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Abstract. A neural network model for a mechanism of 
visual pattern recognition is proposed in this paper. 
The network is self-organized by "learning without a 
teacher", and acquires an ability to recognize stimulus 
patterns based on the geometrical similarity (Gestalt) 
of their shapes without affected by their positions. This 
network is given a nickname "neocognitron". After 
completion of self-organization, the network has a 
structure similar to the hierarchy model of the visual 
nervous system proposed by Hubel and Wiesel. The 
network consists of an input layer (photoreceptor 
array) followed by a cascade connection of a number of 
modular structures, each of which is composed of two 
layers of cells connected in a cascade. The first layer of 
each module consists of "S-cells', which show charac- 
teristics similar to simple cells or lower order hyper- 
complex cells, and the second layer consists of 
"C-cells" similar to complex cells or higher order 
hypercomplex cells. The afferent synapses to each 
S-cell have plasticity and are modifiable. The network 
has an ability of unsupervised learning: We do not 
need any "teacher" during the process of self- 
organization, and it is only needed to present a set of 
stimulus patterns repeatedly to the input layer of the 
network. The network has been simulated on a digital 
computer. After repetitive presentation of a set of 
stimulus patterns, each stimulus pattern has become to 
elicit an output only from one of the C-cells of the last 
layer, and conversely, this C-cell has become selectively 
responsive only to that stimulus pattern. That is, none 
of the C-cells of the last layer responds to more than 
one stimulus pattern. The response of the C-cells of the 
last layer is not affected by the pattern's position at all. 
Neither is it affected by a small change in shape nor in 
size of the stimulus pattern. 

1. Introduction 

The mechanism of pattern recognition in the brain is 
little known, and it seems to be almost impossible to 

reveal it only by conventional physiological experi- 
ments. So, we take a slightly different approach to this 
problem. If we could make a neural network model 
which has the same capability for pattern recognition 
as a human being, it would give us a powerful clue to 
the understanding of the neural mechanism in the 
brain. In this paper, we discuss how to synthesize a 
neural network model in order to endow it an ability of 
pattern recognition like a human being. 

Several models were proposed with this intention 
(Rosenblatt, 1962; Kabrisky, 1966; Giebel, 1971; 
Fukushima, 1975). The response of most of these 
models, however, was severely affected by the shift in 
position and/or by the distortion in shape of the input 
patterns. Hence, their ability for pattern recognition 
was not so high. 

In this paper, we propose an improved neural 
network model. The structure of this network has been 
suggested by that of the visual nervous system of the 
vertebrate. This network is self-organized by "learning 
without a teacher", and acquires an ability to recognize 
stimulus patterns based on the geometrical similarity 
(Gestalt) of their shapes without affected by their 
position nor by small distortion of their shapes. 

This network is given a nickname "neocognitron"l, 
because it is a further extention of the "cognitron", 
which also is a self-organizing multilayered neural 
network model proposed by the author before 
(Fukushima, 1975). Incidentally, the conventional 
cognitron also had an ability to recognize patterns, but 
its response was dependent upon the position of the 
stimulus patterns. That is, the same patterns which 
were presented at different positions were taken as 
different patterns by the conventional cognitron. In the 
neocognitron proposed here, however, the response of 
the network is little affected by the position of the 
stimulus patterns. 

1 Preliminary report of the neocognitron already appeared else- 
where (Fukushima, 1979a, b) 
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Fig. 1. Correspondence between the hierarchy model by Hubel and Wiesel, and the neural network of the neocognitron 

shifted in parallel from cell to cell. Hence, all the cells in 
a single cell-plane have receptive fields of the same 
function, but at different positions. 

We will use notations Us~(k~,n ) to represent the 
output of an S-cell in the kr th  S-plane in the l-th 
module, and Ucl(k~, n) to represent the output of a C-cell 
in the kr th  C-plane in that module, where n is the two- 
dimensional co-ordinates representing the position of 
these cell's receptive fields in the input layer. 

Figure 2 is a schematic diagram illustrating the 
interconnections between layers. Each tetragon drawn 
with heavy lines represents an S-plane or a C-plane, 
and each vertical tetragon drawn with thin lines, in 
which S-planes or C-planes are enclosed, represents an 
S-layer or a C-layer. 

In Fig. 2, a cell of each layer receives afferent 
connections from the cells within the area enclosed by 
the elipse in its preceding layer. To be exact, as for the 
S-cells, the elipses in Fig. 2 does not show the connect- 
ing area but the connectable area to the S-cells. That is, 
all the interconnections coming from the elipses are 
not always formed, because the synaptic connections 
incoming to the S-cells have plasticity. 

In Fig. 2, for the sake of simplicity of the figure, 
only one cell is shown in each cell-plane. In fact, all the 
cells in a cell-plane have input synapses of the same 
spatial distribution as shown in Fig. 3, and only the 
positions of the presynaptic cells are shifted in parallel 
from cell to cell. 

R3 ~I 

modifioble synapses 

) unmodifiable synopses 

Since the cells in the network are interconnected in 
a cascade as shown in Fig. 2, the deeper the layer is, the 
larger becomes the receptive field of each cell of that 
layer. The density of the cells in each cell-plane is so 
determined as to decrease in accordance with the 
increase of the size of the receptive fields. Hence, the 
total number of the cells in each cell-plane decreases 
with the depth of the cell-plane in the network. In the 
last module, the receptive field of each C-cell becomes 
so large as to cover the whole area of input layer U0, 
and each C-plane is so determined as to have only one 
C-cell. 

The S-cells and C-cells are excitatory cells. That is, 
all the efferent synapses from these cells are excitatory. 
Although it is not shown in Fig. 2, we also have 

Fig. 3. Illustration showing the input interconnections to the cells 
within a single cell-plane 

Fig. 2. Schematic diagram illustrating the 
interconnections between layers in the 
neocognitron 
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Fig. 4. Relation between S-planes and S-columns within an S-layer 

case only one candidate appears in an S-plane, the 
candidate is unconditionally determined as the repre- 
sentative from that S-plane. If no candidate appears in 
an S-plane, no representative is selected from that 
S-plane. 

Since the representatives are determined in this 
manner, each S-plane becomes selectively sensitive to 
one of the features of the stimulus patterns, and there is 
not a possibility of formation of redundant con- 
nections such that two or more S-planes are used for 
detection of one and the same feature. Incidentally, 
representatives are selected only from a small number 
of S-planes at a time, and the rest of the S-planes are to 
send representatives for other stimulus patterns. 

As is seen from these discussions, if we consider 
that a single S-plane in the neocognitron corresponds 
to a single excitatory cell in the conventional cognitron 
(Fukushima, 1975), the procedures of reinforcement in 
the both systems are analogous to each other. 

4. Rough Sketches of the Working of the Network 

In order to help the understanding of the principles 
with which the neocognitron performs pattern re- 
cognition, we will make rough sketches of the working 
of the network in the state after completion of self- 
organization. The description in this chapter, however, 
is not so strict, because the purpose of this chapter is 
only to show the outline of the working of the network. 

