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Principled neuromorphic reservoir
computing

Denis Kleyko 1,2 , Christopher J. Kymn3, Anthony Thomas3,4,
Bruno A. Olshausen3, Friedrich T. Sommer 3,5 & E. Paxon Frady5

Reservoir computing advances the intriguing idea that a nonlinear recurrent
neural circuit—the reservoir—can encode spatio-temporal input signals to
enable efficient ways to perform tasks like classification or regression.
However, recently the idea of a monolithic reservoir network that simulta-
neously buffers input signals and expands them into nonlinear features has
been challenged. A representation scheme in which memory buffer and
expansion into higher-order polynomial features can be configured sepa-
rately has been shown to significantly outperform traditional reservoir
computing in prediction of multivariate time-series. Here we propose a
configurable neuromorphic representation scheme that provides competi-
tive performance on prediction, but with significantly better scaling prop-
erties than directly materializing higher-order features as in prior work. Our
approach combines the use of randomized representations from traditional
reservoir computing with mathematical principles for approximating poly-
nomial kernels via such representations. While the memory buffer can be
realized with standard reservoir networks, computing higher-order features
requires networks of ‘Sigma-Pi’ neurons, i.e., neurons that enable both
summation as well as multiplication of inputs. Finally, we provide an
implementation of the memory buffer and Sigma-Pi networks on Loihi 2, an
existing neuromorphic hardware platform.

Reservoir computing is a paradigm for computing with recurrent
neural circuits that are inspired by observations in neuroscience1,2 and
has yielded efficient realizations of recurrent neural networks, an
architecture ubiquitous in technical applications for processing mul-
tivariate time-series. Reservoir computing uses a neural dynamical
system, the so-called “reservoir,” to map a time-series into a pattern in
a high-dimensional state space, which is then fed into a one-layer
neural network3,4. The one-layer network canbe trained in a supervised
fashion to perform tasks, such as classification or regression of time-
series. The reservoir is thought to serve two purposes (Fig. 1a): First, it
is a memory buffer for the input signals, often a fadingmemory buffer
if emphasis on the recent input history is desired. For buffering it is

crucial that the dynamics of the reservoir are fixed. For example, the
standard strategy is to use a recurrent network with fixed random
connections4,5. Second, nonlinearities in the reservoir dynamics can
enable rich feature spaces6, including nonlinear functions of the input
signals, potentially leading to separability and generalization unac-
hievable on the original signals.

In practice, however, the ability of reservoir networks to form rich
feature spaces could be limited. For example, reservoir networks with
common saturating neural activation functions mainly cause memory
fading, and the resulting feature space still closely resembles those of
linear recurrent networks7–9. Reservoir networks containing more neu-
robiological details, such as spiking neurons1, or synaptic connections
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with short-term plasticity as additional dynamic variables10, can create
richer representations. However, the richness is difficult to adjust for
serving a particular computational task in the best possible way. Illus-
trating these limitations of traditional reservoir computing, it has been
recently shown11,12 that a representation scheme that computes tensor
products between time-delayed states of the input signals (Fig. 1b) can
empirically outperform traditional reservoir networks on an important
task of predicting dynamical systems.

In light of these limitations, here we investigate principled, con-
figurable, and efficient ways to implement reservoir computing with
nonlinear features on neuromorphic hardware.We propose a bipartite
approach combining two generic neural circuits (Fig. 1c): traditional
reservoir networks for forming a memory buffer, and novel Sigma-Pi
networks13,14 for computing nonlinear features. We theoretically char-
acterize the two essential operations for jointly representing feature
spaces – concatenation and tensor product – and show that each
operation results in a different similarity structure between the con-
structed representations. We formulate a concrete scheme based on
randomized distributed representations for multivariate time-series
prediction and demonstrate these networks implemented on the
neuromorphic chip Loihi 215. The proposed approach, which builds on
ideas from vector symbolic architectures16–18 and randomized kernel
approximation19,20, can form representations with approximately the
same similarity structure as concatenation or tensor product, but the
dimensionality of the representation remains fixed. We evaluate the
novel randomized distributed representations on the prediction of
chaotic dynamical systems and show that often the same quality of
predictions can be achieved with representations that need fewer
dimensions than in the original, explicit approach12.

Results
Joint representations formed by concatenation or tensor
product
In order to make predictions from time-series, one must create a
representation that includes somehistory of the input signals aswell as
relevant, nonlinear features. A classic approach to represent the his-
tory of a trajectory is to form a memory buffer by concatenating d-
dimensional state vectors observed at different time points21, e.g.:
VðiÞ
C =Xði� 1Þ � XðiÞ= ½X 1ði� 1Þ, . . . ,Xdði� 1Þ,X 1ðiÞ, . . . ,XdðiÞ�. In this

resulting feature space, the inner product between the representations
of two trajectories formed by concatenation equals the sum of inner
products between the state vectors at the single time points:

VðiÞ
C ,VðjÞ

C

D E
=
X
d

Xdði� 1ÞXdðj � 1Þ+
X
d

XdðiÞXdðjÞ= hXði� 1Þ,Xðj � 1Þi

+ hXðiÞ,XðjÞi:

An alternative is to combine state vectors at different time
points in a trajectory by the tensor product. The resulting repre-
sentation contains products of the components of the original state
vectors, i.e., nonlinear higher-order features, e.g.: VðiÞ

T =Xði� 1Þ�
XðiÞ= ½X 1ði� 1ÞX 1ðiÞ,X 1ði� 1ÞX2ðiÞ, . . . ,Xdði� 1ÞXdðiÞ�. The inner pro-
duct between a pair of tensor products of trajectories, the Frobenius
inner product, corresponds to the product of inner products between
the observable states at each point in time:

VðiÞ
T ,VðjÞ

T

D E
=
X
d,d0

Xdði� 1ÞXd0 ðiÞXdðj � 1ÞXd0 ðjÞ

= hXði� 1Þ,Xðj � 1Þi � hXðiÞ,XðjÞi:

The similarity measured by the inner product is qualitatively different
for the two types of representations. With concatenation of the input
signals, a pair of trajectories has non-negligible similarity even if the
signals coincide in just a single time point. Conversely, the tensor
product forms polynomial products of the input signals22, and as a
result, the similarity between trajectories is highonly if they coincide in
all time points. Thus, for solving concrete computational tasks it is
important to flexibly combine the two operations on the input signals
into the final feature space.

Representing trajectories with concatenation and tensor
product
Any concrete representation scheme to encode multivariate time-
series by combining concatenation and the tensor product is a task-
specific design choice. Here we formalize such a representation
scheme recently proposed for the efficient prediction of chaotic
dynamical systems12. A state at a single time point i is described by a
d-dimensional vector X(i). A trajectory includes k time points. The
entire trajectory is represented by a dk-dimensional vector, a con-
catenation of the k d-dimensional state vectors. To generate higher-
order features, the tensor product is applied to each trajectory
representation with itself. To form tth-order features the tensor pro-
ductmust be applied t − 1 times. Finally, concatenation is applied again
to combine the features of different orders into a single vector. The
representation G for trajectories resulting from this representation
scheme can be written as:

G=
M
t2T

vec
Ot Mk

l = 1

XðMlÞ
 ! ! !

2 R

P
t2T

dk + t

t + 1

� �
ð1Þ

where M is a k-tuple containing relative indices of time points in the
trajectory to be concatenated (⨁),XðMlÞ is the d-dimensional state at
the time point Ml . The order of tensor product (⨂t) features is

Fig. 1 | Overview of three different representation schemes. a Traditional
reservoir networks simultaneously buffer input signals and extract nonlinear fea-
tures from them. b The product representation12 computes thememory buffer and
the higher-order features explicitly using concatenation and tensor product
operations, respectively. c The proposed approach can form randomized

distributed representations of higher-order features using the representations of
the reservoir computing network. The solid lines denote the compulsory connec-
tionswhile thedashed lines are theoptional ones. Thediagramsonly show theparts
of the models involved in computing the representations of the feature space.
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controlled by set T � f0, . . . , t, . . . ,n� 1gwhere each integer t + 1 2 T
describes a desired order of polynomial features.

We will refer to Eq. (1) as a product representation of polynomial
higher-order features, the corresponding diagram is outlined in Fig. 1b.
Akin to local representations23, vector components in G represent
either individual components of the state vectors or a product of a
subset of such components. A severe problem with the product
representation is that the scaling is poor. The dimensionality of the
feature space G grows exponentially with n – the highest order of the
features that are used, i.e., for nth-order features, the resulting

dimensionality is still dk +n� 1
n

� �
even when only the unique fea-

tures are considered, “Product representation of higher-order fea-
tures” section.

Randomized distributed representations of trajectories
As shown in refs. 11,12,24, the product representation scheme Eq. (1)
can outperform traditional reservoir networks in the prediction from
multivariate time-series. However, a significant limitation of this
approach is that the dimensionality of the representation grows
exponentially with the order of the polynomial, “Product representa-
tion of higher-order features” section.

