
Manifold learning



A

A

A

AA



Distribution of 3x3 pixel image patches drawn
from natural scenes forms a Klein bottle

(Carlsson et al., 2008)





an absolute depth judgment with respect
to fixation, while fine stereopsis requires
the judgment of relative depth, i.e., com-
paring depth across space; (2) the partic-
ular coarse stereopsis task used requires
the monkey to discriminate a signal in
noise, while the fine task does not; (3)
the range of disparities is quite different.

Chowdhury and DeAngelis (2008) repli-
cate the finding that monkeys initially
trained on coarse stereopsis show im-
paired coarse depth discrimination when
muscimol is injected into MT. Remark-
ably, the same animals, after a second
round of training on fine stereopsis, are
unimpaired at either fine or coarse depth
discrimination by similar injections. More-
over, recordings in MT show that neuronal
responses are not altered by learning the
fine stereopsis task. Given the differences
between the tasks and the large number

of visual areas containing disparity-sensi-
tive neurons, one might not be surprised
to find different areas involved in the two
tasks. But it is quite unexpected that
merely learning one task would change
the contribution of areas previously in-
volved in the other. Chowdhury and
DeAngelis conclude that the change in
outcome reflects a change in neural de-
coding—decision centers that decode
signals to render judgments of depth,
finding MT signals unreliable for the fine
stereopsis task, switch their inputs to se-
lect some better source of disparity infor-
mation. Candidates include ventral
stream areas V4 or IT, where relative dis-
parity signals have been reported (Orban,
2008) and which contain far more neurons
than MT (Figure 1). When challenged
afresh with the coarse depth task, these
same decision centers may now find that

their new sources of information can solve
the coarse task as well as the old ones.
MT is no longer critical.

Perhaps in other monkeys MT would
never have a role in stereopsis at all.
ChowdhuryandDeAngelis’monkeyswere
trained simultaneously or previously to
discriminate motion, which engages MT.
Faced with a qualitatively similar random
dot stimulus, it might make sense for the
cortex to try to solve the new problem of
stereopsis with existing decoding strate-
gies. But if the animals were initially trained
on a different task—say, a texture discrim-
ination—MT might never be engaged at
all. It would also be interesting to see the
outcome if monkeys were trained on depth
tasks that were less different and could
be interleaved in the same sessions, for
example noise-limited depth judgments
using similar absolute or relative disparity

Figure 1. A Scaled Representation of the Cortical Visual Areas of the Macaque
Each colored rectangle represents a visual area, for the most part following the names and definitions used by Felleman and Van Essen (1991). The gray bands
connecting the areas represent the connections between them. Areas above the equator of the figure (reds, browns) belong to the dorsal stream. Areas below the
equator (blues, greens) belong to the ventral stream. Following Lennie (1998), each area is drawn with a size proportional to its cortical surface area, and the lines
connecting the areas each have a thickness proportional to the estimated number of fibers in the connection. The estimate is derived by assuming that each area
has a number of output fibers proportional to its surface area and that these fibers are divided among the target areas in proportion to their surface areas. The
connection strengths represented are therefore not derived from quantitative anatomy and furthermore represent only feedforward pathways, though most or all
of the pathways shown are bidirectional. The original version of this figure was prepared in 1998 by John Maunsell.
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along the cortical stages), but rapidly (i.e.<100 ms from V1
to IT, !20 ms per cortical stage). But what is this trans-
formation? That is, how does the ventral stream do this?

How does the ventral visual stream untangle object
manifolds?
We do not yet know the answer to this question. Hubel and
Wiesel’s [30] observation that visual cortex complex cells
can pool over simple cells to build tolerance to identity-
preserving transformations (especially position) has been
computationally implemented and extended to higher cor-
tical levels, including the IT [1,12,33]. However, beyond
this early insight, systems neuroscience has not provided a
breakthrough.

Some neurophysiological effort has focused on
characterizing IT neuronal tolerance to identity-preser-
ving transformations (e.g. Refs [31,32,34–38]), which is
central to object tangling. However, much more effort
has been aimed at understanding the effects of behavioral
states, for example, task and attention (e.g. Refs [39–45]).
Although important, these studies sidestep the untangling
problem, because such effects can be measured without
understanding the format of representation.

