
Visual scene analysis



Correct label:  Afghan hound

What is this?



an absolute depth judgment with respect
to fixation, while fine stereopsis requires
the judgment of relative depth, i.e., com-
paring depth across space; (2) the partic-
ular coarse stereopsis task used requires
the monkey to discriminate a signal in
noise, while the fine task does not; (3)
the range of disparities is quite different.

Chowdhury and DeAngelis (2008) repli-
cate the finding that monkeys initially
trained on coarse stereopsis show im-
paired coarse depth discrimination when
muscimol is injected into MT. Remark-
ably, the same animals, after a second
round of training on fine stereopsis, are
unimpaired at either fine or coarse depth
discrimination by similar injections. More-
over, recordings in MT show that neuronal
responses are not altered by learning the
fine stereopsis task. Given the differences
between the tasks and the large number

of visual areas containing disparity-sensi-
tive neurons, one might not be surprised
to find different areas involved in the two
tasks. But it is quite unexpected that
merely learning one task would change
the contribution of areas previously in-
volved in the other. Chowdhury and
DeAngelis conclude that the change in
outcome reflects a change in neural de-
coding—decision centers that decode
signals to render judgments of depth,
finding MT signals unreliable for the fine
stereopsis task, switch their inputs to se-
lect some better source of disparity infor-
mation. Candidates include ventral
stream areas V4 or IT, where relative dis-
parity signals have been reported (Orban,
2008) and which contain far more neurons
than MT (Figure 1). When challenged
afresh with the coarse depth task, these
same decision centers may now find that

their new sources of information can solve
the coarse task as well as the old ones.
MT is no longer critical.

Perhaps in other monkeys MT would
never have a role in stereopsis at all.
ChowdhuryandDeAngelis’monkeyswere
trained simultaneously or previously to
discriminate motion, which engages MT.
Faced with a qualitatively similar random
dot stimulus, it might make sense for the
cortex to try to solve the new problem of
stereopsis with existing decoding strate-
gies. But if the animals were initially trained
on a different task—say, a texture discrim-
ination—MT might never be engaged at
all. It would also be interesting to see the
outcome if monkeys were trained on depth
tasks that were less different and could
be interleaved in the same sessions, for
example noise-limited depth judgments
using similar absolute or relative disparity

Figure 1. A Scaled Representation of the Cortical Visual Areas of the Macaque
Each colored rectangle represents a visual area, for the most part following the names and definitions used by Felleman and Van Essen (1991). The gray bands
connecting the areas represent the connections between them. Areas above the equator of the figure (reds, browns) belong to the dorsal stream. Areas below the
equator (blues, greens) belong to the ventral stream. Following Lennie (1998), each area is drawn with a size proportional to its cortical surface area, and the lines
connecting the areas each have a thickness proportional to the estimated number of fibers in the connection. The estimate is derived by assuming that each area
has a number of output fibers proportional to its surface area and that these fibers are divided among the target areas in proportion to their surface areas. The
connection strengths represented are therefore not derived from quantitative anatomy and furthermore represent only feedforward pathways, though most or all
of the pathways shown are bidirectional. The original version of this figure was prepared in 1998 by John Maunsell.
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Visual working memory as a superposition of 
‘what’ and ‘where’ bindings

(Eric Weiss, Ph.D. thesis)



t=0 t=1 t=2

Example encoding

. . .

m  =    v6 ⨀ rt=0      +      v5 ⨀ rt=1       +      v4 ⨀ rt=2      +    …



Example queries

Where is the ‘5’? 

answer =  v5* ⨀ m
             =  v5* ⨀ (v6 ⨀ rt=0  +  v5 ⨀ rt=1  +  v4 ⨀ rt=2  +  …) 
             ≈                noise      +       rt=1        +     noise     +  ...