Inspired by traditional reservoir computing, which often involves
randomized distributed representations of the input signals5, we pro-
pose an approach that combines the transparency and richness of the
product representation with the advantages of randomized
representations19,25,26. To realize this idea in reservoir computing, we
leverage an algebraic framework, known as hyperdimensional com-
puting or vector symbolic architectures (VSA)16–18. The initial step of
the approach is to embed a single time point XðiÞ 2 Rd into a D-
dimensional randomized representation under a map ψ : Rd ! RD.
Here, we focus on embeddings based on linear random projection27,
which are commonly used in VSA28,29, that transforms a d-dimensional
state vector X(i) into a D-dimensional embedding vector via:

ψðXðiÞÞ=WinXðiÞ 2 RD, ð2Þ

Here,Win 2 RD×d is a randomprojectionmatrix, where each column is
chosen i.i.d. from a certain distribution, depending on the choice of a
VSAmodel asdiscussedbelow. Sucha randomized linear embedding is
also the standard first step in traditional reservoir computing.

The VSA framework offers three standard algebraic operations for
manipulating randomized distributed representations: vector super-
position (denoted as +/∑), vector binding (denoted as ∘/○), and per-
mutation (denoted as ρ). The exact instantiation of these operations
depends on the particular VSA model30,31 and affects the correspond-
ing implementation as discussed in “Networks of Sigma-Pi neurons for
tensor product and binding” section. The advantage of VSA is that
superposition, binding, and permutation are dimensionality-
preserving – independent from how these operations are combined
and iterated, the dimensionality of the resulting representation is
always equal toD, the dimensionality chosen in the randomprojection
step, Eq. (2).

Regardless of the type of VSA model, there is a correspondence
between the similarity structures of features formed in the VSA space
to the similarity structure of concatenation and tensor product. As
described in ref. 32, superposition protected by permutation, akin to
the recurrent computation in reservoir computing, has approximately
the same similarity structure as concatenation. Thus, a reservoir net-
work as well as a VSA-protected superposition are, generally, like
concatenationof inputs, and, in essence, form a feature space that acts
like a short-term memory of the input history (cf. Fig. 1a, c). Such a
short-term memory can be extended to the concept of a fading
memory buffer, where inputs from older time points gradually fade

away. The time constant of this fading memory can be controlled by
either point-wise saturating nonlinearities or by the recurrent weight
matrix8. The memory buffer retains the similarity structure like con-
catenation, but one needs to account for the fadingmemory property.

Similarly, vector binding has a matching similar structure as the
tensor product32. Thus, in the VSA framework, the randomized and
distributed version of the product representation Eq. (1) is given by:

F=
X
t2T

�t
Xk
l = 1

Wl�1
ρ WinXðMlÞ
� � ! !

2 RD, ð3Þ

where Wρ is a mixing matrix with the “echo-state property”3 applied
l − 1 times. Practically, Wρ can be a simple permutation33,34, which we
denote as ρ( ⋅ ). The diagram of the proposed approach is depicted in
Fig. 1c while further step-by-step details of this representation scheme
are provided in “Randomized representations of higher-order features
with binding” section. The crucial idea is that distributed representa-
tions are able to approximate the same similarity structure as the
product representation above, but in a muchmore parsimonious way,
“Kernel approximation guarantees for randomized representations”
section. This holds because vector binding and permutation of vector
components distribute over vector superposition (the basis for the
“computing in superposition” principle18) and produce joint distrib-
uted representations where the inner product between such repre-
sentations approximates the inner product between representations
formed using the explicit feature map in Eq. (1). In general, as the
dimensionality, D, grows larger, the fidelity of this approximation will
improve. The precise rate at which this happens depends on the
maximum polynomial degree and the particulars of the data in
question19. We quantify this more precisely in “Kernel approximation
guarantees for randomized representations” section, but the crucial
feature is that to achieve any desired constant fidelity of approxima-
tion, thedimensionalityDdependsonly quadratically on themaximum
polynomial degree, as opposed to the exponential dependence
encountered when representing polynomial features explicitly by the
product representation.

Networks of Sigma-Pi neurons for tensor product and binding
In order to make use of the product representation or its equivalent
distributed representation on neuromorphic hardware, there must be
a network motif for computing concatenation and tensor product
features. As already mentioned, the memory buffer for storing the
trajectory of time-delayed states can be implemented with traditional
linear reservoir networks, Fig. 1a. These networks are composed of
conventional Sigma neurons, which sum up the synaptic inputs and
potentially apply a point-wise nonlinear activation function.

To implement any variant of features formed by the tensor pro-
duct, Eq. (1) or Eq. (3), a network motif is required for computing
tensor product or vector binding. Such a network motif requires an
additional type of neuron, Pi neurons13,14, which compute the product
of synaptic inputs. Thus, to compute the higher-order features of two
input vectors, X,Y 2 Rd , one would have a population of d × d Pi
neurons. Each Pi neuron would have two inputs, one from X and one
from Y, in accordance with the tensor product, Fig. 2a. Similarly, fea-
tures obtained via vector binding also require Pi neurons or a network
of Sigma and Pi neurons. We highlight two network motifs for com-
puting randomized distributed representations using the multiply-
add-permute model (MAP)35 as well as the sparse block code model
(SBC)32,36, see Fig. 2b, c. Thesedifferent variations ofmotifs to compute
higher-order features have different trade-offs in terms of the number
of Sigma or Pi neurons needed, as well as the total number of synaptic
connections. Based on the traits of the neuromorphic hardware, one
variation might be more favorable than another.

Another advantage of the distributed representation approach
in Fig. 2b, c is that higher-order features can be computed by using
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the network motifs for binding recurrently (recurrent connections
are not shown in the figure). Since the dimensionality of the result of
binding is the same as the dimensionality of the inputs, the result can
be sent backward as one of the inputs and recombined in the next
iteration. This can greatly reduce the resource requirements for
computing high-order features on neuromorphic hardware since the
synaptic connections and neurons for the binding network can be
reused.

Table 1 summarizes the resources – as defined by the number of
neurons and synaptic connections – needed for Sigma-Pi networks. It
also includes another VSA model – holographic reduced representa-
tions (HRR)37 that is used in “Experiments on CPU” section (see Sup-
plementary Material S-VI for the experiment comparing the
performance of these models). For all networks, the initial memory
buffer of time-delayed states is formed with a permutation matrix,
which is the simplest matrix structure for creating an effective reser-
voir, requiring only a single synapse for each neuron33,34. The holo-
graphic reduced representations model realizes the binding through
the circular convolution. This circuit requiresD2 Pi neurons, whichfirst
compute the tensor product between the input populations, and D
Sigma neurons aggregate the activity of Pi neurons. In the multiply-
add-permute model, the binding operation is the component-wise
Hadamard product, so D Pi neurons are sufficient to implement it. For
the sparse block code model, the binding operation is block-wise cir-
cular convolution, which requiresDL Pi neurons andD Sigma neurons,
where L is the size of the block. Each of these randomized systems
requires an embedding step (“Randomized representations of higher-
order features with binding” section, Eq. (17)) to transform the input
signals into distributed representations. Since both holographic
reduced representations and multiply-add-permute use dense

representations, the random projection matrix must be of size dD.
However, for the sparse blockcodemodel, a neuromorphic systemcan
take advantage of the matrix’s sparsity, requiring only dD/L synaptic
connections for the embedding. To compute higher-order features in
all networks, the recurrent connections are added from the output of
the binding stage back to one of the input populations, which can be
done with one-to-one synaptic connections, requiring only D extra
synapses. With this recurrent motif, features of arbitrary order can be
computed without requiring additional network resources, but using
more iterations.

Importantly, the concrete VSA model should be chosen not only
based on the corresponding network complexity but also based on its
suitability to the targeted computing hardware. To demonstrate this
point, “Experiments on neuromorphic hardware” section presents an
implementation of the existing neuromorphic chip Loihi 2.

Experiments on CPU
Following the example of traditional reservoir computing1,3, Gauthier
et al.12 used the product representation schemeEq. (1) combinedwith a
ridge regression to construct predictive models for multivariate time-
series and evaluated them on predicting chaotic dynamical systems.
During training, a readout matrix (“Product representation of higher-
order features” section, Eq. (9)), is obtained from the ridge regression
solution (with regularization parameter α). The training data include
points in the feature space and the corresponding ground truth of the
target function, e.g., the next state vector of the dynamical system as
determined by conventional numerical integration.