At first, let us assume that the neocognitron has 
been self-organized with repeated presentations of 
stimulus patterns like "A", "B", "C" and so on. In the 
state when the self-organization has been completed, 
various feature-extracting cells are formed in the net- 
work as shown in Fig. 5. (It should be noted that Fig. 5 
shows only an example. It does not mean that exactly 
the same feature extractors as shown in this figure are 
always formed in this network.) 

Here, if pattern "A" is presented to the input layer 
U o, the cells in the network yield outputs as shown in 
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Fig. 5. An example of the interconnections between ceils and the 
response of the cells after completion of self-organization 

Fig. 5. For instance, S-plane with k 1 = 1 in layer Us1 
consists of a two-dimensional array of S-cells which 
extract A-shaped features. Since the stimulus pattern 
"A" contains A-shaped feature at the top, an S-cell 
near the top of this S-plane yields a large output as 
shown in the enlarged illustration in the lower part of 
Fig. 5. 

A C-cell in the succeeding C-plane (i.e. C-plane in 
layer Ucl with k~ = 1) has synaptic connections from a 
group of S-cells in this S-plane. For example, the C-cell 
shown in Fig. 5 has synaptic connections from the 
S-cells situated within the thin-lined circle, and it 
responds whenever at least one of these S-cells yields a 
large output. Hence, the C-cell responds to a A-shaped 
feature situated in a certain area in the input layer, and 
its response is less affected by the shift in position of 
the stimulus pattern than that of presynaptic S-cells. 
Since this C-plane consists of an array of such C-cells, 
several C-cells which are situated near the top of this 
C-plane respond to the A-shaped feature contained in 
the stimulus pattern "A". In layer Ucl, besides this 
C-plane, we also have C-planes which extract features 
with shapes l ike/- ,  ~, and so on. 

In the next module, each S-cell receives signals 
from all the C-planes of layer Ucl. For example, the 

Neocognitron:  rationale
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inhibitory cells Vsl(n ) and Vcl(n ) in S-layers and 
C-layers. 

Here, we are going to describe the outputs of the 
cells in the network with numerical expressions. 

All the neural cells employed in this network is of 
analog type. That is, the inputs and the output of a cell 
take non-negative analog values proportional to the 
pulse density (or instantaneous mean frequency) of the 
firing of the actual biological neurons. 

S-cells have shunting-type inhibitory inputs simi- 
larly to the cells employed in the conventional cognit- 
ron (Fukushima, 1975). The output of an S-cell in the 
kz-th S-plane in the/-th module is described below. 

Kz- 1 
I!+ ~ ~ az(kl-1, v, kt).Ucl_l(k,_x, n+  v) 

Usl(k z, n) = r 1. qo k,_l = 1 v~s, 2rl 
1 + ~ .  bl(kl).Vc,_ l(n) 

where 

{oX  ~ ~oEx] = x < 0 .  (2) 

In case of l=  1 in (1), Ucl_ l(kt_ i, n) stands for uo(n), and 
we have K z_ 1 = 1. 

Here, al(k z_ 1, v, kl) and bz(kl) represent the efficien- 
cies of the excitatory and inhibitory synapses, re- 
spectively. As was described before, it is assumed that 
all the S-cells in the same S-plane have identical set of 
input synapses. Hence, al(k l_ 1, v, kl) and bl(kz) do not 
contain any argument representing the position n of 
the receptive field of the cell Usl(kl, n). 

Parameter r z in (1) prescribes the efficacy of the 
inhibitory input. The larger the value of r z is, more 
selective becomes cell's response to its specific feature 
(Fukushima, 1978, 1979c). Therefore, the value of r z 
should be determined with a compromise between the 
ability to differentiate similar patterns and the ability 
to tolerate the distortion of the pattern's shape. 

The inhibitory cell VC/_l(n), which have in- 
hibitory synaptic connections to this S-cell, has an 
r.m.s.-type (root-mean-square type) input-to-output 
characteristic. That is, 

1 /  Kz-1 
Vct l (n)=l /k ,~ lV 1- ~s, ~cz-l(v)'u2l-l(kl-l'n+v)' (3) 

where cz l(v) represents the efficiency of the unmodifi- 
able excitatory synapses, and is set to be a monotoni- 
cally decreasing function of [v]. The employment of 
r.m.s.-type cells is effective for endowing the network 
with an ability to make reasonable evaluation of the 
similarity between the stimulus patterns. Its effective- 
ness was analytically proved for the conventional 
cognitron (Fukushima, 1978, 1979c), and the same 
discussion can be applied also to this network. 

As is seen from (t) and (3), the area from which a 
single cell receives its input, that is, the summation 
range S z of v is determined to be identical for both cells 
Ust(kl, n) and Vcl_ l(n). 

The size of this range SI is set to be small for the 
foremost module (/=1) and to become larger and 
larger for the hinder modules (in accordance with the 
increase of I). 

After completion of self-organization, the pro- 
cedure of which will be discussed in the next chapter, a 
number of feature extracting cells of the same function 
are formed in parallel within each S-plane, and only 

(1) 

the positions of their receptive fields are different to 
each other. Hence, if a stimulus pattern which elicits a 
response from an S-cell is shifted in parallel in its 
position on the input layer, another S-cell in the same 
S-plane will respond instead of the first cell. 

The synaptic connections from S-layers to C-layers 
are fixed and unmodifiable. As is illustrated in Fig. 2, a 
C-cell have synaptic connections from a group of 
S-cells in its corresponding S-plane (i.e. the preceding 
S-plane with the same k~-number as that of the C-cell). 
The efficiencies of these synaptic connections are so 
determined that the C-cell will respond strongly when- 
ever at least one S-cell in its connecting area yields a 
large output. Hence, even if a stimulus pattern which 
has elicited a large response from a C-cell is shifted a 
little in position, the C-cell will keep responding as 
before, because another presynaptic S-cell will become 
to respond instead. 

Quantitatively, C-cells have shunting-type inhib- 
itory inputs similarly as S-cells, but their outputs 
show a saturation characteristic. The output of a C-cell 
in the k/-th C-plane in the/-th module is given by the 
equation below. 

ii + ~ dt(v)'Usl(kz, n+v) ll 
Ucl(kt, n) = ~ wD, 1 + Vst(n ) , (4) 

where 
[x ]  = q~[x/(c~ + x) ] .  (5) 

The inhibitory cell Vsz(n ), which sends inhibitory sig- 
nals to this C-cell and makes up the system of lateral 
inhibition, yields an output proportional to the 
(weighted) arithmetic mean of its inputs : 

1 Kz 
Vs'(n) = ~ k ~ ,  ~;, d'(v)'us'(k''n+v)" (6) 
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In (4) and (6), the efficiency of the unmodifiable 
excitatory synapse dz(v ) is set to be a monotonically 
decreasing function of Iv[ in the same way as q(v), and 
the connecting area D~ is small in the foremost module 
and becomes larger and larger for the hinder modules. 
The parameter a in (5) is a positive constant which 
specifies the degree of saturation of C-cells. 