Substantial effort has also recently been aimed at
understanding the features or shape dimensions of visual
images to which V4 and IT neurons are most sensitive (e.g.
Refs [25,46–51]). Such studies are important for defining
the feature complexity of ventral stream neuronal tuning,
which is related to manifold untangling (because ‘object’ or

feature conjunctionmanifolds arewhatmust be untangled).
Ongoing, ambitious approaches to understanding the res-
ponse functions of individual neurons (i.e. the non-linear
operatorson thevisual image)would, if successful, lead toan
implicit understanding of object representation. However,
given the enormity of this task, it is not surprising that
progress has been slow.

The object untangling perspective leads to a
complementary but qualitatively different approach. First,
it shifts thinking away from single IT neuron response
properties [17] – which is akin to studying feathers to
understand flight [22] – toward thinking about ideal popu-
lation representations, with the computational goals of the
task clearly considered (see Figure 3b versus 3c) [52].
Second, it suggests the immediate goal of determining
how well each ventral stream neuronal representation
has untangled object manifolds and shows how to quanti-
tatively measure untangling (see linear classifiers above,
Figure 1). Third, this perspective points to better ways to
compare computational models to neuronal data: whereas
model predictions at the single-unit level are typically
grossly under-constrained, population-level comparisons
might be more meaningful (e.g. the predicted degree of
untangling at each ventral stream stage). Fourth, it sugg-
ests a clear focus on the causes of tangling – identity-
preserving transformations – rather than the continuing
primary focus on ‘shape’ or ‘features’. Indeed, because we
do not understand the dimensions of ‘shape’, we speculate
that computational approaches that focus on building

Figure 3. Untangling object manifolds along the ventral visual stream. As visual information progresses through the ventral visual pathway, it is progressively re-
represented in each visual area and becomes better and better at directly supporting object recognition. (a) A population of 500 V1 neurons was simulated as a bank of
Gabor filters with firing thresholds. Display axes in this 500-dimensional population space were chosen to maximally separate two face stimuli undergoing a range of
identity-preserving transformations (pose, size, position and lighting direction), as in Figure 1. Manifolds are shown for the two objects (red and blue) undergoing two-axis
pose variation (azimuth and elevation). As with the retina-like space shown in Figure 1c, object manifolds corresponding to the two objects are hopelessly tangled together.
Below, the responses of an example single unit are shown in response to the two faces undergoing one axis of pose variation. (b) By contrast, a population of simulated IT
neurons gives rise to object manifolds that are easily separated. 500 IT neurons were simulated with broad (but not flat) unimodal Gaussian tuning with respect to identity-
preserving transformations and with varying levels of preference for one or the other face, analogous to what is observed in single unit recording in IT. In addition to being
able to separate object manifolds corresponding to different identities, such a representation also allows one to recover information about object pose. The lines going
through the two manifolds show that the manifolds are coordinated – they are lined up in such a way that multiple orthogonal attributes of the object can be extracted using
the same representation. It is important to note that, in contrast to the V1 simulation, we do not yet know how to generate single unit responses like this from real images.
(c) A textbook idealized IT representation also produces object manifolds that are easy to separate from one another in terms of identity. Here, IT neurons were simulated
with idealized, perfectly invariant receptive fields. However, although this representation may be good for recovering identity information, it ‘collapses’ all other information
about the images.
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Nonlinear Dimensionality
Reduction by

Locally Linear Embedding
Sam T. Roweis1 and Lawrence K. Saul2

Many areas of science depend on exploratory data analysis and visualization.
The need to analyze large amounts of multivariate data raises the fundamental
problem of dimensionality reduction: how to discover compact representations
of high-dimensional data. Here, we introduce locally linear embedding (LLE), an
unsupervised learning algorithm that computes low-dimensional, neighbor-
hood-preserving embeddings of high-dimensional inputs. Unlike clustering
methods for local dimensionality reduction, LLE maps its inputs into a single
global coordinate system of lower dimensionality, and its optimizations do not
involve local minima. By exploiting the local symmetries of linear reconstruc-
tions, LLE is able to learn the global structure of nonlinear manifolds, such as
those generated by images of faces or documents of text.