What object is in the center? 

answer =  rcenter* ⨀ m
             =  rcenter* ⨀ (v6 ⨀ rt=0  +  v5 ⨀ rt=1  +  v4 ⨀ rt=2  +  …) 
             ≈                       v6        +     noise     +     noise     +  ...
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(a) Example image (b) ”below a 2” (c) ”to the left of a 1” (d) Combined

Figure 1: Query constraint satisfaction maps visualized for a training example. For this image, the
query is ”below a 2 and to the left of a 1”. The correct answer is therefore ”7”.

through multiplication of the Inverse DFT matrix corresponding to the chosen location encoding
parameters. Figure 1b shows the resulting map for ”below a 2”, and figure 1c shows the map for
”to the left of a 1”. We then take the point-wise product of these two maps and normalize, resulting
in the map visualized in figure 1d. As hoped, the majority of the weight is located at the position
of the 7 in the image, which is the correct answer for this example. The final step is to retrieve the
object identity information contained in the scene vector at the location specified by this map. To
do this we convert this final map into a complex vector encoding location. This is achieved through
multiplication by the DFT matrix. Then we multiply the scene vector by the inverse of this location
vector (for location vectors this happens to be its complex conjugate). The resulting vector should
then contain an ”unbound” vector representing ”7”, plus other vectors which will have a near-zero
dot product with any of the ten vectors that represent digit identities. We use the cross-entropy cost
function. The algorithm achieves about 95 percent accuracy on the artificial multi-MNIST dataset
described in this experiment.

3 PATH PLANNING

Our framework can also be used to solve a simple navigation problem. In this experiment, a map
of obstacles and a reward function is stored as a complex vector. Actions, also represented as
complex vectors, act on these maps to produce translations. It is possible to map the concepts
discussed previously onto the value iteration algorithm from reinforcement learning, providing a
way to calculate the optimal action given the current state and reward function. The operations
are very similar to those outlined in the first experiment, making use of the convolution theorem
to reduce computational cost. The only difference is that instead of reducing over spatial positions
using a product, we reduce using a max function. The maze, reward function, and computed value
function are shown in figure 2.

(a) Environment map (b) Value function

Figure 2: Obstacle/reward map and calculated value function described in the path planning experi-
ment. In (a), black indicates walls and green indicates high reward. In (b), red indicates high reward,
while blue indicates low reward.

3

What is below a ‘2’ and to the left of a ‘1’?

Spatial reasoning

answer = f(a1 ⨀ a2) ⨀ m

a1 = f-1(rdown (v2* ⨀ m))
a2 = f-1(rleft (v1* ⨀ m))

a1 ⨀ a2



Factorization



Factorization is central to perception and cognition

offers a complete description.)
Luminance, illuminance, and reflectance, are physical

quantities that can be measured by physical devices. There
are also two subjective variables that must be discussed.

Lightness is defined as the perceived reflectance of a sur-
face. It represents the visual system’s attempt to extract
reflectance based on the luminances in the scene. 

Brightness is defined as the perceived intensity of light
coming from the image itself, rather than any property of the
portrayed scene. Brightness is sometimes defined as per-
ceived luminance. 

These terms may be understood by reference to figure 24.7.
The block is made of a 2x2 set of cubes, each colored either
light or dark gray. We call this the “checker- b l o c k . ”
Illumination comes from an oblique angle, lighting different
faces differently. The luminance image can be considered to
be the product of two other images: the reflectance image
and the illuminance image, shown below. These underlying
images are termed intrinsic images in machine vision
(Barrow and Tenenbaum, 1978). Intrinsic image decomposi-
tions have been proposed for understanding lightness per-
ception (Arend, 1994; Adelson and Pentland, 1996)

Patches p and q have the same reflectance, but different
luminances. Patches q and r have different reflectances and
d i fferent luminances; they share the same illuminance.
Patches p and r happen to have the same luminance, because
the lower reflectance of p is counterbalanced by its higher

illuminance. 
Faces p and q appear to be painted with the same gray,

and thus they have the same lightness. However, it is clear
that p has more luminance than q in the image, and so the
patches differ in brightness. Patches p and r differ in both
lightness and brightness.