3. Self-organization of the Network 

The self-organization of the neocognitron is performed 
by means of "learning without a teacher". During the 
process of self-organization, the network is repeatedly 
presented with a set of stimulus patterns to the input 
layer, but it does not receive any other information 
about the stimulus patterns. 

As was discussed in Chap. 2, one of the basic 
hypotheses employed in the neocognitron is the as- 
sumption that all the S-cells in the same S-plane have 
input synapses of the same spatial distribution, and 
that only the positions of the presynaptic cells shift in 
parallel in accordance with the shift in position of 
individual S-cells' receptive fields. 

It is not known whether modifiable synapses in the 
real nervous system are actually self-organized always 
keeping such conditions. Even if it is assumed to be 
true, neither do we know by what mechanism such a 
self-organization goes on. The correctness of this hy- 
pothesis, however, is suggested, for example, from the 
fact that orderly synaptic connections are formed 
between retina and optic rectum not only in the initial 
development in the embryo but also in regeneration in 
the adult amphibian or fish: In regeneration after 
removal of half of the tectum, the whole retina come to 
make a compressed orderly projection upon the re- 
maining half tectum (e.g. review article by Meyer and 
Sperry, 1974). 

In order to make self-organization under the con- 
ditions mentioned above, the modifiable synapses are 
reinforced by the following procedures. 

At first, several "representative" S-cells are selected 
from each S-layer every time when a stimulus pattern 
is presented. The representative is selected among the 
S-cells which have yielded large outputs, but the 
number of the representatives is so restricted that more 
than one representative are not selected from any 
single S-plane. The detailed procedure for selecting the 
representatives is given later on. 

The input synapses to a representative S-cell are 
reinforced in the same manner as in the case of r.m.s.- 
type cognitron 2 (Fukushima, 1978, 1979c). All the 

2 Qualitatively, the procedure of self-organization for r.m.s.-type 
cognitron is the same as that for the conventional cognitron 
(Fukushima, 1975) 

other S-cells in the S-plane, from which the repre- 
sentative is selected, have their input synapses rein- 
forced by the same amounts as those for their repre- 
sentative. These relations can be quantitatively ex- 
pressed as follows. 

Let cell UsSq, fi) be selected as a representative. The 
modifiable synapses al(k l_ 1, v, ~l) and bl(/~l), which are 
afferent to the S-cells of the kcth S-plane, are rein- 
forced by the amount shown below: 

Aal(kz_ l, v,[q)=ql.cz_ l(v).Ucl_ l(k~_ l,fi + v), (7) 

Abt([q) = (qz/2). Vcl_ l(fi), (8) 

where ql is a positive constant prescribing the speed of 
reinforcement. 

The cells in the S-plane from which no repre- 
sentative is selected, however, do not have their input 
synapses reinforced at all. 

In the initial state, the modifiable excitatory syn- 
apses al(k l_ 1, v, kt) are set to have small positive values 
such that the S-cells show very weak orientation 
selectivity, and that the preferred orientation of the 
S-cells differ from S-plane to S-plane. That is, the 
initial values of these modifiable synapses are given by 
a function of v, (kl/Kz) and [k z_ 1/Kl_ 1 --k]K~l, but they 
don't have any randomness. The initial values of 
modifiable inhibitory synapses b~(kt) are set to be zero. 

The procedure for selecting the representatives is 
given below. It resembles, in some sense, to the pro- 
cedure with which the reinforced cells are selected in 
the conventional cognitron (Fukushima, 1975). 

At first, in an S-layer, we watch a group of S-cells 
whose receptive fields are situated within a small area 
on the input layer. If we arrange the S-planes of an 
S-layer in a manner shown in Fig. 4, the group of 
S-cells constitute a column in an S-layer. Accordingly, 
we call the group as an "S-column". An S-column 
contains S-cells from all the S-planes. That is, an 
S-column contains various kinds of feature extracting 
cells in it, but the receptive fields of these cells are 
situated almost at the same position. Hence, the idea of 
S-columns defined here closely resembles that of 
"hypercolumns" proposed by Hubel and Wiesel (1977). 
There are a lot of such S-columns in a single S-layer. 
Since S-columns have overlapping with one another, 
there is a possibility that a single S-cell is contained in 
two or more S-columns. 

From each S-column, every time when a stimulus 
pattern is presented, the S-cell which is yielding the 
largest output is chosen as a candidate for the repre- 
sentatives. Hence, there is a possibility that a number 
of candidates appear in a single S-plane. If two or more 
candidates appear in a single S-plane, only the one 
which is yielding the largest output among them is 
selected as the representative from that S-plane. In 
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In (4) and (6), the efficiency of the unmodifiable 
excitatory synapse dz(v ) is set to be a monotonically 
decreasing function of Iv[ in the same way as q(v), and 
the connecting area D~ is small in the foremost module 
and becomes larger and larger for the hinder modules. 
The parameter a in (5) is a positive constant which 
specifies the degree of saturation of C-cells. 

3. Self-organization of the Network 

The self-organization of the neocognitron is performed 
by means of "learning without a teacher". During the 
process of self-organization, the network is repeatedly 
presented with a set of stimulus patterns to the input 
layer, but it does not receive any other information 
about the stimulus patterns. 

As was discussed in Chap. 2, one of the basic 
hypotheses employed in the neocognitron is the as- 
sumption that all the S-cells in the same S-plane have 
input synapses of the same spatial distribution, and 
that only the positions of the presynaptic cells shift in 
parallel in accordance with the shift in position of 
individual S-cells' receptive fields. 

It is not known whether modifiable synapses in the 
real nervous system are actually self-organized always 
keeping such conditions. Even if it is assumed to be 
true, neither do we know by what mechanism such a 
self-organization goes on. The correctness of this hy- 
pothesis, however, is suggested, for example, from the 
fact that orderly synaptic connections are formed 
between retina and optic rectum not only in the initial 
development in the embryo but also in regeneration in 
the adult amphibian or fish: In regeneration after 
removal of half of the tectum, the whole retina come to 
make a compressed orderly projection upon the re- 
maining half tectum (e.g. review article by Meyer and 
Sperry, 1974). 

In order to make self-organization under the con- 
ditions mentioned above, the modifiable synapses are 
reinforced by the following procedures. 

At first, several "representative" S-cells are selected 
from each S-layer every time when a stimulus pattern 
is presented. The representative is selected among the 
S-cells which have yielded large outputs, but the 
number of the representatives is so restricted that more 
than one representative are not selected from any 
single S-plane. The detailed procedure for selecting the 
representatives is given later on. 

The input synapses to a representative S-cell are 
reinforced in the same manner as in the case of r.m.s.- 
type cognitron 2 (Fukushima, 1978, 1979c). All the 

2 Qualitatively, the procedure of self-organization for r.m.s.-type 
cognitron is the same as that for the conventional cognitron 
(Fukushima, 1975) 

other S-cells in the S-plane, from which the repre- 
sentative is selected, have their input synapses rein- 
forced by the same amounts as those for their repre- 
sentative. These relations can be quantitatively ex- 
pressed as follows. 