How do we judge similarity? Our mental
representations of the world are formed by
processing large numbers of sensory in-
puts—including, for example, the pixel in-
tensities of images, the power spectra of
sounds, and the joint angles of articulated
bodies. While complex stimuli of this form can
be represented by points in a high-dimensional
vector space, they typically have a much more
compact description. Coherent structure in the
world leads to strong correlations between in-
puts (such as between neighboring pixels in
images), generating observations that lie on or
close to a smooth low-dimensional manifold.
To compare and classify such observations—in
effect, to reason about the world—depends
crucially on modeling the nonlinear geometry
of these low-dimensional manifolds.

Scientists interested in exploratory analysis
or visualization of multivariate data (1) face a
similar problem in dimensionality reduction.
The problem, as illustrated in Fig. 1, involves
mapping high-dimensional inputs into a low-
dimensional “description” space with as many

coordinates as observed modes of variability.
Previous approaches to this problem, based on
multidimensional scaling (MDS) (2), have
computed embeddings that attempt to preserve
pairwise distances [or generalized disparities
(3)] between data points; these distances are
measured along straight lines or, in more so-
phisticated usages of MDS such as Isomap (4),

along shortest paths confined to the manifold of
observed inputs. Here, we take a different ap-
proach, called locally linear embedding (LLE),
that eliminates the need to estimate pairwise
distances between widely separated data points.
Unlike previous methods, LLE recovers global
nonlinear structure from locally linear fits.

The LLE algorithm, summarized in Fig.
2, is based on simple geometric intuitions.
Suppose the data consist of N real-valued
vectors !Xi, each of dimensionality D, sam-
pled from some underlying manifold. Pro-
vided there is sufficient data (such that the
manifold is well-sampled), we expect each
data point and its neighbors to lie on or
close to a locally linear patch of the mani-
fold. We characterize the local geometry of
these patches by linear coefficients that
reconstruct each data point from its neigh-
bors. Reconstruction errors are measured
by the cost function

ε"W # ! !
i

" !Xi$%jWij
!Xj" 2

(1)

which adds up the squared distances between
all the data points and their reconstructions. The
weights Wij summarize the contribution of the
jth data point to the ith reconstruction. To com-
pute the weights Wij, we minimize the cost
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Fig. 1. The problem of nonlinear dimensionality reduction, as illustrated (10) for three-dimensional
data (B) sampled from a two-dimensional manifold (A). An unsupervised learning algorithm must
discover the global internal coordinates of the manifold without signals that explicitly indicate how
the data should be embedded in two dimensions. The color coding illustrates the neighborhood-
preserving mapping discovered by LLE; black outlines in (B) and (C) show the neighborhood of a
single point. Unlike LLE, projections of the data by principal component analysis (PCA) (28) or
classical MDS (2) map faraway data points to nearby points in the plane, failing to identify the
underlying structure of the manifold. Note that mixture models for local dimensionality reduction
(29), which cluster the data and perform PCA within each cluster, do not address the problem
considered here: namely, how to map high-dimensional data into a single global coordinate system
of lower dimensionality.
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function subject to two constraints: first, that
each data point !Xi is reconstructed only from
its neighbors (5), enforcing Wij ! 0 if !Xj does

not belong to the set of neighbors of !Xi;
second, that the rows of the weight matrix
sum to one: "jWij ! 1. The optimal weights

Wij subject to these constraints (6) are found
by solving a least-squares problem (7).

The constrained weights that minimize
these reconstruction errors obey an important
symmetry: for any particular data point, they
are invariant to rotations, rescalings, and
translations of that data point and its neigh-
bors. By symmetry, it follows that the recon-
struction weights characterize intrinsic geo-
metric properties of each neighborhood, as
opposed to properties that depend on a par-
ticular frame of reference (8). Note that the
invariance to translations is specifically en-
forced by the sum-to-one constraint on the
rows of the weight matrix.

Suppose the data lie on or near a smooth
nonlinear manifold of lower dimensionality d
## D. To a good approximation then, there
exists a linear mapping—consisting of a
translation, rotation, and rescaling—that
maps the high-dimensional coordinates of
each neighborhood to global internal coordi-
nates on the manifold. By design, the recon-
struction weights Wij reflect intrinsic geomet-
ric properties of the data that are invariant to
exactly such transformations. We therefore
expect their characterization of local geome-
try in the original data space to be equally
valid for local patches on the manifold. In
particular, the same weights Wij that recon-
struct the ith data point in D dimensions
should also reconstruct its embedded mani-
fold coordinates in d dimensions.