Here we evaluate the described approaches to data representa-
tion in experiments on autoregressive prediction of chaotic dynamical
systems; for details of the considered dynamical systems, see “Tasks
and experimental configurations” section. For the Lorenz63 system,
Eq. (23), Fig. 3a depicts a ground truth trajectory and training time
points (blue dotted lines) for all three observable states that are
overlaid with the training phase predictions for the product (red
dashed lines) and distributed representations (green dash-dotted
lines), respectively. Similar to the product representation, Fig. 3b, the
strange attractor predicted by the distributed representation, Fig. 3c,
highly resembles the true attractor in Fig. 3a, indicating the successful
reconstruction of the dynamical system (see quantitative results in
Supplementary Material S-VIII). Supplementary Material S-X shows
that this dynamical system can be reconstructed successfully even in
the presence of noise. Further, both approaches can closely follow the
true Lorenz63 system in the short term for several Lyapunov times,
Fig. 3b, c. For the double-scroll system, Eq. (24), the ground truth data
from the training phase is presented in Fig. 3d. The predicted attrac-
tors in Fig. 3e, f also resemble the true attractor where both product
and distributed representations closely follow the true dynamics for
several Lyapunov times. For the thirdMackey–Glass system, Eq. (25), in
Fig. 3g, the feature space G for the product representation includes
features up to third-order following38, Eq. (31)whereD = 84.However, a
comparison of the predicted attractor, Fig. 3h, to the true one, Fig. 3g,
reveals that predicting the system with this feature space is challen-
ging,which is consistentwith previous observations38. This exemplifies
the poor scaling of product representations as extending G with

Table 1 | Resources required for computing higher-order features

Model type: Embedding, connections Memory buffer, net-
work size

Higher-order features, network size Higher-order features,
connections

Product representation 0 dk P
t2T

dk + t
t + 1

� �
ðΠÞ OððdkÞtÞ

HRR dD D D(Σ) +D2(Π) 3D2

MAP dD D D(Π) 2D

SBC dD/L D D(Σ) +DL(Π) 3DL

Fig. 2 | Networkmotifs for computing representationsofhigher-order features.
The illustrated networks are shown for the concrete number ofneurons in the input
populations, the sameprinciples apply toconstructnetworks of any size.aNetwork
motif for tensor product. The two d-dimensional inputs are combined into a d2-
dimensional output of Pi neurons. The panel illustrates d = 3. b Network motif for
binding with the multiply-add-permute (MAP) model. The two D-dimensional
inputs are combined into a D-dimensional output of Pi neurons. The panel illus-
trates D = 3. c Network motif for binding with the sparse block code (SBC) model.
Two D-dimensional inputs are combined into a D-dimensional output, through an
intermediate layer of Pi neurons. The size of the intermediate layer isDL, where L is
the size of a block. The panel illustrates D = 6 and L = 3.
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Fig. 3 | Examples of predicting chaotic dynamical systems. Predicting
a–c Lorenz63, d–f double-scroll, and g–i Mackey–Glass dynamical systems using
the product (center column) or distributed (right column) representations. True
(a, d, g) and predicted (b, c, e, f, h, i) strange attractors. a, d, g Training time points
(dotted lines) overlayed with the corresponding predictions for the product
(dashed lines) and distributed (dash-dotted lines) representations. For the product
representations, regularization parameter α is set to: b 2.5 × 10−6, e 1 × 10−4,
h 1 × 10−7; while for the distributed ones: c 1 × 10−7, f 1 × 10−5, and i 1 × 10−6; see “Tasks

and experimental configurations” section for the description of the procedure for
choosing the hyperparameters. Comparisonof the ground truthbehavior (black) to
the dynamics predicted by either product (b, e, h) or distributed (c, f, i) repre-
sentation. The median normalized root-mean-square error (NRMSE) across
1000 simulations over three Lyapunov times during the prediction phase for pro-
duct representations is b 1.47 × 10−2, e 1.98 × 10−2, and h 3.59 × 10−1; respectively for
distributed representations: c 1.59 × 10−2, f 2.17 × 10−2, and i 1.80 × 10−1.
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fourth-order features requires dk +3
4

� �
= 126 additional features

increasing the model size by 150%. This is not the case for the dis-
tributed representation, Fig. 3i, since already forD = 100 (19% increase
to G) it accommodates even fourth-order features, Eq. (32), and, con-
sequently, achieves a substantial decrease in normalized root-mean-
square error (NRMSE, Eq. (35) in “Performance metrics” section)
− 3.59 × 10−1 versus 1.80 × 10−1. Further, this dimensionality is already
sufficient to start creating models that much better reconstruct the
true attractor, Fig. 3i. The individual distributed representation-based
models in Fig. 3 indicate that the dimensionality is an important
hyperparameter affecting both model’s complexity and its predictive
performance measured by NRMSE. This effect is presented in Fig. 4.

For the Lorenz63 system, Fig. 4a, the product representation
space includes 28 features, Eq. (27), while the number of dimensionsD
for the distributed representation is a hyperparameter that can be set
freely. In fact, for the same dimensionality (D = 28) the distributed
representation provides performance matching the product repre-
sentation baseline. This is an important result showing that rando-
mized distributed representations attain strong performance even
with low dimensions, which contradicts the existing narrative. Similar
to the distributed representation, the traditional reservoir computing
(echo state network, “Experiments with traditional reservoir comput-
ing networks” section) also improves with increased D. But in agree-
ment with the results reported in refs. 11,12, for the Lorenz63 system it
needsmore dimensions tomatch the performance of the higher-order
features (though, it is not guaranteed to be the case for every system,
see Supplementary Material S-I). Furthermore, the performance of the
multilayer perceptron is nowhere near the models with higher-order
features neither for the Lorenz63 systemnor for the other systems. For
the double-scroll system, the higher-order feature spaces are con-
structed from first- & third-order features, Eq. (29), such that the
product representation includes D = 62 features. The distributed
representation, however, demonstrates matching performance,
Fig. 4b, with just 34 dimensions resulting in 45% resource savings (see
also Supplementary Material S-I for a similar result on another task).
Thus, even for a moderately high number of features in G, the dis-
tributed representation could provide non-trivial computational sav-
ings. This advantage of the proposed approach is emphasized further
for the Mackey–Glass system, Fig. 4c, where the distributed repre-
sentation with 100 dimensions already accommodates fourth-order
features (green circle). The predictive performance can be improved
further at the cost of increased dimensionality, which emphasizes the

value of including additional features (fourth-order). In contrast to the
rigid design space of the product representation (red squares), the
absence of fixed dependency between the dimensionality of dis-
tributed representations and the number of features in the corre-
sponding product representation results in a flexible design space
controlling the trade-off that is demonstrated by additional models
with an even higher order of features (up to seventh). As expected, the
configurations of the distributed representation including more fea-
tures require more dimensions to demonstrate reasonable perfor-
mance. At the same time, given representations that are large enough
such models demonstrate better predictive performance. Though as
with the product representation, there are diminishing returns since
much larger representations are required to slightly improve the
performance.

Experiments on neuromorphic hardware
Here, we demonstrate the implementation of a memory buffer and
Sigma-Pi networks on the neuromorphic chip Loihi 215,39. Loihi 2
(Fig. 5a) is an asynchronous neuromorphic computing architecture
and communicates information with event-based packets. In Loihi 2,
these packets can contain 24 bits of information – a “graded spike”,
which we use to transmit the magnitude of vector components. Fur-
thermore, Loihi 2 has a programmable engine that allows users to
define customneuronmodels, whichwe use to implement both Sigma
and Pi neurons.

Following “Networks of Sigma-Pi neurons for tensor product and
binding” section, we utilize two basic types of neurons for the imple-
mentation: Sigma and Pi. The Sigma neuron computes the inner pro-
duct between the input population and synaptic weights and transmits
the result as a graded spike. The Sigma neuron can also be configured
with a threshold, where the results of the inner product below the
thresholdwill lead to no spiking output, which can reduce spike traffic.
The Pi neuron is a special type of neuron that has two input channels.
Synaptic inputs are accumulated on the two channels, and then the
neuron computes the product of these inputs andoutputs the result as
a graded spike. Typically here there is only a single synaptic input on
each channel.

The representations of activity in the Loihi 2 neurons are, thus,
event packets containing 24 bits representing fixed-point integers. The
8-bit synaptic weights and the Pi neurons compute fixed-point multi-
plication bymultiplying the integer values and shifting right, where the
fixed point is typically 27 for synaptic weights and 212 for graded spikes.
The chip is programmed using the base software package Lava

Fig. 4 | Median predictive performance against the dimensionality of D.
a Lorenz63,bdouble-scroll, and cMackey–Glass systems. The configurations of the
product and distributed representations depicted in Fig. 3 are marked by red
squares and green circles, respectively. The median performance of the corre-
sponding product representations from Fig. 3 is shown as thick dashed red lines
where the red squares additionally emphasize the exact location of the config-
urations with respect tomodel’s size that is driven by higher-order features used to
form the feature space. Similarly, the performance of the multilayer perceptron is
shown as a thick solid blue line with blue squares emphasizing that the size of the

first hidden layer matches that of the product representation. The echo-state net-
work (“Experiments with traditional reservoir computing networks” section) is
depicted as a dotted black line. The following hyperparameters are used:
β =0.25, γ =0.1, α = 1 × 10−7 (Lorenz63); β =0.1, γ =0.1, α = 1 × 10−9 (double-scroll);
β =0.25, γ = 1.00, α = 1 × 10−7 (Mackey–Glass). For each configuration, NRMSE is
computed over three Lyapunov times where the reported values are obtained from
1000 randomly initialized simulations. Shaded areas show the median stan-
dard error.
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(https://github.com/lava-nc), aswell as Lava-VSA, which provides tools
for constructing VSA circuits. Since sparsity is an important desiderata
for Loihi 2 circuits, we leverage the sparse block code model, Fig. 2c.
The representations are structured into K = 10, L = 20-dimensional
blocks, with D = LK. The Lava-VSA software package contains modules
for creating the network motifs for computing the desired distributed
representation of higher-order features that can be executed on
Loihi 2.