Let cell UsSq, fi) be selected as a representative. The 
modifiable synapses al(k l_ 1, v, ~l) and bl(/~l), which are 
afferent to the S-cells of the kcth S-plane, are rein- 
forced by the amount shown below: 

Aal(kz_ l, v,[q)=ql.cz_ l(v).Ucl_ l(k~_ l,fi + v), (7) 

Abt([q) = (qz/2). Vcl_ l(fi), (8) 

where ql is a positive constant prescribing the speed of 
reinforcement. 

The cells in the S-plane from which no repre- 
sentative is selected, however, do not have their input 
synapses reinforced at all. 

In the initial state, the modifiable excitatory syn- 
apses al(k l_ 1, v, kt) are set to have small positive values 
such that the S-cells show very weak orientation 
selectivity, and that the preferred orientation of the 
S-cells differ from S-plane to S-plane. That is, the 
initial values of these modifiable synapses are given by 
a function of v, (kl/Kz) and [k z_ 1/Kl_ 1 --k]K~l, but they 
don't have any randomness. The initial values of 
modifiable inhibitory synapses b~(kt) are set to be zero. 

The procedure for selecting the representatives is 
given below. It resembles, in some sense, to the pro- 
cedure with which the reinforced cells are selected in 
the conventional cognitron (Fukushima, 1975). 

At first, in an S-layer, we watch a group of S-cells 
whose receptive fields are situated within a small area 
on the input layer. If we arrange the S-planes of an 
S-layer in a manner shown in Fig. 4, the group of 
S-cells constitute a column in an S-layer. Accordingly, 
we call the group as an "S-column". An S-column 
contains S-cells from all the S-planes. That is, an 
S-column contains various kinds of feature extracting 
cells in it, but the receptive fields of these cells are 
situated almost at the same position. Hence, the idea of 
S-columns defined here closely resembles that of 
"hypercolumns" proposed by Hubel and Wiesel (1977). 
There are a lot of such S-columns in a single S-layer. 
Since S-columns have overlapping with one another, 
there is a possibility that a single S-cell is contained in 
two or more S-columns. 

From each S-column, every time when a stimulus 
pattern is presented, the S-cell which is yielding the 
largest output is chosen as a candidate for the repre- 
sentatives. Hence, there is a possibility that a number 
of candidates appear in a single S-plane. If two or more 
candidates appear in a single S-plane, only the one 
which is yielding the largest output among them is 
selected as the representative from that S-plane. In 
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Fig. 4. Relation between S-planes and S-columns within an S-layer 

case only one candidate appears in an S-plane, the 
candidate is unconditionally determined as the repre- 
sentative from that S-plane. If no candidate appears in 
an S-plane, no representative is selected from that 
S-plane. 

Since the representatives are determined in this 
manner, each S-plane becomes selectively sensitive to 
one of the features of the stimulus patterns, and there is 
not a possibility of formation of redundant con- 
nections such that two or more S-planes are used for 
detection of one and the same feature. Incidentally, 
representatives are selected only from a small number 
of S-planes at a time, and the rest of the S-planes are to 
send representatives for other stimulus patterns. 

As is seen from these discussions, if we consider 
that a single S-plane in the neocognitron corresponds 
to a single excitatory cell in the conventional cognitron 
(Fukushima, 1975), the procedures of reinforcement in 
the both systems are analogous to each other. 

4. Rough Sketches of the Working of the Network 

In order to help the understanding of the principles 
with which the neocognitron performs pattern re- 
cognition, we will make rough sketches of the working 
of the network in the state after completion of self- 
organization. The description in this chapter, however, 
is not so strict, because the purpose of this chapter is 
only to show the outline of the working of the network. 

At first, let us assume that the neocognitron has 
been self-organized with repeated presentations of 
stimulus patterns like "A", "B", "C" and so on. In the 
state when the self-organization has been completed, 
various feature-extracting cells are formed in the net- 
work as shown in Fig. 5. (It should be noted that Fig. 5 
shows only an example. It does not mean that exactly 
the same feature extractors as shown in this figure are 
always formed in this network.) 

Here, if pattern "A" is presented to the input layer 
U o, the cells in the network yield outputs as shown in 
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Fig. 5. An example of the interconnections between ceils and the 
response of the cells after completion of self-organization 

Fig. 5. For instance, S-plane with k 1 = 1 in layer Us1 
consists of a two-dimensional array of S-cells which 
extract A-shaped features. Since the stimulus pattern 
"A" contains A-shaped feature at the top, an S-cell 
near the top of this S-plane yields a large output as 
shown in the enlarged illustration in the lower part of 
Fig. 5. 

A C-cell in the succeeding C-plane (i.e. C-plane in 
layer Ucl with k~ = 1) has synaptic connections from a 
group of S-cells in this S-plane. For example, the C-cell 
shown in Fig. 5 has synaptic connections from the 
S-cells situated within the thin-lined circle, and it 
responds whenever at least one of these S-cells yields a 
large output. Hence, the C-cell responds to a A-shaped 
feature situated in a certain area in the input layer, and 
its response is less affected by the shift in position of 
the stimulus pattern than that of presynaptic S-cells. 
Since this C-plane consists of an array of such C-cells, 
several C-cells which are situated near the top of this 
C-plane respond to the A-shaped feature contained in 
the stimulus pattern "A". In layer Ucl, besides this 
C-plane, we also have C-planes which extract features 
with shapes l ike/- ,  ~, and so on. 

In the next module, each S-cell receives signals 
from all the C-planes of layer Ucl. For example, the 
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In (4) and (6), the efficiency of the unmodifiable 
excitatory synapse dz(v ) is set to be a monotonically 
decreasing function of Iv[ in the same way as q(v), and 
the connecting area D~ is small in the foremost module 
and becomes larger and larger for the hinder modules. 
The parameter a in (5) is a positive constant which 
specifies the degree of saturation of C-cells. 

3. Self-organization of the Network 
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by means of "learning without a teacher". During the 
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As was discussed in Chap. 2, one of the basic 
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sumption that all the S-cells in the same S-plane have 
input synapses of the same spatial distribution, and 
that only the positions of the presynaptic cells shift in 
parallel in accordance with the shift in position of 
individual S-cells' receptive fields. 

It is not known whether modifiable synapses in the 
real nervous system are actually self-organized always 
keeping such conditions. Even if it is assumed to be 
true, neither do we know by what mechanism such a 
self-organization goes on. The correctness of this hy- 
pothesis, however, is suggested, for example, from the 
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development in the embryo but also in regeneration in 
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removal of half of the tectum, the whole retina come to 
make a compressed orderly projection upon the re- 
maining half tectum (e.g. review article by Meyer and 
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In order to make self-organization under the con- 
ditions mentioned above, the modifiable synapses are 
reinforced by the following procedures. 

At first, several "representative" S-cells are selected 
from each S-layer every time when a stimulus pattern 
is presented. The representative is selected among the 
S-cells which have yielded large outputs, but the 
number of the representatives is so restricted that more 
than one representative are not selected from any 
single S-plane. The detailed procedure for selecting the 
representatives is given later on. 