LLE constructs a neighborhood-preserving
mapping based on the above idea. In the final
step of the algorithm, each high-dimensional
observation !Xi is mapped to a low-dimensional
vector !Yi representing global internal coordi-
nates on the manifold. This is done by choosing
d-dimensional coordinates !Yi to minimize the
embedding cost function

$%Y & ! !
i

" !Yi " "jWij
!Yj" 2

(2)

This cost function, like the previous one, is
based on locally linear reconstruction errors,
but here we fix the weights Wij while opti-
mizing the coordinates !Yi. The embedding
cost in Eq. 2 defines a quadratic form in the
vectors !Yi. Subject to constraints that make
the problem well-posed, it can be minimized
by solving a sparse N ' N eigenvalue prob-
lem (9), whose bottom d nonzero eigenvec-
tors provide an ordered set of orthogonal
coordinates centered on the origin.

Implementation of the algorithm is
straightforward. In our experiments, data
points were reconstructed from their K near-
est neighbors, as measured by Euclidean dis-
tance or normalized dot products. For such
implementations of LLE, the algorithm has
only one free parameter: the number of
neighbors, K. Once neighbors are chosen, the
optimal weights Wij and coordinates !Yi are

Fig. 2. Steps of locally lin-
ear embedding: (1) Assign
neighbors to each data
point !Xi (for example by
using the K nearest neigh-
bors). (2) Compute the
weights Wij that best lin-
early reconstruct !Xi from
its neighbors, solving the
constrained least-squares
problem in Eq. 1. (3) Com-
pute the low-dimensional
embedding vectors !Yi best
reconstructed by Wij, mini-
mizing Eq. 2 by finding the
smallest eigenmodes of
the sparse symmetric ma-
trix in Eq. 3. Although the
weights Wij and vectors Yi
are computed by methods
in linear algebra, the con-
straint that points are only
reconstructed from neigh-
bors can result in highly
nonlinear embeddings.

Fig. 3. Images of faces (11) mapped into the embedding space described by the first two
coordinates of LLE. Representative faces are shown next to circled points in different parts of the
space. The bottom images correspond to points along the top-right path (linked by solid line),
illustrating one particular mode of variability in pose and expression.
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Manifold of facial pose and lighting



Hand-written digits



Local Linear Landmarks (LLL)
(Vladymyrov & Carreira-Perpinán, 2013)
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local linear approximation
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Basis functions learned by sparse coding form a locally 
linear approximation to the manifold of natural images



<latexit sha1_base64="+MhtjUEBF4EvEIKkV5zQxOVF1Ms=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOZpMxszPLTK8QQv7BiwdFvPo/3vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41rc4M4w2mpTbtiFouheINFCh5OzWcJpHkrWh0O/NbT9xYodUDjlMeJnSgRCwYRSc1u/Wh6IleueJX/TnIKglyUoEc9V75q9vXLEu4QiaptZ3ATzGcUIOCST4tdTPLU8pGdMA7jiqacBtO5tdOyZlT+iTWxpVCMld/T0xoYu04iVxnQnFol72Z+J/XyTC+DidCpRlyxRaL4kwS1GT2OukLwxnKsSOUGeFuJWxIDWXoAiq5EILll1dJ86Ia+NXg/rJSu8njKMIJnMI5BHAFNbiDOjSAwSM8wyu8edp78d69j0VrwctnjuEPvM8fXyaO+w==</latexit>

<latexit sha1_base64="p7ZYZP6wtF77Qa9CGzzXARd0jwo=">AAACIHicbVDLSsNAFJ3UV62vqEs3g0WoKCURoW6EohuXFewDmlAm00kzdDIJMxOxhH6KG3/FjQtFdKdf46RNQVsPDJw5517uvceLGZXKsr6MwtLyyupacb20sbm1vWPu7rVklAhMmjhikeh4SBJGOWkqqhjpxIKg0GOk7Q2vM799T4SkEb9To5i4IRpw6lOMlJZ6Zs0JkQo8P30YV9TxpdMIqHM60xzE4gBlBjyBM5Fn/1LPLFtVawK4SOyclEGORs/8dPoRTkLCFWZIyq5txcpNkVAUMzIuOYkkMcJDNCBdTTkKiXTTyYFjeKSVPvQjoR9XcKL+7khRKOUo9HRltqWc9zLxP6+bKP/CTSmPE0U4ng7yEwZVBLO0YJ8KghUbaYKwoHpXiAMkEFY60ywEe/7kRdI6q9qa356X61d5HEVwAA5BBdigBurgBjRAE2DwCJ7BK3gznowX4934mJYWjLxnH/yB8f0DZ0GicQ==</latexit>