The problem of lightness constancy

From a physical point of view, the problem of lightness con-
stancy is as follows. An illuminance image, E(x,y), and a
reflectance image, R(x,y), are multiplied to produce a lumi-
nance image, L(x,y):

An observer is given L at each pixel, and attempts to
determine the two numbers E and R that were multiplied to
make it. Unfortunately, unmultiplying two numbers is
impossible. If E(x,y) and R(x,y) are arbitrary functions, then
for any E(x,y) there exists an R(x,y) that produces the
observed image. The problem appears impossible, but
humans do it pretty well. This must mean that illuminance
and reflectance images are not arbitrary functions. They are
constrained by statistical properties of the world, as pro-
posed by Land and McCann.

Note that Land and McCann’s constraints fail when
applied to the checker-block image. Figure 24.8(a) shows
two light-dark edges. They are exactly the same in the
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FIGURE 24.6  Variants on the Koffka ring. (a) The ring appears about
uniform. (b) When split, the two half-rings appear distinctly differ-
ent. (c) When shifted, the two half-rings appear quite different. FIGURE 24.7  The “checker-block” and its analysis into two intrinsic

images.

L(x,y) = E(x,y)R(x,y).
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Resonator Networks for factorizing HD vectors
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Problem:  You are given b, what are x, y and z?

Solution:  Resonate
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that can be solved reliably.

3.2.1 Resonator Circuits have superior operational capacity

We estimated the operational capacity of Alternating Least Squares, Iterative Soft Thresh-
olding, Fast Iterative Soft Thresholding, Projected Gradient Descent, Multiplicative Weights,
and Map Seeking Circuits, in addition to the two variants of our algorithm. What is shown
in Figure 6 is the operational capacity estimated on several thousand random trials, where
we display Mmax as a function of N for both three-factor problems and four-factor prob-
lems. One can see that the operational capacity of Resonator Circuits is between

two and three orders of magnitude greater than the operational capacity of the

other algorithms. Each of the benchmark algorithms has a slightly different operational
capacity (due to the fact that they each have different dynamics and will, in general, find
different solutions) but they are all similarly poor compared to the two variants of Resonator
Circuit.

As N increases to 3,000 and beyond, the performance difference between the two variants
of the Resonator Circuit starts to disappear, ostensibly due to the fact that Xf

�
X

T
f Xf

��1
X

T
f ⇡

XfX
T
f . The two variants are different in general (and we have found that when the codevec-

tors have significant similarities the Ordinary Least Squares variant performs better), but
the simulations in this paper do not particularly highlight the difference between the two.

Except for Alternating Least Squares, each of the benchmark algorithms has at least
one hyperperparameter that must be chosen – we simulated many thousand random trials
with a variety of hyperparameter settings for each algorithm and chose the hyperparameter
values that performed best on average. We list these values for each of the algorithms in
the Appendix. Each of the benchmark algorithms converge on their own and the tunable
stepsizes make a comparison of the number of iterations non-standardized, so we did not
impose a maximum number of iterations on these algorithms – the points shown represent
the best the benchmark algorithms can do, even when not restricted to a maximum number
of iterations. In fact, we experimented with many algorithms beyond those shown here in an
attempt to find a competitive alternative to Resonator Circuits, but were unable to do so.

18

Combinatorial capacity 
exceeds competing 

methods by two orders of 
magnitude

Frady EP, Kent S, Olshausen BA & Sommer FT (2020)  Resonator Networks for factoring distributed 
representations of data structures.  Neural Computation (in press)  https://arxiv.org/abs/2007.03748

Kent S, Frady EP, Sommer FT & Olshausen BA (2020)  Resonator Networks outperform optimization methods at 
solving high-dimensional vector factorization.  Neural Computation (in press)  https://arxiv.org/abs/1906.11684
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Figure 3: Generating a vector symbolic encoding of a visual scene

The example scene (Fig. 3) contains a cyan 7 at position top, left, a pink
3 at position top, right, and a red 8 at position middle, left. While this is
a highly simplified type of visual scene, it illustrates the combinatorial challenge
of representing and interpreting visual scenes. There are only 23 distinct atomic
parameters (10 for digit identity, 7 for color, 3 each for vertical and horizontal
position) and yet these combine to describe 10 ⇥ 7 ⇥ 3 ⇥ 3 = 630 individual
objects, and 630 + 6302 + 6303 = 250,444,530 possible scenes with 1, 2, or 3
objects. This number of combinations still does not include the variability among
exemplars for each shape, of which there are 50, 000 in the MNIST dataset.