The input synapses to a representative S-cell are 
reinforced in the same manner as in the case of r.m.s.- 
type cognitron 2 (Fukushima, 1978, 1979c). All the 

2 Qualitatively, the procedure of self-organization for r.m.s.-type 
cognitron is the same as that for the conventional cognitron 
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sentative is selected, have their input synapses rein- 
forced by the same amounts as those for their repre- 
sentative. These relations can be quantitatively ex- 
pressed as follows. 

Let cell UsSq, fi) be selected as a representative. The 
modifiable synapses al(k l_ 1, v, ~l) and bl(/~l), which are 
afferent to the S-cells of the kcth S-plane, are rein- 
forced by the amount shown below: 

Aal(kz_ l, v,[q)=ql.cz_ l(v).Ucl_ l(k~_ l,fi + v), (7) 

Abt([q) = (qz/2). Vcl_ l(fi), (8) 

where ql is a positive constant prescribing the speed of 
reinforcement. 

The cells in the S-plane from which no repre- 
sentative is selected, however, do not have their input 
synapses reinforced at all. 

In the initial state, the modifiable excitatory syn- 
apses al(k l_ 1, v, kt) are set to have small positive values 
such that the S-cells show very weak orientation 
selectivity, and that the preferred orientation of the 
S-cells differ from S-plane to S-plane. That is, the 
initial values of these modifiable synapses are given by 
a function of v, (kl/Kz) and [k z_ 1/Kl_ 1 --k]K~l, but they 
don't have any randomness. The initial values of 
modifiable inhibitory synapses b~(kt) are set to be zero. 

The procedure for selecting the representatives is 
given below. It resembles, in some sense, to the pro- 
cedure with which the reinforced cells are selected in 
the conventional cognitron (Fukushima, 1975). 

At first, in an S-layer, we watch a group of S-cells 
whose receptive fields are situated within a small area 
on the input layer. If we arrange the S-planes of an 
S-layer in a manner shown in Fig. 4, the group of 
S-cells constitute a column in an S-layer. Accordingly, 
we call the group as an "S-column". An S-column 
contains S-cells from all the S-planes. That is, an 
S-column contains various kinds of feature extracting 
cells in it, but the receptive fields of these cells are 
situated almost at the same position. Hence, the idea of 
S-columns defined here closely resembles that of 
"hypercolumns" proposed by Hubel and Wiesel (1977). 
There are a lot of such S-columns in a single S-layer. 
Since S-columns have overlapping with one another, 
there is a possibility that a single S-cell is contained in 
two or more S-columns. 

From each S-column, every time when a stimulus 
pattern is presented, the S-cell which is yielding the 
largest output is chosen as a candidate for the repre- 
sentatives. Hence, there is a possibility that a number 
of candidates appear in a single S-plane. If two or more 
candidates appear in a single S-plane, only the one 
which is yielding the largest output among them is 
selected as the representative from that S-plane. In 
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Fig. 6. Some examples of distorted stimulus patterns which the 
neocognitron has correctly recognized, and the response of the final 
layer of the network 

Fig. 7. A display of an example of the response of all the individual 
cells in the neocognitron 

layers Us2 and Us3 are preceded by C-layers consisting 
of 24 cell-planes. Although the number of cells con- 
tained in S t is the same for every S-layer, the size of S~, 
which is projected to and observed at layer U0, 
increases for the hinder layers because of decrease in 
density of the cells in a cell-plane. 

The number of excitatory input synapses to each 
C-cell is 5 x 5 in layers Ucl and Uc2, and is 2 • 2 in 
layer Uc3. Every S-column has a size such that it 
contains 5 x 5 x 24 cells for layers Usi and Usz, and 
2 x 2 x 24 cells for layer Usa. That is, it contains 5 x 5, 
5 x 5, and 2 x 2 cells from each S-plane, in layers Usl, 
Us2, and Us3, respectively. 

Parameter rl, which prescribe the efficacy of in- 
hibitory input to an S-cell, is set such that r 1 =4.0 and 
r 2 = r 3 = 1.5. The efficiency of unmodifiable excitatory 
synapses c~ l(v) is determined so as to satisfy the 
equation 
Kt-i 

Z 2 Cl- 1(v) = 1. (9) 
kz- 1 = 1 vest 

The parameter % which prescribe the speed of rein- 
forcement, is adjusted such that ql = l . 0  and 
q2=qa=16.0.  The parameter e, which specifies the 
degree of saturation, is set to be c~=0.5. 

In order to self-organize the network, we have 
presented five stimulus patterns "0", "1", "2", "3", and 
"4", which are shown in Fig. 6 (a) (the leftmost column 
in Fig. 6), repeatedly to the input layer U 0. The 
positions of presentation of these stimulus patterns 
have been randomly shifted at every presentation 4. 

Each of the five stimulus patterns has been pre- 
sented 20 times to the network. By that time, self- 
organization of the network has almost been 
completed. 

Each stimulus pattern has become to elicit an 
output only from one of the C-cells of layer Uc3, and 
conversely, this C-cell has become selectively respon- 
sive only to that stimulus pattern. That is, none of the 
C-cells of layer Uc3 responds to more than one 
stimulus pattern. It has also been confirmed that the 
response of cells of layer Uc3 is not affected by the shift 
in position of the stimulus pattern at all. Neither is it 
affected by a slight change of the shape or the size of 
the stimulus pattern. 

Figure 6 shows some examples of distorted stim- 
ulus patterns which the neocognitron has correctly 
recognized. All the stimulus patterns (a)~(g) in each 
row of Fig. 6 have elicited the same response to C-cells 
of layer Uc3 as shown in (h) (i.e. the rightmost patterns 
in each row). That is, the neocognitron has correctly 
recognized these patterns without affected by shift in 
position like (a)~ (c), nor by distortion in shape or size 
like (d)~ (f), nor by some insufficiency of the patterns 
or some noise like (g). 

Figure7 displays how individual cells in the 
neocognitron have responded to stimulus pattern "4". 
Thin-lined squares in the figure stand for individual 
cell-planes (except in layer Uc3 in which each cell- 
plane contains only one cell). The magnitude of the 
output of each individual cell is indicated by the 
darkness of each small square in the figure. (The size of 
the square does not have a special meaning here.) 

4 It does not matter, of course, even if the patterns are presented 
always at the same position. On the contrary, the self-organization 
generally becomes easier if the position of pattern presentation is 
stationary than it is shifted at random. Thus, the experimental result 
under more difficult condition is shown here 
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Fig. 7. A display of an example of the response of all the individual 
cells in the neocognitron 

layers Us2 and Us3 are preceded by C-layers consisting 
of 24 cell-planes. Although the number of cells con- 
tained in S t is the same for every S-layer, the size of S~, 
which is projected to and observed at layer U0, 
increases for the hinder layers because of decrease in 
density of the cells in a cell-plane. 