<latexit sha1_base64="pE8ud3SEuxbzzMRpZAyj9pZs/U8=">AAAB9XicbVDLSgNBEOyNrxhfUY9eBoMQL2FXBD0GvXiMYB6QrGF2MpsMmX0w06uGJf/hxYMiXv0Xb/6Ns8keNLFgoKjqpmvKi6XQaNvfVmFldW19o7hZ2tre2d0r7x+0dJQoxpsskpHqeFRzKULeRIGSd2LFaeBJ3vbG15nffuBKiyi8w0nM3YAOQ+ELRtFI972A4sjz06dpFU9L/XLFrtkzkGXi5KQCORr98ldvELEk4CEySbXuOnaMbkoVCib5tNRLNI8pG9Mh7xoa0oBrN52lnpITowyIHynzQiQz9fdGSgOtJ4FnJrOUetHLxP+8boL+pZuKME6Qh2x+yE8kwYhkFZCBUJyhnBhCmRImK2EjqihDU1RWgrP45WXSOqs5ht+eV+pXeR1FOIJjqIIDF1CHG2hAExgoeIZXeLMerRfr3fqYjxasfOcQ/sD6/AHdepIT</latexit>

<latexit sha1_base64="gGbjLboR5bSrj/fVvzCTT1F7C9A=">AAACE3icbZDLSsNAFIYn9VbrLerSzWARqkhJRNCNUHTjsoK9QBPKZDpph04uzJwIJfQd3Pgqblwo4taNO9/GSRpEqz8M/HznHOac34sFV2BZn0ZpYXFpeaW8Wllb39jcMrd32ipKJGUtGolIdj2imOAhawEHwbqxZCTwBOt446us3rljUvEovIVJzNyADEPuc0pAo7555AQERp6fOh4DMq3BIb7ATef4GxMRj3Je6ZtVq27lwn+NXZgqKtTsmx/OIKJJwEKggijVs60Y3JRI4FSwacVJFIsJHZMh62kbkoApN81vmuIDTQbYj6R+IeCc/pxISaDUJPB0Z7aqmq9l8L9aLwH/3E15GCfAQjr7yE8EhghnAeEBl4yCmGhDqOR6V0xHRBIKOsYsBHv+5L+mfVK3tb85rTYuizjKaA/toxqy0RlqoGvURC1E0T16RM/oxXgwnoxX423WWjKKmV30S8b7F0gBnR4=</latexit>

<latexit sha1_base64="hVpFNAZEZs1JnfaDW4u8HKykayo=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBHqpiQi6LLoxmUF+4AmlJvppB06mYSZiRBC/RU3LhRx64e482+ctFlo64GBwzn3cs+cIOFMacf5ttbWNza3tis71d29/YND++i4q+JUEtohMY9lPwBFORO0o5nmtJ9IClHAaS+Y3hZ+75FKxWLxoLOE+hGMBQsZAW2koV3zItCTIMw94MkEZg19Xh3adafpzIFXiVuSOirRHtpf3igmaUSFJhyUGrhOov0cpGaE01nVSxVNgExhTAeGCoio8vN5+Bk+M8oIh7E0T2g8V39v5BAplUWBmSyiqmWvEP/zBqkOr/2ciSTVVJDFoTDlWMe4aAKPmKRE88wQIJKZrJhMQALRpq+iBHf5y6uke9F0Db+/rLduyjoq6ASdogZy0RVqoTvURh1EUIae0St6s56sF+vd+liMrlnlTg39gfX5AxWDlGA=</latexit>

