Using these null models, we found that the experimentally
observed neural activity across three datasets was consistently
suboptimal. As more neural units were included in the neural
population, the neural populations became more suboptimal,
often reaching the floor of our sampling by neural unit subpo-
pulations of size 15. This implies that considering larger popu-
lations would not change our conclusions. To more fully
understand the suboptimality, we evaluated the characteris-
tics of the optimal covariance and found that a consistent pic-
ture emerged: for a majority of neural subpopulations, the
optimal covariance is biologically inaccessible. We then used
biologically motivated subselection criteria to assess whether
there were subpopulations with optimal coding statistics. We
found that subsampling using criteria based on the tuning of
units or the spatial location of the units does not result
in increased discriminative coding optimality. Finally, we
showed that optimal subpopulations based on post hoc selec-
tion became exponentially small as the size of the neural pop-
ulation increases. Thus, we conclude that in the early sensory
areas studied here, the geometry of correlated variability leads
to highly suboptimal discriminative coding.

We observed suboptimal discriminative coding perform-
ance as assessed by both the uniform correlation and factor
analysis null models. However, the magnitude of the subop-
timality, as measured by the observed null percentiles, dif-
fered across null models and datasets. The observed null
percentiles for the uniform correlation null model had a
small trend from low to high for the retinal data, the V1 data,
and the PAC data, respectively. This trend tracks with the
distribution of noise correlations in each dataset (Fig. 1, F, I,
and L), with the Retina dataset exhibiting, on average, the
smallest magnitude noise correlations and the PAC datasets
exhibiting the largest. The smaller range of noise correla-
tions exhibited by the retina suggests that there may be
stronger biological restrictions on its correlated variability
compared to V1 and PAC. The observed null percentiles for
the factor analysis null model trend from just below near-
chance to highly suboptimal from retina to PAC. Thus, the
larger correlations and more suboptimal discriminative cod-
ing performance indicate that shared variability in V1 and
PAC is more likely to interfere with discriminative sensory
coding. The retina and V1 recording modalities (calcium
imaging and single-unit electrophysiology, respectively)
measure putative single-unit activity where correlated vari-
ability in the recordings corresponds to correlated single-
neuron activity. A discriminative model describes the ability
to predict an external signal or stimulus parameter from a
population of neural activity. The impact of correlated

variability across a population of neurons in response to a
stimulus is typically conceptualized as a question about how
much information is contained about the stimulus in that
population that may be available to a downstream brain area
(e.g., information in V1 that is available in V2) (1, 2, 4, 5, 9, 13,
19, 25, 29). As such, understanding the (sub)optimality of the
neural code at the level of multiple single units directly
addresses discrimination of sensory signals as a normative
theory in early sensory areas. On the other hand, the corre-
lated variability in the μECoG recordings in PAC is likely due
to a combination of the correlations between the neural pop-
ulations under each electrode and local tissue conduction
(43, 44). Because of this, the optimality of the high-gamma
correlated variability recorded with μECoG is a coarse-
grained signal that may not be read out by any downstream
cortical area. However, these results are important for under-
standing when correlated variability in brain signals may
limit the accuracy of clinical ECoG-based brain-computer
interfaces in humans. Indeed, our results suggest that ECoG
is a viable recording methodology for brain-computer inter-
faces for extracting information about the external world
from the brain. This is amplified by the fact that ECoG
recordings are regularly performed in human neurological
patients (63, 64).

Our results indicate that correlated variability across
diverse sensory neural populations is highly suboptimal for
transmitting information to subsequent brain areas for dis-
criminating the stimulus. This raises a question about what
computational role variability plays in sensory processing
and what insights have been gained by comparison to null
models. Many studies of correlated variability, including
ours, consider the impact of correlated variability from a dis-
criminative sensory coding perspective. However, other nor-
mative perspectives exist. In generative (e.g., Bayesian)
models of sensory processing (65), correlated variability
could correspond to sampling from a relevant (posterior) dis-
tribution. In this case, correlated variability would be in-
formative for understanding the structure of uncertainty in
sensory processing, rather than nuisance variability as in the
decoding perspective. Likewise, neural systems likely have
other important constraints or ethological goals. Making
decisions or generating behavior based on sensory informa-
tion may be optimized by different correlation structures
versus a purely discriminative framework (66). For example,
Valente et al. (66) found that single-trial responses in poste-
rior parietal cortex that have higher noise correlations also
have more correct choices, contrary to expectation. They
model this finding with a readout network that computes an
additional nonlinear “consistency” value across the popula-
tion in addition to the linear sensory information for use in
decision making. Huang and Lisberger (67) showed that
correlated variability in middle temporal visual area could
plausibly be the cause of variability in smooth-pursuit eye
movements. Even within the normative discriminative
framework, correlated variability that facilitates discrimi-
nation as assessed by the LFI may not be the same as the
correlated variability that facilitates information propaga-
tion or learning in more realistic nonlinear, noisy net-
works (5, 66, 68). LFI is a local measure, and if we consider
the so-called larger threshold errors (69) then results from
the different null models could change. In these contexts,
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our formalism for creating null models could be used to test
the optimality of neural codes, although as the assumptions
on linear decoding are relaxed, it may become difficult to
make theoretical predictions that hold generally. The null
models we developed could be utilized to test optimality of
other proposed computations of sensory populations and
may provide insights into the constraints (embodied in the
degrees of freedom in the null models) for realizing that opti-
mality. Regardless of the role, if any, of correlated variability
in neural computations, an important contribution of our
work is to identify what role it is not playing: correlated vari-
ability is not optimally enhancing information transmission
for discriminating sensory stimuli.