The number of excitatory input synapses to each 
C-cell is 5 x 5 in layers Ucl and Uc2, and is 2 • 2 in 
layer Uc3. Every S-column has a size such that it 
contains 5 x 5 x 24 cells for layers Usi and Usz, and 
2 x 2 x 24 cells for layer Usa. That is, it contains 5 x 5, 
5 x 5, and 2 x 2 cells from each S-plane, in layers Usl, 
Us2, and Us3, respectively. 

Parameter rl, which prescribe the efficacy of in- 
hibitory input to an S-cell, is set such that r 1 =4.0 and 
r 2 = r 3 = 1.5. The efficiency of unmodifiable excitatory 
synapses c~ l(v) is determined so as to satisfy the 
equation 
Kt-i 

Z 2 Cl- 1(v) = 1. (9) 
kz- 1 = 1 vest 

The parameter % which prescribe the speed of rein- 
forcement, is adjusted such that ql = l . 0  and 
q2=qa=16.0.  The parameter e, which specifies the 
degree of saturation, is set to be c~=0.5. 

In order to self-organize the network, we have 
presented five stimulus patterns "0", "1", "2", "3", and 
"4", which are shown in Fig. 6 (a) (the leftmost column 
in Fig. 6), repeatedly to the input layer U 0. The 
positions of presentation of these stimulus patterns 
have been randomly shifted at every presentation 4. 

Each of the five stimulus patterns has been pre- 
sented 20 times to the network. By that time, self- 
organization of the network has almost been 
completed. 

Each stimulus pattern has become to elicit an 
output only from one of the C-cells of layer Uc3, and 
conversely, this C-cell has become selectively respon- 
sive only to that stimulus pattern. That is, none of the 
C-cells of layer Uc3 responds to more than one 
stimulus pattern. It has also been confirmed that the 
response of cells of layer Uc3 is not affected by the shift 
in position of the stimulus pattern at all. Neither is it 
affected by a slight change of the shape or the size of 
the stimulus pattern. 

Figure 6 shows some examples of distorted stim- 
ulus patterns which the neocognitron has correctly 
recognized. All the stimulus patterns (a)~(g) in each 
row of Fig. 6 have elicited the same response to C-cells 
of layer Uc3 as shown in (h) (i.e. the rightmost patterns 
in each row). That is, the neocognitron has correctly 
recognized these patterns without affected by shift in 
position like (a)~ (c), nor by distortion in shape or size 
like (d)~ (f), nor by some insufficiency of the patterns 
or some noise like (g). 

Figure7 displays how individual cells in the 
neocognitron have responded to stimulus pattern "4". 
Thin-lined squares in the figure stand for individual 
cell-planes (except in layer Uc3 in which each cell- 
plane contains only one cell). The magnitude of the 
output of each individual cell is indicated by the 
darkness of each small square in the figure. (The size of 
the square does not have a special meaning here.) 

4 It does not matter, of course, even if the patterns are presented 
always at the same position. On the contrary, the self-organization 
generally becomes easier if the position of pattern presentation is 
stationary than it is shifted at random. Thus, the experimental result 
under more difficult condition is shown here 
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Abstract

Deep neural networks (DNNs) have recently been
achieving state-of-the-art performance on a variety of
pattern-recognition tasks, most notably visual classification
problems. Given that DNNs are now able to classify ob-
jects in images with near-human-level performance, ques-
tions naturally arise as to what differences remain between
computer and human vision. A recent study revealed that
changing an image (e.g. of a lion) in a way imperceptible to
humans can cause a DNN to label the image as something
else entirely (e.g. mislabeling a lion a library). Here we
show a related result: it is easy to produce images that are
completely unrecognizable to humans, but that state-of-the-
art DNNs believe to be recognizable objects with 99.99%
confidence (e.g. labeling with certainty that white noise
static is a lion). Specifically, we take convolutional neu-
ral networks trained to perform well on either the ImageNet
or MNIST datasets and then find images with evolutionary
algorithms or gradient ascent that DNNs label with high
confidence as belonging to each dataset class. It is possi-
ble to produce images totally unrecognizable to human eyes
that DNNs believe with near certainty are familiar objects.
Our results shed light on interesting differences between hu-
man vision and current DNNs, and raise questions about the
generality of DNN computer vision.

1. Introduction

Deep neural networks (DNNs) learn hierarchical lay-
ers of representation from sensory input in order to per-
form pattern recognition [1, 13]. Recently, these deep ar-
chitectures have demonstrated impressive, state-of-the-art,
and sometimes human-competitive results on many pattern
recognition tasks, especially vision classification problems
[15, 5, 27, 16]. Given the near-human ability of DNNs to
classify visual objects, questions arise as to what differences
remain between computer and human vision.

A recent study revealed a major difference between DNN

Figure 1. Evolved images that are unrecognizable to humans,
but that state-of-the-art DNNs trained on ImageNet believe with
� 99.6% certainty to be a familiar object. This result highlights
differences between how DNNs and humans recognize objects.
Images are either directly (top) or indirectly (bottom) encoded.

and human vision [26]. Changing an image, originally cor-
rectly classified (e.g. as a lion), in a way imperceptible to
human eyes, can cause a DNN to label the image as some-
thing else entirely (e.g. mislabeling a lion a library).

In this paper, we show another way that DNN and human
vision differ: It is easy to produce images that are com-
pletely unrecognizable to humans (Fig. 1), but that state-of-
the-art DNNs believe to be recognizable objects with over
99% confidence (e.g. labeling with certainty that TV static
is a motorcycle). Specifically, we use evolutionary algo-
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Figure 5: Adversarial examples generated for AlexNet [9].(Left) is correctly predicted sample, (center) dif-
ference between correct image, and image predicted incorrectly magnified by 10x (values shifted by 128 and
clamped), (right) adversarial example. All images in the right column are predicted to be a “ostrich, Struthio
camelus”, which is fast-running African flightless bird with two-toed feet, largest living bird. Average distortion
based on 64 examples is 0.006508.

increasing the robustness and convergence speed of the models [9, 13]. These deformations are,
however, statistically inefficient, for a given example: they are highly correlated and are drawn from
the same distribution throughout the entire training of the model. We propose a scheme to make this
process adaptive in a way that exploits the model and its deficiencies in modeling the local space
around the training data.

We make the connection with hard-negative mining explicitly, as it is close in spirit: hard-negative
mining, in computer vision, consists of identifying training set examples (or portions thereof) which
are given low probabilities by the model, but which should be high probability instead, cf. [5]. The
training set distribution is then changed to emphasize such hard negatives and a further round of
model training is performed. As shall be described, the optimization problem proposed in this work
can also be used in a constructive way, similar to the hard-negative mining principle.