<latexit sha1_base64="NCo/reiwdP/2JoqbHWMf/bK9w30=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpodEXfbfq1bw5yCrxC1KFAo2++9UbJCyLuUImqTFd30sxyKlGwSSfVnqZ4SllYzrkXUsVjbkJ8vmpU3JmlQGJEm1LIZmrvydyGhsziUPbGVMcmWVvJv7ndTOMroNcqDRDrthiUZRJggmZ/U0GQnOGcmIJZVrYWwkbUU0Z2nQqNgR/+eVV0rqo+V7Nv7+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c6L86787FoLTnFzDH8gfP5AyOgjbA=</latexit>



Sparse Manifold Transform
(Yubei Chen, Ph.D. thesis; Neurips 2018)

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

The Sparse Manifold Transform
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Figure 1. Dictionary elements learned from natural signals with sparse coding may be conceptualized as landmarks on a smooth manifold.
A) A function defined on R2 (e.g. a gray-scale natural image) and one element from its reconstruction are represented by the black and
red curves, respectively. B) Inputs are encoded using sparse inference with a learned dictionary, �, resulting in a k-sparse vector ↵, which
is defined on a discrete set {0, · · · , N}. C) For a given input signal, ↵ can be viewed as a discrete k-sparse approximation to the true
k0-sparse function, ↵TRUE, defined on the smooth manifold, where k > k0 (k = 8 and k0 = 3 in this example). Each dictionary element in
� corresponds to a landmark on the smooth manifold, M . Red arrows indicate the interpolated k0-sparse function, while black arrows
indicate elements of � associated with non-zero values in the k-sparse vector ↵. D) Since � only contains a finite number of landmarks,
we must interpolate (i.e. “steer”) among a few dictionary elements to reconstruct each of the true image components. Only one out of k0

components is shown in this subfigure, but all of them are needed to approximate the input signal.

The similarity between equation (1) and equation (2) pro-
vides an intuition to bring sparse coding and manifold learn-
ing closer together. However, LLL still has a difficulty in
that it requires a nearest neighbor search and it is not clear
how to use a KNN solver efficiently when the underlying sig-
nal is k-sparse. We posit that temporal information provides
a solution.

The general idea of imposing a ‘slowness prior’ was initially
proposed by (Földiák, 1991) and (Wiskott & Sejnowski,
2002) to extract invariant or slowly varying features from
temporal sequences rather than using static order-less data
points. While it is still a common practice in both sparse
coding and manifold learning to collect data in an order-less
fashion, many other works have demonstrated that temporal
information can be used to build better signal representa-
tions (van Hateren & Ruderman, 1998; Olshausen, 2003;
Lee et al., 2003; Hyvärinen et al., 2003; Berkes et al., 2009;
Cadieu & Olshausen, 2012). Here, temporal adjacency can
be used to determine the nearest neighbors in the embedding
space (eq. (3)) by specifically minimizing the second order
temporal derivative, implying that video sequences form
linear trajectories in the manifold domain. This is a varia-
tion of ‘slowness’ that makes the connection to manifold
learning more explicit.

In the next section, we mathematically formulate the sparse

manifold transform. In section 3, we generalize classical
topologically-equivalent manifold embedding to functional
manifold embedding and show the approximate invertibil-
ity of the transform. In section 4, the affinity groups and
dictionary topology are discussed. In section 5 we present
a stacked SMT network to learn a hierarchical representa-
tion and we present a representation visualization method.
Finally, we discuss the general principles of the SMT in
section 6 and its broader connections.

2. The Sparse Manifold Transform
The seminal works in deformable filter theory (Freeman
et al., 1991; Simoncelli et al., 1992; Simoncelli & Freeman,
1995; Perona, 1995) demonstrate how to use a relatively
small dictionary to “steer” a kernel by linearly combining
the elements in the dictionary. A set of kernels is steerable
if a property, such as orientation or position, can be inter-
polated by computing a linear combination of some subset.
In this paper, rather than using a small dictionary, we use
a 10-20 times overcomplete dictionary with positive-only
sparse coefficients. Empirically, we find that at such an over-
completeness the interpolation behavior of the dictionary
is close to locally linear. Therefore, steering the elements
can be accomplished by local neighborhood interpolation.
This choice makes the relative geometry of the dictionary
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Unsupervised learning principles

• Linear Hebbian learning  →  PCA

• Competitive Hebbian learning → clustering

• Sparse coding → feature learning

• Self-organizing map → topographic maps

• Sparse manifold transform → manifold learning

• Slow feature analysis → invariance