To validate that our implementation produces meaningful
representations, we perform a feasibility study by using the states of
the Lorenz63 system, Eq. (23), as an input to three different network
architectures running on Loihi 2. The goal is to predict a randomly
chosen quadratic function that depends on two most recent
Lorenz63 state vectors (Fig. 5b gray line depicts and example target
function). To illustrate the proof-of-principle, we implement and
compare three networks: a linear reservoir network that computes the
memory buffer of recent input history (Fig. 5b, left); a network that
computes the joint distributed representation of themost recent state
vector and its second-order features (Fig. 5b, center); and a network
that combines the memory buffer with first and second-order features
(Fig. 5b, right). Figure 5b illustrates qualitatively that the first network
provides the worst predictions while the predictions from the third
network are nearly perfect. The same point is demonstrated quanti-
tatively in Fig. 5c that reports the prediction error for eight random
instantiations of the networks (solid lines). The performance is shown
against the number of sparse blocks of fixed size (L = 20). As expected,
neither the first nor the second network’s representations are suffi-
cient to closely predict the target function, since these feature spaces
do not contain the features matching the target function. In contrast,
using the representations including thememory buffer and its second-
order features results in small errors that decrease with the number of
blocks, as all relevant target features are present. Furthermore, the
results of all three networks on Loihi 2 closely follow the results
obtained on their CPU counterparts (dashed lines).

Discussion
Reservoir computing is a powerful and general paradigm for com-
puting with randomized distributed representations in a recurrent

neural network. It draws on principles of neural computation, and it
has proven useful for a wide range of tasks40. Yet despite general
guarantees on function approximation6, traditional reservoir com-
puting is often difficult to interpret and optimize in practice. This
motivates exploring modifications of the original architecture to
achieve the same performancewith less resources. For example, ref. 41
used reservoirs combined with time delays and ref. 42 used structured
matrices to speed up updates of the reservoir. Another promising
approach is to model higher-order polynomial features in the data
explicitly. This idea is explored in refs. 11,12,24 who show that
extracting higher-order features from time-series can dramatically
improve the performance of reservoir computing models. While
powerful, the dimensionality of this explicit formation of higher-order
features grows exponentially with the order of the polynomial, making
scaling to high-dimensional inputs difficult. In addition, large explicit
feature spaces conflict with the classical motivation of parsimony in
reservoir computing, and are less amenable for deployment on neu-
romorphic hardware. Here, we propose an approach that computes
higher-order features implicitly and preserves the performance bene-
fits of the explicit construction with reduced resource requirements.
Furthermore, we show that this approach provides a principled way of
approximating polynomial kernels with compact neural circuits and
provides a proof-of-principle demonstration by implementing it on the
neuromorphic chip Loihi 2.

Polynomial kernelmachines and polynomial regression arewidely
known and useful tools in machine learning. The earlier results in
refs. 11,12 and our results enrich the repertoire of reservoir computing
networks, by explicitly linking reservoir networks to the polynomial
kernels. The theoretical connection between Volterra series and
polynomial kernel regression43 further supports the idea of using these
representations for learning dynamical systems. Our approach is
principled by building on classic work from the machine learning lit-
erature on approximating kernel machines with randomized
representations19,20. Standard kernel machines avoid the exponential
cost of computing all higher-order features but still have costs quad-
ratic in the number of data points25 (“Implicit realization via poly-
nomial kernel machine” section). By contrast, we use randomized
distributed representations of polynomial kernels, which capture the

Fig. 5 | Implementation and experiments on the neuromorphic chip Loihi 2.
aHala Point packages 1152 Loihi 2 processors. The systemsupports up to 1.15 billion
neurons and 128billion synapses. Note that such scale far exceeds the requirements
of the conducted experiments, but we wish to highlight the potential scale
achievable by existing neuromorphic hardware. b Three network architectures
based on the sparse block code model are implemented on Loihi 2 and compared.

The readout of the feature space formed by the network is compared to the target
function. c Average performance of the different network architectures is shown
versus the number of blocks used in the representation (L = 20). Dashed lines
correspond to the representations computed on the CPU. Shaded areas show the
median standard error.
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same similarity structure as explicitly forming the featuremap, but in a
“compressed” representation that is much more parsimonious. A
crucial advantage of this approach over explicitly forming the poly-
nomial features is that in the former, the polynomial features are
stored “in superposition”18 using fewer dimensions than would be
required to explicitly represent them as in the latter. The price of this
compression is that the distributed representation is approximate
(“Kernel approximation guarantees for randomized representations”
section): the similarity kernel recovered by the distributed repre-
sentations is only a noisy version of the true kernel. The magnitude of
this noise as a function of dimensionality can be quantified
precisely19,20 using the theory of concentration of measure, and the
dimensionality required to achieve a small error of approximation is
modest compared to explicitly representing the features. This theo-
retical analysis underlies our empirical findings that the proposed
approach performs more accurate prediction with smaller dimen-
sions (Fig. 4).

Prior theoretical work on randomized kernel approximation left
open the question of how to best implement concatenation and
tensor products on computing hardware. Our approach addresses
this gap for neuromorphic hardware, leveraging vector symbolic
architectures16–18,30, an algebraic, dimensionality-preserving frame-
work for forming compositional distributed representations. The
binding and superposition operations of vector symbolic archi-
tectures correspond to approximate representations of concatena-
tion and tensor product, respectively32. Our approach points out that
two motifs, memory buffers and higher-order polynomial features,
can be composed to form feature spaces and consolidated into two
neural networks (see ref. 44 for an alternative proposal within a
single network). For the second motif (“Randomized distributed
representations of trajectories” section), we demonstrate that the
recursive vector bindings correspond to computations of higher-
order features of the time points in the memory buffer of the
reservoir. In addition, we propose that a recurrently connected net-
work of Sigma-Pi neurons13,45 can implement the recursive binding
(“Networks of Sigma-Pi neurons for tensor product and binding”
section). While Sigma-Pi neurons are an idealized model there is
experimental evidence for multiplication-like nonlinearity by indivi-
dual nerve cells46.

For predicting dynamical systems (“Experiments on CPU” sec-
tion), the performance of our approach is either better than or equal
to that of the product representation, echo state network, and mul-
tilayer perceptron baselines. Further, it improves the product
representation using fewer dimensions with matching performance
(e.g., Fig. 4b). Alternatively, higher performance can be attained with
moderately increased dimensions to accommodate the features of
increased order (Fig. 4c). These results emphasize the role of
dimensionality as a tuneable hyperparameter of the proposed
approach. Note that this is the only additional hyperparameter
introduced beyond the hyperparameters in the product representa-
tion scheme (i.e., the choice of delayed states, order of polynomial
features, and the regularization parameter)12. As follows from the
results in Fig. 4, the dimensionality of randomized representations
does not require extensive tuning. A simple heuristic is to initially use
the number of features in the product representation, a conservative
estimate that can often be reduced in practice. Thus, the proposed
approach introduces minimal overhead to the hyperparameter
search space compared to that of the product representation
scheme. In practice, the expected performance increases with
increased dimensionality of distributed representations. Dimen-
sionality is a way of controlling the trade-off between the perfor-
mance and resource-efficiency of the model.

To generate an efficient neuromorphic realization of binding, we
utilize how distributed representations can be computed in terms of
networks of Sigma-Pi neurons. We further explore randomly

connected Sigma-Pi networks, Supplementary Material S-III, and dis-
cuss the trade-offs for different VSA models in “Networks of Sigma-Pi
neurons for tensor product and binding” section. Importantly, such
compositional distributed representations can be computed by net-
works of recurrently connected neurons, which further benefit from
neuromorphic hardware acceleration. We implement the sparse block
code32,36 on the Loihi 2 neuromorphic chip15,39 (“Experiments on neu-
romorphic hardware” section), which is advantageous because of the
limited number of synaptic connections required. Notably, the repre-
sentations computed by the neuromorphic realization performed very
close to their CPU counterparts (Fig. 5). It is anticipated that these
findings will further impact advances in developing neuro-inspired
algorithms, circuits, and applications within the neuromorphic com-
puting community.