4.1 Formal description

We denote by f : Rm �! {1 . . . k} a classifier mapping image pixel value vectors to a discrete
label set. We also assume that f has an associated continuous loss function denoted by lossf :
Rm ⇥ {1 . . . k} �! R+. For a given x 2 Rm image and target label l 2 {1 . . . k}, we aim to solve
the following box-constrained optimization problem:

• Minimize krk2 subject to:

1. f(x+ r) = l

2. x+ r 2 [0, 1]m

The minimizer r might not be unique, but we denote one such x + r for an arbitrarily chosen
minimizer by D(x, l). Informally, x + r is the closest image to x classified as l by f . Obviously,
D(x, f(x)) = f(x), so this task is non-trivial only if f(x) 6= l. In general, the exact computation
of D(x, l) is a hard problem, so we approximate it by using a box-constrained L-BFGS. Concretely,
we find an approximation of D(x, l) by performing line-search to find the minimum c > 0 for which
the minimizer r of the following problem satisfies f(x+ r) = l.

• Minimize c|r|+ lossf (x+ r, l) subject to x+ r 2 [0, 1]m

4.2 Experimental results

Our “minimimum distortion” function D has the following intriguing properties, which we will
demonstrate with qualitative and quantitative experiments in this section:
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Images are not bags of features
(BagNet - Brendel & Bethge 2019)



Relative spatial relationships are important
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Reference frame effects in perception
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How to form invariant object representations?



Reference frames require structured representations
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Dynamic routing 
(Olshausen, Anderson, Van Essen 1993)
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Dynamic routing circuit
4702 Olshausen et al. - Model of Visual Attention and Recognition 

a. 

b. 

Input 

I=1 
N=B 

I4 H 
window of attention window of attention 

Figure 2. A simple, one-dimensional dynamic routing circuit. a, Connections are shown for the leftmost node in each layer. The connections for 
the other nodes are the same, but merely shifted. N denotes the number of nodes within each layer, and I denotes the layer number. A set of control 
units (not explicitly shown) provide the necessary signals for modulating connection strengths so that the image within the window of attention in 
the input is mapped onto the output nodes. b and c, Some examples of how connection strengths would be set for different positions and sizes of 
the window of attention. The gray level of each connection denotes its strength. Each node, Zf, essentially interpolates from the nodes below by 
forming a linear weighted sum of its inputs: 

where W: denotes the strength of the connection from node j in level 1 to node i in level 1 + 1. If  a gaussian is used as the interpolation function, 
then wt, is given by 

WI, = exp (j - cqi - d,)> - 
24 

where the parameters d,, (Y,, and Q, denote the amount of translation, scaling, and blurring, respectively, in the transformation from level 1 to level 
I + 1. The overall translation, scaling, and blurring of the entire circuit (d, 01, and u) is then given by d = d, + cu,(d, + cr,d,), a! = LY~(Y,(Y~, (~2 = 
u; + (Y&J: + c+J:). Note that the lowest layers are best suited for small, fine-scale adjustments to the position and size of the attentional window, 
while the upper layers are better suited for large, coarse-scale adjustments. 

used when the window is small. Thus, much of the image 
smoothing could be accomplished by using a set of hardwired 
filters, and then switching between these filters depending on 
the size of the attentional window. 

The challenge in controlling the routing circuit lies in properly 
setting the synaptic weights to yield the desired position and 
size of the window of attention. Low levels of the circuit are 
well suited for making fine adjustments in the position and scale 
of the window of attention, whereas higher levels are best suited 
for coarse control. In general, though, there are an infinite num- 
ber of possible solutions in terms of the combinations of weights 
that could achieve any particular input-output transformation. 

Control 
Our analysis of how information flow can be controlled is aided 
by visualizing the routing circuit in “connection space,” as shown 
in Figure 3a. This diagram shows the connection matrix for a 
simple one-dimensional routing circuit composed of two lay- 
ers-an input layer and an output layer. The horizontal axis 
represents the nodes constituting the input layer of the network, 
the vertical axis represents the nodes constituting the output 
layer. An “x ” at coordinate (j, i) in connection space denotes 
that a physical connection exists from node j in the input to 
node i in the output; the lack of an “ x ” at (j, i) implies that 



Pattern matching via dynamic routing
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ĉt+1 = g(CC> (s⌦ x̂�1
t ⌦ ŷ�1
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t ⌦ ĉ�1
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Visual scene analysis via factorization of HD vectors
(Paxon Frady)



Extension to translation, rotation and scaling

Renner, et al.  (2024). Neuromorphic visual scene understanding with resonator networks. 
Nature Machine Intelligence.

Fig. 2 Resonator network for rotation and scale. A. Translation in log-polar space results in rotation

and scaling in Cartesian space. B. Diagram of resonator network for inferring shape, rotation, and

scaling of input images. C. Example of network dynamics. D. Symmetries of the template lead to

ambiguous factorizations. Two examples are shown with di↵erent random initializations. The resonator

network will converge to one of the ambiguous factorizations (letters ‘b’ or ‘q’).
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Fig. 3 The hierarchical resonator network for inferring rigid transforms. A. Schematic diagram of

the hierarchical resonator network. B. The dynamics of the resonator network identifying objects in

the input scene.
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translation rot/scale

and scaled object templates in log-polar coordinates, we can construct the following
resonator network (Fig. 2 B):

d̂(t+ 1) = f

⇣
D́LD́

†
L (sL � r̂

⇤(t)� m̂
⇤(t))

⌘
,

r̂(t+ 1) = f

⇣
RR

†
⇣
sL � d̂

⇤(t)� m̂
⇤(t)

⌘⌘
,

m̂(t+ 1) = f

⇣
MM

†
⇣
sL � d̂

⇤(t)� r̂
⇤(t)

⌘⌘
.

(6)

Here, the codebooks R and M contain the vector symbols for each log-polar coordinate,
e.g. R = [r1, r2, ..., rLr ], M = [m1

,m
2
, ...,m

Lm ]. The index vector r is designed to
obey periodic boundary conditions, such that translated pixels wrap around the image
[27]. The codebook �L 2 CN⇥LmLr contains the binding products of rotation and
scale hypervectors, similar to � (3). Further, the codebook D́L = �LLṔ contains the
whitened letter patterns in the log-polar space.

The example of rotation and scale invariant inference with the resonator network
(6) in Figure 2 highlights the general problem that image components can have more
than one valid explanation because of symmetries, for example, ‘b’ versus ‘q.’ For
such ambiguous inputs, the resonator network o↵ers one interpretation, depending on
the random initialization and other noise sources (Fig. 2D), but will not indicate the
existence of alternative interpretations.

Scenes with rigid, non-commutative transforms

The next step toward analyzing realistic scenes is the ability to identify object templates
transformed by arbitrary rigid transforms, composed of translation, rotation, scale,
and color. Building on the two previous models, the corresponding generative model of
scenes has to include a log-polar transform matrix in the high-dimensional VSA space
⇤ = �LL�

†. The generative model of an image synthesized from rigid transforms of
shape templates can then be written as:

s =
X

i

cci � h
xi � v

yi �⇤
�1(rri �m

mi � dpi), (7)

The inference in this generative model can be performed in an adequately designed
resonator network. Corresponding to the factors in (7), the network consists of six
fully connected factor modules that all require coordinate transforms, ⇤ or ⇤�1, in
their binding stages, for full equations see Methods (10). As depicted in Figure 3A,
the network is bisected into two partitions: one using Cartesian and one log-polar
coordinates. Each partition has one additional module that serves as the communication
bridge to the other partition. Conveniently, the bridge modules have the same internal
stages as other resonator modules:

l̂(t+ 1) = ⇤
�1

�
r̂(t)� m̂(t)� d̂(t)

�
, (8)

p̂(t+ 1) = ⇤
�
s� ĉ

⇤(t)� ĥ
⇤(t)� v̂

⇤(t)
�
. (9)
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Factorization of Visual Scenes with Convolutional 
Sparse Coding and Resonator Networks.  

