A factorization model of V1 complex cell activity: amplitude and phase
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Ventral stream feature abstraction Learned complex basis functions

Random subset of learned complex basis functions trained on natural image patches.
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How Is visual cortex selective and invariant to higher level features?

Relative phase contains natural image structure
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Population phase mutual information

mutual information, natural images (nats)

1.0
mutual information, white noise (nats)

Each point indicates M| between two complex unit phase distribu-
tions, calculated from inference on white noise vs natural images.
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Units shaded by mutual information with target unit.

Summary

Our model’s steerable basis functions parameterize local transfor-
mations explicitly with phase.

Dependencies in first-order phase statistics may provide clues for
higher-level feature selectivity and invariance in the visual system.
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