Methods
Product representation of higher-order features
The product representation of the feature space in Eq. (1) was inves-
tigated recently in ref. 12. It is assumed that at each time point i there
are d states of the system of interest – XðiÞ 2 Rd . For the current i-th
time point, the construction of the feature space begins by forming a
vector representing a trajectory of the past observations, which
reflects first-order features ("linear” part of the feature space) denoted
as G(1)(i). The current trajectory is specified as a tupleM that contains
indices of k single time points to be included in the trajectory where
the indices are spaced s time points apart:

M= ði, i� s, i� 2s, . . . , i� ðk � 1ÞsÞ: ð4Þ

Given M, the trajectory is then formed by concatenating the corre-
sponding state vectors:

Gð1ÞðiÞ=
Mk
l = 1

XðMlÞ 2 Rdk : ð5Þ

The resulting feature space could be extended further by con-
sidering higher-order features ("nonlinear” part of the feature space)
formed from G(1)(i) using the tensor product in Eq. (7). For example,
second-order features G(2)(i) are constructed as:

Gð2ÞðiÞ=Gð1ÞðiÞ � Gð1ÞðiÞ: ð6Þ

The resulting representation contains dk + 1
2

� �
= dkðdk + 1Þ

2 unique

entries in its upper triangular matrix. The explicit feature space can be
formed using only these unique entries instead of total d2k2 entries. In
fact, this step has been used in ref. 12 (denoted as ⌈⊗⌉), here this
optimization step is also used for the experiments in “Experiments on
CPU” section and elsewhere but we skip the extra notation for the sake
of clarity.

The same principle can be used to obtain features of any other
higher-order degree. For each problem, one needs to specify the set of
desired orders T � f0, . . . , t, . . . ,n� 1g, where each integer t + 1 2 T
describes a desired order of polynomial features to be considered
within the feature space. Once T is specified, by concatenating fea-
tures of jT j desired orders, the complete representation is obtained in
a single feature vector G(i):

GðiÞ=
M
t2T

Ot
Gð1ÞðiÞ

 !
=
M
t2T

Ot Mk
l = 1

XðMlÞ
 ! !

, ð7Þ

where⨂tdenotes thenumberof times the tensor product is applied to
G(1)(i): t =0 implies first-order features, t = 1 results in second-order
features, etc. G(i) may also include an additional optional feature with
the constant bias to account for the intercept term. Thedimensionality
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of the product representation grows exponentially with the highest
order of the features and is computed as:

X
t2T

dk + t

t + 1

� �
, ð8Þ

As in other machine learning algorithms (e.g., within reservoir
computingor kernelmachines), theproduct representation in Eq. (7) is
used to produce the prediction for the current time point through the
linear transformation specified by a readout matrix (denoted asWout)
following: ŶðiÞ=WoutGðiÞwhere the prediction ŶðiÞ is a scalar or vector
approximating some desired output such as predicting system’s state
vector for the next time point – ŶðiÞ= X̂ði+ 1Þ. To obtain the readout
matrix, the training data in the form of representations for r training
time points in matrix G and the corresponding output values in Y are
used. Given these training data,Wout can be easily estimated using the
ridge regression:

Wout =YG
> GG> +αI
� ��1

, ð9Þ

where I is the identity matrix while α is the regularization hyperpara-
meter that controls overfitting to the training data.

Implicit realization via polynomial kernel machines
We have seen in “Joint representations formed by concatenation or
tensor product” section that the similarity (inner product) struc-
ture of the space formed by concatenation is of an additive nature
while that of the tensor product is of a multiplicative nature. It is,
therefore, instructive to mathematically express the effect of
concatenation and tensor product on the similarity structure in the
resulting feature space. For example, when forming second-order
features as in Eq. (6), it can be shown that the inner product
between representations defined by two buffers MðiÞ and MðjÞ is
equivalent to:

Mk
l = 1

XðMðiÞ
l Þ

 !
�

Mk
l = 1

XðMðiÞ
l Þ

 !
,
Mk
l = 1

XðMðjÞ
l Þ

 !
�

Mk
l = 1

XðMðjÞ
l Þ

 !* +

=
Mk
l = 1

XðMðiÞ
l Þ,

Mk
l = 1

XðMðjÞ
l Þ

* +2

:

ð10Þ
First, Eq. (10) makes it evident that the use of the tensor product
results in polynomial features22. Second, the similarity structure
formed by the tensor product is of a self-conjunctive nature and can
be expressed as the product of inner products in space formed by
concatenation. In general, for nth-order features, the inner product is
expressed as:

O
n�1

Mk
l = 1

X MðiÞ
l

� � !
,
O
n�1

Mk
l = 1

X MðjÞ
l

� � !* +

=
Mk
l = 1

X MðiÞ
l

� �
,
Mk
l = 1

X MðjÞ
l

� �* +n
=
Xk
l = 1

X MðiÞ
l

� �
,X MðjÞ

l

� �D E !n
,

ð11Þ

where Eq. (11) also takes into account the fact that the inner
product of concatenation is the sum of the inner products in the
spaces being concatenated. Eq. (11) suggests that the same
functionality can be expressed through the lens of kernel meth-
ods because the feature space in Eq. (7) is identical to the explicit
feature map corresponding to the polynomial kernels of various
degrees22. The kernel functions can be evaluated by simply
exponentiating the inner products of the first-order features as in
Eq. (11), where the kernel function κ(G(1)(i), G(1)(j)) for Eq. (7) is

computed as:

κðGð1ÞðiÞ,Gð1ÞðjÞÞ=
X
t2T

Mk
l = 1

XðMðiÞ
l Þ,

Mk
l = 1

XðMðjÞ
l Þ

* +t + 1

=
X
t2T

Xk
l = 1

XðMðiÞ
l Þ,XðMðjÞ

l Þ
D E !t + 1

:

ð12Þ

Given a particular kernel function, entries of the kernel matrix
K 2 Rr × r are obtained from the inner products between the states
included in the trajectories of r training time points as:

Kij = κðGð1ÞðiÞ,Gð1ÞðjÞÞ: ð13Þ

In turn, the kernel matrix K can be used for obtaining the kernel
regression machine that is another form of the readout matrix where
the prediction for the m-th output state (ŶmðiÞ) is obtained as the
weighted sum of the kernel function values between r training time
points and the point i to be evaluated. Similar to the readout matrix in
Eq. (9), the vector of weights of the training time points (denoted as
α(m)) could be computed with the ridge regression as:

αðmÞ = K+αIð Þ�1Y>
m:: ð14Þ

The prediction can then be computed as:

ŶmðiÞ=
Xr
j = 1

αðmÞ
j κðGð1ÞðjÞ,Gð1ÞðiÞÞ: ð15Þ

An empirical experiment on predicting the Lorenz63 system (“Tasks
and experimental configurations” section) comparing the product
representation and the corresponding kernel machine is reported in
Supplementary Material S-IV. As can be seen from Eq. (15), the kernel
machine’s size depends on the number of training time points r rather
than on the dimensionality of the explicitly constructed product
representation. On the one hand, this could be beneficial in the
situationswhenkernel’s featuremaphas largedimensionalitywhile, on
the other hand, it could be an issue for large-scale datasets. The latter
issue motivated the seminal result in ref. 25 suggesting to use
randomized representations for approximating certain kernel
functions.

Randomized representations of higher-order features with
binding
We have already considered two ways of realizing the feature space
formed by concatenation and tensor product operations: product
representation in “Product representation of higher-order features”
section and implicit realization with the kernel machine in “Implicit
realization via polynomial kernel machine” section. Here, we use the
principles of hyperdimensional computing/vector symbolic archi-
tectures (VSA)16–18,30 to introduce the third way of embedding poly-
nomial kernel functions into randomized distributed representations
that approximate the similarity in the corresponding feature spaceG,
Eq. (7). To manipulate randomized distributed representations of
data, VSA defines operations on them such as binding (denoted as ∘),
permutation (denoted as ρ), and superposition (denoted as +) that
are essential for approximating polynomial kernels. The exact reali-
zation of these operations depends on a particular model being
used30,31. For example, for real-valued representations, there is a
holographic reduced representation model37 that defines the super-
position as a component-wise addition while the binding operation is
realized via a circular convolution so both operations preserve the
dimensionality of representations, D (see more examples in “Net-
works of Sigma-Pi neurons for tensor product and binding” and
“Experiments on neuromorphic hardware” sections). In the context
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of this study, the intuition behind the operations is that the permu-
tation randomizes distributed representations, the superposition
approximates concatenation in the product representation, and the
binding approximates the tensor product as it has been shown
in ref. 32.

The initial step in VSA is a transformation of data from their ori-
ginal representation into randomized vector representations (denoted
as ψ(X(i))). For concreteness, let us consider a hypothetical system
with two observable states x and y (X(i) = x(i) ⊕ y(i), d = 2). There are
several ways of making a transformation for numeric vectors. A well-
known way that is used commonly for randomized neural networks5 is
based on a random projection47–49 where a d-dimensional state vector
X(i) is transformed into a D-dimensional vector:

ψðXðiÞÞ=WinXðiÞ= xðiÞx+ yðiÞy, ð16Þ

where Win = ½x; y� 2 RD×d is a random projection matrix consisting
of d = 2 columns containing D-dimensional i.i.d. random vectors
(e.g., x for x(i)). These vectors can be thought to play the role of
“keys” in key-value pairs while “value” is the measurement for the
state vector to be represented. The representation of state’s value
is done by scaling the magnitudes of its random vector by the
corresponding value, for example: ψ(x(i)) = x(i)x. Due to the usage
of random vectors for each state in the trajectory, the transforma-
tion can be thought of as making an association between state’s
value and the position of the corresponding state in the trajectory.
Since the superposition operation is used commonly to represent
sets or tuples, it allows constructing both the randomized
representation of a single time point of the system (e.g., ψ(X(i)) =
x(i)x + y(i)y) as well as forming the compositional distributed
representation of the whole trajectory

Lk
i = 1 XðMiÞ that is defined

by M (denoted as F(1)(i)). For example, for k = 2, and s = 1
(M= ði, i� 1Þ):

Fð1ÞðiÞ=ψðXðMiÞ � XðMi�1ÞÞ =W
Mk
l = 1

XðMlÞ
 !

