Manifold learning

Distribution of 3x3 pixel image patches drawn from natural scenes forms a Klein bottle (Carlsson et al., 2008)

Nonlinear Dimensionality Reduction by Locally Linear Embedding

Sam T. Roweis¹ and Lawrence K. Saul²

A Global Geometric Framework for Nonlinear Dimensionality Reduction

Joshua B. Tenenbaum,^{1*} Vin de Silva,² John C. Langford³

Science, 22 Dec. 2000

Local Linear Embedding (LLE)

$$\varepsilon(W) = \sum_{i} \left| \vec{X}_{i} - \Sigma_{j} W_{ij} \vec{X}_{j} \right|^{2}$$
$$\Phi(Y) = \sum_{i} \left| \vec{Y}_{i} - \Sigma_{j} W_{ij} \vec{Y}_{j} \right|^{2}$$

Manifold of facial pose and lighting

Hand-written digits

Local Linear Landmarks (LLL) (Vladymyrov & Carreira-Perpinán, 2013)

Basis functions learned by sparse coding form a locally linear approximation to the manifold of natural images

Unsupervised learning principles

- Linear Hebbian learning \rightarrow PCA
- Competitive Hebbian learning \rightarrow clustering
- Sparse coding \rightarrow feature learning
- Self-organizing map \rightarrow topographic maps
- Sparse manifold transform \rightarrow manifold learning
- Slow feature analysis \rightarrow invariance