(Kymn, Mazelet, Kleyko & Olshausen.  NICE 2024 Proceedings)
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ẋ = Ax



Learning to separate shape and transformations via 
Lie group operators and sparse coding

(Ho Yin Chau, Yubei Chen, Frank Qiu)

3.2 Learning  

To learn  , we first fix W to be the weights learned with the training procedure described above. Our dataset
consists of 16⇥ 16 randomly rotated MNIST digits I. For each image I, we use the ↵ and  gradients given
in section 2.3 to perform gradient descent on ↵ for a certain number of steps before performing one gradient
descent step on  using the final value of ↵ and then normalizing  to unit norm.

To show that our algorithm works, we performed two experiments. In the first experiment, we used a
very simple dataset to demonstrate the capability of our algorithm to form a factorized representation of
shapes and transformations. The dataset is generated by applying 100 rotations (equally spaced between 0
and 2⇡) on the 10 images shown in Figure 4, and Figure 5 shows 200 images from the generated dataset.
We performed gradient descent on ↵ for 300 steps, with each step being followed by a ReLU operation that
sets negative ↵ values to 0, repeated this for 2 more times with a di↵erent random initialization of ↵, then
used the best values of ↵ (i.e. the ↵ that yields the smallest loss) to update  , which involved one gradient
descent step and then normalizing  to unit norm. This whole process was repeated 25 times. For the
parameters, we used a batch size of 100 images, � = 0.1, � = 30, and learning rate ⌘↵ = 0.001 for alpha and
⌘ (T ) =

p
T for  . Figure 6 shows the 10  learned with our training algorithm, and Figure 7 shows the

reconstruction of the input images using the inferred ↵.

Figure 4 – The 10 images that generate the dataset

Figure 5 – 200 images from our dataset, generated by applying 100 equally spaced rotations on the images in
Figure 3.
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I = T(s)�↵+ ✏
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T(s) = eAs (1)

= W e⌃s WT = WR(s)WT (2)
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2 Model

2.1 Model and Theoretical Background

Let I 2 RD be the input image. We model I as

I = WR(s)WT ↵+ ✏

where W 2 RD⇥D is orthogonal matrix,  2 RD⇥K , ↵ 2 RK , ✏ ⇠ N (0;�2 ) and

R(s) =

2

666664

cos(!1s) � sin(!1s)
sin(!1s) cos(!1s)

. . .
cos

�
!D/2s

�
� sin

�
!D/2s

�

sin
�
!D/2s

�
cos

�
!D/2s

�

3

777775

so R(s) is a block diagonal matrix with each block being a 2⇥ 2 rotation matrix. Note that we assume D is
an even number.
This is very similar to the one-parameter model detailed in section 3.3 of the paper by Cohen and Welling
(2014), so the interested reader may refer to that paper for further details. We will explain the motivation
for this model. We want to represent our image as the result of a one-parameter transformation applied to
a base template formed by a linear combination of filters, so that

I = T (s) ↵

where T (s) is the transformation that is parameterized by one parameter,  2 RD⇥K is a bank of K filters,
and ↵ 2 RK encode the coe�cients for each filter. For example, for MNIST digits, we might want K = 10,
with each filter in  corresponding to one digit. Now, since our set of transformations form a one-parameter
subgroup of SO(n), we can write (Hall, 2015)

T (s) = eAs

where A 2 so(n), which is precisely the set of skew-symmetric matrices (Gallier and Xu, 2002). Moreover,
since A is skew-symmetric, it can be block diagonalized as A = W⌃WT (Zumino, 1962). Here, both W and
⌃ are real matrices, W is orthogonal, and

⌃ =

2

666664

0 �!1

!1 0
. . .

0 �!D/2

!D/2 0

3

777775

Then
T (s) = We⌃sWT = WR(s)WT

As of now, !i can take on any value. However, if we additionally assume our transformations to form a Lie
group, then it is a closed subgroup of SO(n), and since SO(n) is compact, our group of transformations
must be compact as well. Then we can restrict the possible values of !i to integers (see Cohen and Welling
(2014) for details). From now on, all derivation will assume that !’s are integers. This assumption is needed
later for our conjugate prior to work.

2.2 Loss Function

Now we want to maximize the log likelihood of ↵:

ln p(I|↵) = ln

Z 2⇡

0
p(I|s,↵)p(s)ds

2

I = WR(s)WT �↵+ ✏
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2 Model

2.1 Model and Theoretical Background

Let I 2 RD be the input image. We model I as

I = WR(s)WT ↵+ ✏

where W 2 RD⇥D is orthogonal matrix,  2 RD⇥K , ↵ 2 RK , ✏ ⇠ N (0;�2 ) and

R(s) =
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so R(s) is a block diagonal matrix with each block being a 2⇥ 2 rotation matrix. Note that we assume D is
an even number.
This is very similar to the one-parameter model detailed in section 3.3 of the paper by Cohen and Welling
(2014), so the interested reader may refer to that paper for further details. We will explain the motivation
for this model. We want to represent our image as the result of a one-parameter transformation applied to
a base template formed by a linear combination of filters, so that

I = T (s) ↵

where T (s) is the transformation that is parameterized by one parameter,  2 RD⇥K is a bank of K filters,
and ↵ 2 RK encode the coe�cients for each filter. For example, for MNIST digits, we might want K = 10,
with each filter in  corresponding to one digit. Now, since our set of transformations form a one-parameter
subgroup of SO(n), we can write (Hall, 2015)

T (s) = eAs

where A 2 so(n), which is precisely the set of skew-symmetric matrices (Gallier and Xu, 2002). Moreover,
since A is skew-symmetric, it can be block diagonalized as A = W⌃WT (Zumino, 1962). Here, both W and
⌃ are real matrices, W is orthogonal, and

⌃ =

2

666664

0 �!1

!1 0
. . .

0 �!D/2

!D/2 0

3

777775

Then
T (s) = We⌃sWT = WR(s)WT

As of now, !i can take on any value. However, if we additionally assume our transformations to form a Lie
group, then it is a closed subgroup of SO(n), and since SO(n) is compact, our group of transformations
must be compact as well. Then we can restrict the possible values of !i to integers (see Cohen and Welling
(2014) for details). From now on, all derivation will assume that !’s are integers. This assumption is needed
later for our conjugate prior to work.

2.2 Loss Function

Now we want to maximize the log likelihood of ↵:

ln p(I|↵) = ln

Z 2⇡

0
p(I|s,↵)p(s)ds

2
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Results
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