=
Xk
l = 1

Wl�1
ρ WinXðMlÞ
� �

=
Xk
l = 1

ρl�1 WinXðMlÞ
� �

= xðiÞx + yðiÞy+ xði� 1ÞρðxÞ+ yði� 1ÞρðyÞ,

ð17Þ

where for the considered case: W = ½Win;WρWin�= ½Win;ρðWinÞ�=
½x; y;ρðxÞ;ρðyÞ�, the role of a mixing matrix Wρ that is realized via
the permutation ρ( ⋅ ) is to protect the representation of different
time steps in the joint representation of the trajectory32. Thus, Eq. (17)
is the randomized distributed representation corresponding to the
concatenation of several time points in the product representation,
cf. Eq. (5). A theoretical argument supporting this claim is presented in
the next section. The corresponding empirical evaluation is reported
in Supplementary Material S-VII.

The distributed representations of higher-order features are
obtained from thedistributed representation of the trajectory, Eq. (17).
Due to the “computing in superposition” property of VSA18, this step is
trivial and uses only the binding and permutation operations that are
different from ρ( ⋅ ). For example, the distributed representation of
second-order features that is analogous to applying the tensor product
in the explicit feature space (“Joint representations formed by con-
catenation or tensor product” section) is obtained by binding F(1)(i) to
its own permuted representation:

Fð2ÞðiÞ=Fð1ÞðiÞ° π Fð1ÞðiÞ
� �

: ð18Þ

This is possible since the binding and permutation operations
distribute over the superposition so Eq. (18) can be expanded as

follows:

Fð2ÞðiÞ =Fð1ÞðiÞ° π Fð1ÞðiÞ
� �

= xðiÞx+ yðiÞy+ xði� 1ÞρðxÞ+ yði� 1ÞρðyÞð Þ° π xðiÞx+ yðiÞy + xði� 1ÞρðxÞ + yði� 1ÞρðyÞð Þ
= xðiÞ2x° πðxÞ+ xðiÞyðiÞx° πðyÞ + xði� 1ÞxðiÞπðρðxÞÞ° x+ yði� 1ÞxðiÞπðρðyÞÞ° x
+ xðiÞyðiÞπðxÞ° y+ yðiÞ

2y° πðyÞ+ xði� 1ÞyðiÞπðρðxÞÞ° y + yði� 1ÞyðiÞπðρðyÞÞ° y
+ xði� 1ÞxðiÞρðxÞ° πðxÞ+ xði� 1ÞyðiÞρðxÞ° πðyÞ + xði� 1Þ2ρðxÞ° πðρðxÞÞ
+ xði� 1Þyði� 1ÞρðxÞ° πðρðyÞÞ+ yði� 1ÞxðiÞρðyÞ° πðxÞ + yði� 1ÞyðiÞρðyÞ° πðyÞ
+ xði� 1Þyði� 1ÞπðρðxÞÞ° ρðyÞ+ yði� 1Þ2ρðyÞ° πðρðyÞÞ

ð19Þ

As follows from the expansion in Eq. (19), the result of binding F(1)(i) to
the permuted version of itself is equivalent to the superposition of
dk2 = 16 unique randomized representations of second-order mono-
mials of states present in the trajectory Gð1ÞðiÞ=XðM1Þ � XðM2Þ=
XðiÞ � Xði� 1Þ. The terms corresponding to the binding of representa-
tions of keys (e.g., x∘π(x), x∘π(y), etc.) play the role of randomizing the
corresponding representations, which allows them co-existing in a
compositional randomized distributed representation F(2)(i), there-
fore, the inner product between such representations corresponds to
the feature map of the second-order polynomial kernel ½x2

i ,
ffiffiffi
2

p
xiyi,ffiffiffi

2
p

xi�1xi,
ffiffiffi
2

p
yi�1xi, y

2
i ,

ffiffiffi
2

p
xi�1yi,

ffiffiffi
2

p
yi�1yi, x

2
i�1,

ffiffiffi
2

p
xi�1yi�1, y

2
i�1�. Dis-

tributed representations of desired higher-order features F(t)(i)
are obtained in the same manner by binding permuted versions
of F(1)(i) t − 1 times. This operator is denoted as �t : H×H ! H
and is defined recursively as �tðFð1ÞðiÞÞ=πð�t�1ðFð1ÞðiÞÞÞ° F

ð1ÞðiÞ
and �0 Fð1ÞðiÞ

� �
=Fð1ÞðiÞ.

Finally, if the feature space is constructed using features of var-
ious orders (specified by T ), concatenation would be needed again in
the product representation, cf. Eq. (7) but with VSA the joint dis-
tributed representation is constructed via the superposition on the
corresponding randomized representations:

FðiÞ=
X
t2T

�t
Xk
l = 1

Wl�1
ρ WinXðMlÞ
� � ! !

2 RD: ð20Þ

Since all operations inEqs. (17)–(20) are dimensionality-preserving, the
distributed representation of the feature space is also D-dimensional
(D − 1 if the constant bias is included) and can be used in the sameway
as the product representation in Eq. (7) where the readoutmatrix for a
predictive model is estimated in the same manner as in Eq. (9) but
using the distributed representations F(i) instead of the product ones
G(i):

Wout =YF
> FF> +αI
� ��1

: ð21Þ

Kernel approximation guarantees for randomized
representations
As we have alluded to above, the embedding method we have intro-
duced in “Randomized distributed representations of trajectories”
section (see also “Randomized representations of higher-order fea-
tures with binding” section) can be interpreted as generating an
approximate feature map for the polynomial kernel. In fact, when the
binding operator is the component-wise product, this method coin-
cides with a well-known procedure for approximating polynomial
kernels due to ref. 19. In this section, we derive these kernel approx-
imation properties more formally for other realizations of the binding
operation.

Let κp : Rd ×Rd ! R be the homogeneous polynomial kernel of
degree p defined on X � Rd as:

κpðx, yÞ= hx,yip,
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where hx,yi=x>y=
Pd

j = 1 xjyj is the standard Euclidean inner product
on Rd . Our goal is to design an embedding ϕp : X ! H � RD, such
that 〈ϕp(x), ϕp(y)〉 ≈ κp(x, y), in what follows we show that a scheme
based on randomized distributed representations can achieve this in
expectation, whereupon one may appeal to concentration to argue
that the fidelity of approximation is satisfactory for a particular choice
of D19.

The generic procedure is as follows. Given an input x 2 Rd , we
compute embeddings ψ1,…, ψp, where ψt : X ! H, via random linear
maps:

ψtðxÞ=
1ffiffiffiffi
D

p WðtÞx,

where WðtÞ 2 RD×d are random projection matrices whose compo-
nents are drawn i.i.d. from some distribution with zero mean and unit
variance. Consequentially, it is the case that:

E wðtÞ
j wðtÞ>

k

h i
=

1
D Id if j = k

0d otherwise ,

(

where wðtÞ
j denotes the jth row of W(t) (which we treat as a d-dimen-

sional vector for simplicity), Id is the d × d identity matrix, and 0d is the
d × d dimensional matrix of zeros. We then construct ϕp by binding
together the embeddings ψt(x):

ϕpðxÞ=ψ1ðxÞ° ψ2ðxÞ° � � � ° ψpðxÞ:

Our basic claim is that, for several different instantiations of

° : H×H ! H, it is the case that, for any x,y 2 X :

E½hϕpðxÞ,ϕpðyÞi�= hx, yip = κpðx,yÞ,

where the expectation is taken with respect to randomness in
W(1), …, W(p). The claim is true for p = 1 since, for any j ∈ {1, …, D}:

E½ϕ1ðxÞjϕ1ðyÞj �=E½ψ1ðxÞjψ1ðyÞj�=E ðwð1Þ>
j xÞðwð1Þ>

j yÞ
h i

=x>E wð1Þ
j wð1Þ>

j

h i
y=

hx, yi
D

=
κ1ðx, yÞ

D
,

whereupon:

E½hϕðxÞ,ϕðyÞi�=
XD
j = 1

E½ϕðxÞjϕðyÞj�=
Dκ1ðx,yÞ

D
= κ1ðx,yÞ:

We now show this property is satisfied for an arbitrary integer p ≥ 1
using the following binding operators:

Component-wise product. As noted above, the case of component-
wise product coincideswith the earlierwork of 19, butwe re-derive their
result here for completeness. Let us define,° : H×H ! H to be θ	 θ0,
where ⊙ denotes the component-wise product a.k.a. Hadamard pro-
duct. Now fix some j ∈ {1, …, D}, and observe that:

ϕpðxÞj =
Yp
t = 1

wðtÞ>
j x

� �
,

whereupon:

E½ϕpðxÞjϕpðyÞj�=E
Yp
t = 1

ðwðtÞ>
j xÞðwðtÞ>

j yÞ
" #

=
Yp
t = 1

x>E wðtÞ
j wðtÞ>

j

h i
y

=
Yp
t = 1

x>y=
hx,yip

D
=
κpðx,yÞ

D
,

where we have used the fact that wð1Þ
j , . . . ,wðpÞ

j are independent to
decompose the expectation over the product. Therefore:

E½hϕpðxÞ,ϕpðyi�= κpðx,yÞ,

as claimed. We make the following remark concerning a potentially
more efficient implementation of the scheme above using the per-
mutation operation.