The null models we proposed both have parameterizations
that are interpreted in a fully Gaussianmodel. There are likely
many other possible combinations of covariance parameter-
izations and constraints that could be used to generate null
distributions, including a FA-like model where the marginal
statistics are preserved. Although we have not explored this
particular direction in detail, it is unclear that this has an
interpretation as a maximum entropy distribution or a simple
interpretation in terms of data-estimated parameters that are
kept fixed while others are varied. Generalized linear models
(70, 71) or correlated multivariate distributions with binary-
spike or spike-count distributions (72–74) could potentially
better model nonlinearities between the parameters of the
model and the non-Gaussian neural responses, which can
impact estimates of neural coding optimality. To assess opti-
mality in these models when fit to data, a similar formalism
for generating null models is needed, where certain parts of
the parameterization are fixed and others are given a null dis-
tribution. However, the independent parameterization of the
mean responses (tuning) and correlated variability is a unique
feature of the multivariate Gaussian distribution. Therefore,
new mathematical results would be needed to directly study
the impact of non-Gaussian correlated variability on neural
coding. A broader set of null distributions could similarly be
used in phenomenological models of correlated variability
that combine tuning and various types of (correlated) noise
(6, 21, 28, 75) or in mechanistic models, which attempt to sim-
ulate some aspects of the neural circuit that lead to correlated
variability (5, 15, 16, 76).

Future directions that build off of our results could investi-
gate the issue of optimality of correlated variability with null
models that target other neurobiological properties or scales
of organization. Some examples include learning rules with
naturalistic input statistics, network models with neurobio-
logically motivated recurrent connectivity, or sensory inputs
of dimensionality different from the target area. Also of inter-
est is understanding how variability of neural responses can
be used as a way to explore during learning (77). We note that
the results of such investigations will certainly depend on
the details of, e.g., recurrent connectivity, the neurobiol-
ogy of which is poorly understood. For example, one
approach to understand population dynamics is to set up
a recurrent neural network with random connectivity and
train it with backpropagation to perform a task. However,
it is known that connectivity is highly structured in the
brain (78) and depends on the cell type. Additionally, the
biological learning rules that shape neural circuits to per-
form specific functions are poorly understood. A better

understanding of the neurobiological constraints in these
models would likely be required to generate null models
that tightly estimate optimality of various functions in ex-
perimental neural datasets.

Correlated variability has been shown to be impacted by
behavior and brain states. For example, it has been observed
that behavior such as running, whisking, and pupil diameter
are encoded in V1 and other brain areas (7). In these contexts,
the behavioral subspaces could be estimated directly (as in
Ref. 7) and their optimality could be assessed with the FA null
model. In experiments with visual attention, it has been
shown that attention can modulate both the within-area and
between-area correlated variability (30, 79, 80), which can lead
to better sensory discrimination or better communication of
information as assessed by the shuffle null model. The null
models developed here could be used to assess whether the
modulation due to attention or learning changes the optimal-
ity of the correlated variability. Emerging neural recording
technologies will allow neuroscientists to simultaneously re-
cord from a larger fraction of neurons in a region and more
regions, all while the animals are performing naturalistic
behaviors. Given these possibilities, the biological origins of
correlated variability and how they are modulated by neural
circuitry can be further traced and evaluated.

In summary, we found that the geometry of correlated var-
iability in sensory areas leads to highly suboptimal coding
for transmission of information to discriminate the stimulus.
Given the consistency of the findings across datasets, we
expect that our results would hold true in other organisms,
sensory areas, and experimental paradigms. Investigated
more broadly, understanding the optimality of correlated
variability could lead to a better understanding of the sour-
ces of variability in neural circuits and biological constraints
that lead to suboptimality. Furthermore, quantitatively eval-
uating normative theories allows us to adjudicate between
competing proposed functions of sensory systems, for exam-
ple, efficient coding versus predictive information coding.

DATA AVAILABILITY
The preprocessed and trialized Retina and trialized PAC data-

sets are available at https://zenodo.org/records/14342290. The
raw PAC data are currently available at https://crcns.org/data-
sets/ac/ac-7 (R32_B7.nwb). The V1 data are currently available at
https://crcns.org/data-sets/vc/pvc-11. Code to reproduce the anal-
ysis and figures is available at a publicly available GitHub reposi-
tory at https://github.com/BouchardLab/noise_correlations.
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