The VSA approach to represent a scene like this is to form the conjunction
of each of the four factors with the binding operation, and superposing multiple
objects together to form a single high-dimensional vector that constitutes a dis-
tributed representation of the entire scene. This encoding is depicted in Figure
3, and like in the previous examples, the encoding provides a flexible data struc-
ture such that aspects of the scene can be individually queried. One attractive
property of this representation is that its dimensionality does not grow with the
number of objects in the scene, nor does it impose any particular ordering on the
objects.

To convert a new input image into a structured VSA representation, one chal-
lenge is to deal with the variability and correlations between the shapes of dif-
ferent hand-written digits. VSAs are designed for symbolic processing in neural
networks. However, when dealing with sensor data streams one must solve the
encoding problem, which is how to map the input data into the symbolic space
(Räsänen, 2015; Kleyko et al., 2018). We train a simple feed-forward neural net-
work with two fully-connected hidden layers to produce the desired VSA encoding
of the scene. The feed-forward network was trained on a (uniformly) random sam-
ple of these scenes, with the MNIST digits chosen from an exclusive training set.
A generative model creates the image of the scene from a random sample of factors
for each object. From the chosen factors, the VSA representation of the scene is
also generated through binding of VSA vectors for each factor and superposition
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Figure 4: Scene vector s is fed into a resonator network which decodes each object in
the scene. The model hones in on one object at a time, which is then explained away by
subtracting the resonator network’s converged state from the scene vector. The network
is reset and provided with this new input vector. It then converges to another solution,
which describes a different object in the scene.

for each object (Fig. 3). Supervised learning via back-propagation is used to train
the network to output the VSA representation of the entire scene from the image
pixels as input.

The resonator network can then be used to parse the output of the feed-forward
network to identify each object and its properties. The vectors ĉ(t), d̂(t), ĥ(t)
and v̂(t) denote the guesses for each factor: color, digit, horizontal- and vertical-
location, respectively. The scene can then be decoded by iterating through the
resonator network:

ĉ(t+ 1) = g
⇣
CC

>
⇣
s� d̂(t)� v̂(t)� ĥ(t)

⌘⌘

d̂(t+ 1) = g
⇣
DD

>
⇣
s� ĉ(t)� v̂(t)� ĥ(t)

⌘⌘

v̂(t+ 1) = g
⇣
VV

>
⇣
s� d̂(t)� ĉ(t)� ĥ(t)

⌘⌘

ĥ(t+ 1) = g
⇣
HH

>
⇣
s� d̂(t)� ĉ(t)� v̂(t)

⌘⌘

(7)

The encoding of visual scenes described superposes a composite vector for each
object, each of which individually is a valid solution to the factorization of the
scene. When we present the scene vector s to a resonator network, it automat-
ically hones in on a particular one of these composites, finding its factors. For
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Representing position with complex-valued vectors

• Base vector:

• Value  is represented as:x

Frady EP, Kleyko D, Kymn CJ, Olshausen BA, Sommer FT (2022).  Computing on Functions Using Randomized Vector 
Representations (in brief). In: Proceedings of the 2022 Annual Neuro-Inspired Computational Elements Conference.

Frady EP, Kleyko D, Kymn CJ, Olshausen BA, Sommer FT (2021).  Computing on Functions Using Randomized Vector 
Representations.  arXiv:2109.03429



Encoding real numbers via fractional binding

25
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Key idea 1: Represent any number , by binding z 
-times with itself: 

Key idea 2: Extend this definition to support 
encoding of non-integer  values 

x
x

x

Encoding real numbers via fractional binding
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Similarity kernel
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Vector multiplication corresponds to variable addition
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z(x)� z(y) = z(x+ y)

Representing position with complex-valued vectors



Representing sets or functions

• A set of values  may be represented in 
superposition:

{x1 x2 … xn}

• A probability distribution over values may be represented as 
a weighted superposition:
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