Remark 1. The derivation above only requires p-wise independence
among any set of wj’s. This could also be achieved by generating
ψ1(x) =Wx, and then generating subsequent ψi(x)s via permutation.
That is to say, letρ( ⋅ ) be a permutationon [D] with cycle timeat leastp.
We then set ψ2(x) = ρ(ψ1(x)), ψ3(x) = ρ(ψ2(x)) = ρ2(ψ1(x)), and so on….
This strategy allows us to store and compute Wx only once, which is
advantageous computationally and in terms of memory.

Remark 2. The calculations above describe what happens in expecta-
tion over randomness in the draw of thewj. However, it is also possible
to provide high-probability bounds on the approximation error from a
specific instantiation. Thisquestion is analyzed at length in19, who show
that (via their Lemma 8 and Hoeffding’s inequality) for any fixed but
arbitrary pair of points x, y, and any ϵ >0, to guarantee that:

jϕpðxÞ � ϕpðyÞ � κpðx,yÞj≤ ϵ,

holds with high-probability over randomness in the draw ofw1,…,wp,
it suffices to choose:

D=OððpR=ϵÞ2Þ,

where R= maxfk xk1, k yk1g. The crucial insight is that D depends just
quadratically on the maximum polynomial degree p, as opposed to
exponentially in the explicit case (albeit at the expense of only
achieving an approximation to the true kernel).

Circular convolution. Let us take ° : H×H ! H to be the discrete,
circular convolution operator ⊛, defined as37:

θ⊛θ0� �
j =
XD�1

i=0

θiθ
0
j�i,

wherewe think of the first component in θ as having an index of 0, and
all subscripts are modulo D. As noted above, the claim is trivially true
for p = 1, and we proceed by induction on p. Let us suppose that, for
any p > 1:

E½hϕp�1ðxÞ,ϕp�1ðyÞi�= κp�1ðx, yÞ:

Let us fix some j ∈ {1, …, D}. By definition of ⊛, we have that:

ϕpðxÞj = ϕp�1ðxÞ⊛ψpðxÞ
� �

j
=
XD�1

i =0

ϕp�1ðxÞiψpðxÞj�i:
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Thus:

ϕpðxÞjϕpðyÞj =
XD�1

i =0

ϕp�1ðxÞiψpðxÞj�i

 ! XD�1

k =0

ϕp�1ðyÞkψpðyÞj�k

 !

=
XD�1

i=0

XD�1

k =0

ϕp�1ðxÞiϕp�1ðyÞi wðpÞ>
j�i x

� �
wðpÞ>

j�k y
� �

=
XD�1

i= k =0

ϕp�1ðxÞiϕp�1ðyÞk x>wðpÞ
j�iw

ðpÞ>
j�k y

� �

+
XD�1

i≠k =0

ϕp�1ðxÞiϕp�1ðyÞk x>wðpÞ
j�iw

ðpÞ>
j�k y

� �
:

Let us focus first on the second summation. By independence in the
draws of W(1), …, W(p):

E
XD�1

i≠k =0

ϕp�1ðxÞiϕp�1ðyÞk x>wðpÞ
j�iw

ðpÞ>
j�k y

� �" #
= � � �

=
XD�1

i≠k =0

E ϕp�1ðxÞiϕp�1ðyÞk
h i

E x>wðpÞ
j�iw

ðpÞ>
j�k y

h i
=0,

since E½wðpÞ
j�iw

ðpÞ>
j�k �=0d for i ≠ k, and, thus, the second summation

vanishes in expectation. Turning our attention to the first summation,
by independence and the inductive assumption, we have:

E
XD�1

i = k =0

ϕp�1ðxÞiϕp�1ðyÞk x>wðpÞ
j�iw

ðpÞ>
j�k y

� �" #
=
XD�1

i= k =0

E ϕp�1ðxÞiϕp�1ðxÞk
h i

E x>wðpÞ
j�iw

ðpÞ>
j�k y

h i

=
E½hϕp�1ðxÞ,ϕp�1ðyÞi�hx,yi

D

=
hx, yip�1hx, yi

D
=
hx,yip

D

Whereupon, we conclude that once again:

E½hϕpðxÞ,ϕpðyi�= κpðx,yÞ:

Experiments with traditional reservoir computing networks
Since the literature on reservoir computing is vast, we do not intro-
duce it in detail here (refer, e.g., to refs. 4,40) but for the sake of
completeness we provide the equation for the evolution of the reser-
voir dynamics of echo state networks that are used as a baseline in the
experimental evaluation:

FðiÞ= tanhðβWin½1� XðiÞ�+ γWFði� 1ÞÞ, ð22Þ

where F(i) is the D-dimensional state of the reservoir at time point i.
Win 2 RD×d + 1 is an input projection matrix whose components are
drawn uniformly from ½�1, 1�,W 2 RD×D is a mixing random reservoir
connectivity matrix whose components are drawn i.i.d. from the
standard normal distribution and then W is normalized so that its
spectral radius is one (to achieve “echo-state property”3). The con-
tribution of the present state of the system X(i) is controlled by the
projection gain hyperparameter β while the contribution of the pre-
vious states of the reservoir is controlled by γ – the spectral radius
of W.

Tasks and experimental configurations
Tasks and configurations of feature spaces. To evaluate the dis-
tributed representation of the feature space and compare it to the
product representation, in the first place, we followed the experi-
mental protocol of study12 that involved three tasks as well as included
an additional task that was demonstrated to be challenging for the
product representation in ref. 38 and a task involving a dynamical
system with many input channels. For all tasks, the readout matrix
Wout is obtained using the ridge regression following Eqs. (9) or (14).

The first and fifth tasks are designed using time-series generated
by numerically integrating a system developed by Lorenz in 196350.
The system includes three coupled nonlinear differential equations
(referred to as Lorenz63):

_x = 10ðy� xÞ, _y = xð28� zÞ � y, _z = xy� 8z=3, ð23Þ

thus, system’s state at time point i is characterized by vector
X(i) ≡ [x(i), y(i), z(i)]⊤. The system in Eq. (23) forms a strange chaotic
attractor so it displays deterministic chaos that is sensitive to initial
conditions (Lyapunov time is 1.1-time units). The system is sampled at
dt =0.025 and models are trained on r = 400 time points that is about
ten Lyapunov times. SupplementaryMaterial S-IX reports the results of
experiments with varying amounts of training data in the range
r ∈ [160, 960].

The second system forming a strange chaotic attractor that is
used for the second task is a double-scroll electronic circuit51. It is
described by (system’s state is XðiÞ 
 ½V 1ðiÞ,V 2ðiÞ, IðiÞ�>):

_V 1 =V 1=R1 � ΔV=R2 � 2Ir sinhðβΔV Þ, _V 2 =ΔV=R2 + 2Ir sinhðβΔV Þ
� I, _I =V2 � R4I

ð24Þ
where ΔV =V1 −V2; while the parameters are set to
R1 = 1.2, R2 = 3.44, R4 = 0.193, β = 11.6, and Ir = 2.25 × 10−5 resulting in a
Lyapunov time of 7.8-time units. To account for slower Lyapunov time,
the system is sampled at dt = 0.25 but models are still trained on
r = 400 time points.

The third system is the Mackey–Glass52 that is used frequently
within, e.g., the reservoir computing literature as a showcase3,53. It is
formulated using the following time-delay differential equation:

_uðtÞ=β uðt � τÞ
1 +uðt � τÞn � γuðtÞ, ð25Þ

where the parameters are set to β =0.2, γ =0.1 τ = 17, and n = 10 (Lya-
punov time is about 185-time units). Similar to the above systems, the
training data spans about ten Lyapunov times but the system is
sampled at dt= 3.0 resulting in r = 600 training time points. The
number of training points is higher than for the two systems above
because increasing dt further substantially worsens the predictive
performance.

The fourth system is the Kuramoto–Sivashinsky system54 that was
used to introduce the parallel reservoir computing scheme55. It
describes the slow variation of the vibration function of a system
extended in the space with the fourth-order partial differential equa-
tion:

_uðtÞ= � u _uðxÞ � €uðx2Þ � u:::: ðx4Þ, ð26Þ

where the scalar field y(x, t) is periodic in the interval ½0,L�; L=22 in
this study (Lyapunov time is about 20-time units). In contrast to the
above systems, the training data had to be increased substantially so it
spans one hundred Lyapunov times. The system is integrated on a grid
of sixteen equally spaced points (d = 16) and is sampled at dt =0.5
resulting in r = 4000 training time points.

The first three tasks that were reported in “Experiments on CPU”
section of the main text while the fourth task is reported in Supple-
mentary Material S-I using the time-series produced by the above
systems in Eqs. (23)–(26) to predict their dynamics using one-step-
ahead prediction. In particular, the readout matrices Wout for the
models are trained to predict the difference between the current and
the next states of the system (Y(i) =X(i + 1) −X(i)) using either baseline
models, product representation (“Product representation of higher-
order features” section) or distributed representation (“Randomized
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representations of higher-order features with binding” section) of the
feature space that are formed from k single time points of the system
(i.e., the trajectory) that are parameterized by k-tupleMwhere indices
within the tuple are specified relative to the current time point i. For
the sake of fair comparison with the product representation, the
experiments with the distributed representation are performed with
the idealized memory buffer that stores exactly k single time points.

During the training phase, states of the system and the corre-
sponding target values are provided as the ground truth (i.e., teacher
forcing56). For the first four tasks, during the prediction phase, the
model’s prediction at the i-th timepoint is used as an input for the i + 1-
th time point so the model operates in the autoregressive mode, i.e.,
autonomously unfolding in time without any external signal such that
X̂ði+ 1Þ= X̂ðiÞ+WoutGðiÞ or X̂ði+ 1Þ= X̂ðiÞ+WoutFðiÞ.

For predicting the Lorenz63 system, the feature space includes
constant bias (set to 1), first- as well second-order features, T = ð0, 1Þ,
that for the product representation is obtained as:

GðiÞ= 1� Gð1ÞðiÞ � Gð2ÞðiÞ, ð27Þ

where the representation includes 1 +dk + dkðdk + 1Þ
2 features, which

given the concrete values of hyperparameters:d =3, k = 2,M= ði, i� 1Þ,
results in 28 dimensions in G(i).

The corresponding randomized distributed representation is
obtained as:

FðiÞ= 1� ½Fð1ÞðiÞ+Fð2ÞðiÞ�= 1� ½Fð1ÞðiÞ+Fð1ÞðiÞ° ρðF
ð1ÞðiÞÞ�, ð28Þ

where the representation is D-dimensional. Supplementary
Material S-V shows the results of experiments with other configura-
tions of T .

For predicting the double-scroll system, third-order features are
used, T = ð0, 2Þ, due to attractor’s odd symmetry so that the product
representation is formed as:

GðiÞ=Gð1ÞðiÞ � Gð3ÞðiÞ, ð29Þ

which has dk + dkðdk + 1Þðdk + 2Þ
6 dimensions, which given the concrete

values of hyperparameters: d =3, k =2,M= ði, i� 1Þ results in 62
dimensions in G(i).

The corresponding D-dimensional randomized distributed
representation is formed as:

FðiÞ= 1� ½Fð1ÞðiÞ+Fð3ÞðiÞ�= 1� ½Fð1ÞðiÞ+Fð1ÞðiÞ° ρðF
ð1ÞðiÞÞ° ρ2ðFð1ÞðiÞÞ�,

ð30Þ

where the constant bias is also not necessary as for the
Lorenz63 system but is used for the sake of consistency with the
models for other tasks.

For the Mackey–Glass system, features up to third-order are used
in the simplest product representation, T = ð0, 1, 2Þ:

GðiÞ= 1� Gð1ÞðiÞ � Gð2ÞðiÞ � Gð3ÞðiÞ, ð31Þ

with 1 +dk + dkðdk + 1Þ
2 + dkðdk + 1Þðdk + 2Þ

6 features. In the Mackey–Glass sys-
tem, there is only one observable state so d = 1 but k is set to 6 (see
Chapter 5.4 in ref. 38 for details of choosing the delay taps) producing
84 features for G(i).

For the distributed representation, this task is used to demon-
strate that it dissects the strict dependency betweenD and the number
of polynomial features; this approach, therefore, investigates several
configurations starting from the representation that includes features

up to fourth-order, T = ð0, 1, 2, 3Þ:

FðiÞ= 1� ½Fð1ÞðiÞ+Fð2ÞðiÞ+Fð3ÞðiÞ+Fð4ÞðiÞ�: ð32Þ

and all the way up to representations with features of up to
order seven.

For the Kuramoto–Sivashinsky system, features up to third-order
are used in the product representation, T = ð0, 1, 2Þ:

GðiÞ= 1� Gð1ÞðiÞ � Gð2ÞðiÞ � Gð3ÞðiÞ, ð33Þ

with 1 +dk + dkðdk + 1Þ
2 + dkðdk + 1Þðdk + 2Þ

6 features. Given sixteen observable
states d = 16 and k = 2, G(i) includes 6, 545 features.

The corresponding D-dimensional randomized distributed
representation is formed as:

FðiÞ= 1� ½Fð1ÞðiÞ+Fð2ÞðiÞ+Fð3ÞðiÞ�: ð34Þ

Finally, the fifth task also uses the Lorenz63 system to imitate the
scenario where not all observable states are available upon the
deployment of themodel so somemissing data needs to be predicted.
During the training phase, all three states are observedwhere values of
state z at i-th time point are used as the ground truth (Y(i) = z(i)) for
one-step-ahead prediction from the previously observed values of x
and y states. Thus, during the prediction phase, the model is only
observing x and y states and tries to infer the value of z at the current
time point. As in the first task, here, first- and second-order features,
T = ð0, 1Þ, are sufficient to obtain predictions of high quality. For the
sake of brevity of themain text, the results for this task are reported in
Supplementary Material S-II.

Choice of hyperparameters. The first half of this section introduced
the considered tasks and the corresponding configurations for con-
structing the feature spaces for the product and distributed repre-
sentations. Upon defining the construction of the feature space, there
are at most two hyperparameters remaining: (1) the regularization
parameter α for obtaining the readout matrix, and (2) the dimension-
ality, D, of the randomized representations. Note that (2) is only
necessary for the distributed representation. For both approaches, the
choice of the regularization parameter was performed separately for
each task. The grid search was in the range α ∈ {1 × 10−12, 1 × 10−11,…, 1}
where for each value in the range 1000 randomly initialized realiza-
tions of the considered systems were evaluated (100 for the
Kuramoto–Sivashinsky system due to the computing costs). For each
realization, the normalized root-mean-square error (“Performance
metrics” section) was computed over three Lyapunov times. The value
resulting in the smallest median error was chosen as the optimal one.
The optimal values of α are indicated next to each specific experiment.
For the distributed representation, while searching for optimal α, the
value of D was fixed to the dimensionality of the corresponding pro-
duct representation, Eq. (8). The same α was used when conducting
experiments involving varying D.

Since the feature space in echo-state networks is defined impli-
citly, a larger hyperparameter search is needed forproper comparison.
In addition to the dimensionality of the reservoir,D, and regularization
parameter, α, we also considered the projection gain of the input β and
the spectral radius of the reservoir connectivitymatrix γ, cf. Eq. (22). As
for the distributed representation, while performing the grid search
over α, β, and γ, D was set to match the configuration of the product
representation for the considered task. For the grid search, the range
of α was the same as above while for β and γ, we followed the config-
uration from ref. 57 with seven points for each parameter that were
distributed evenly in the range [0.1, 1]. Thus, for each task, 637 dif-
ferent configurations of hyperparameters were considered for the
echo-state network. As with the other approaches, the best
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configurationwas chosen based on themediannormalized root-mean-
square error across 1000 different realizations of the considered sys-
tems (100 for the Kuramoto–Sivashinsky system).

Performance metrics
As a way to measure the quality of predictions for the experiments in
themain text and Supplementary Material, a standardmetric is used –

normalized root-mean-square error (NRMSE). Given the ground truth
Y 2 Rm× r with m output states & r evaluation samples as well as the
corresponding predictions in Ŷ, NRMSE is computed as:

NRMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPr
i= 1

Pm
j = 1 YjðiÞ � ŶjðiÞ
� �2

mr
Pm

j = 1 σ
2
Yj:

vuuut , ð35Þ

where σ2
Yj:

denotes the empirical variance (i.e., the variance calculated
numerically from the data) of the jth output state.

Data availability
Thedata that support the plotswithin this study andotherfindings can
be generated using the available code and data available online in the
Code Ocean at https://doi.org/10.24433/CO.7208482.v2.

Code availability
The computer code and/or data used to produce the results reported
in the study accompany this article and are deposited in the Code
Ocean; available online at https://doi.org/10.24433/CO.7208482.v2.
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