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an absolute depth judgment with respect
to fixation, while fine stereopsis requires
the judgment of relative depth, i.e., com-
paring depth across space; (2) the partic-
ular coarse stereopsis task used requires
the monkey to discriminate a signal in
noise, while the fine task does not; (3)
the range of disparities is quite different.

Chowdhury and DeAngelis (2008) repli-
cate the finding that monkeys initially
trained on coarse stereopsis show im-
paired coarse depth discrimination when
muscimol is injected into MT. Remark-
ably, the same animals, after a second
round of training on fine stereopsis, are
unimpaired at either fine or coarse depth
discrimination by similar injections. More-
over, recordings in MT show that neuronal
responses are not altered by learning the
fine stereopsis task. Given the differences
between the tasks and the large number

of visual areas containing disparity-sensi-
tive neurons, one might not be surprised
to find different areas involved in the two
tasks. But it is quite unexpected that
merely learning one task would change
the contribution of areas previously in-
volved in the other. Chowdhury and
DeAngelis conclude that the change in
outcome reflects a change in neural de-
coding—decision centers that decode
signals to render judgments of depth,
finding MT signals unreliable for the fine
stereopsis task, switch their inputs to se-
lect some better source of disparity infor-
mation. Candidates include ventral
stream areas V4 or IT, where relative dis-
parity signals have been reported (Orban,
2008) and which contain far more neurons
than MT (Figure 1). When challenged
afresh with the coarse depth task, these
same decision centers may now find that

their new sources of information can solve
the coarse task as well as the old ones.
MT is no longer critical.

Perhaps in other monkeys MT would
never have a role in stereopsis at all.
ChowdhuryandDeAngelis’monkeyswere
trained simultaneously or previously to
discriminate motion, which engages MT.
Faced with a qualitatively similar random
dot stimulus, it might make sense for the
cortex to try to solve the new problem of
stereopsis with existing decoding strate-
gies. But if the animals were initially trained
on a different task—say, a texture discrim-
ination—MT might never be engaged at
all. It would also be interesting to see the
outcome if monkeys were trained on depth
tasks that were less different and could
be interleaved in the same sessions, for
example noise-limited depth judgments
using similar absolute or relative disparity

Figure 1. A Scaled Representation of the Cortical Visual Areas of the Macaque
Each colored rectangle represents a visual area, for the most part following the names and definitions used by Felleman and Van Essen (1991). The gray bands
connecting the areas represent the connections between them. Areas above the equator of the figure (reds, browns) belong to the dorsal stream. Areas below the
equator (blues, greens) belong to the ventral stream. Following Lennie (1998), each area is drawn with a size proportional to its cortical surface area, and the lines
connecting the areas each have a thickness proportional to the estimated number of fibers in the connection. The estimate is derived by assuming that each area
has a number of output fibers proportional to its surface area and that these fibers are divided among the target areas in proportion to their surface areas. The
connection strengths represented are therefore not derived from quantitative anatomy and furthermore represent only feedforward pathways, though most or all
of the pathways shown are bidirectional. The original version of this figure was prepared in 1998 by John Maunsell.
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(Douglas and Martin, 2007)

Recurrent neuronal circuits in the neocortex
(Douglas & Martin 2007)

(Binzegger, Douglas & Martin, 2004)
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Outer-product (Hebb) rule
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Capacity vs. error rate



Hopfield network with analog units



Lyapunov function



From Lyapunov function to dynamics

Thus
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number of activity nodes increased, but their density remained
constant (t(28) ¼ 1.2, P . 0.20; 29 cells from 3 rats), suggesting
that grids may potentially have infinite size (Supplementary Fig. S3).

Grid cells are topographically organized
Grid cells in the dMEC showed a striking topographic organization.
Grids recorded at the same electrode location shared a number of
metric properties, including spacing, orientation (direction) and
field size (Fig. 2). Spacing was expressed for each grid as the distance
from the central peak to the vertices of the inner hexagon in the
autocorrelogram (the median of the six distances). While spacing
varied by more than 30 cm in the entire cell population, the s.d.
among cells recorded on the same tetrode was only 2.1 cm (mean
across 12 sets of simultaneously recorded cells, n ¼ 42). The orien-
tation of the grid was expressed in the autocorrelogram as the angle f
between a camera-defined reference line (0 degrees) and a vector to
the nearest vertex of the inner hexagon in the counterclockwise
direction (Fig. 2e inset). The entire range of orientations was

represented in the population as a whole (from 1 to 59 degrees),
but among cells recorded on the same tetrode, orientation varied
minimally (s.d. ¼ 1.8 degrees). The size of the individual fields was
estimated as the area covered by the central peak of the autocorrelo-
gram, using a threshold of r ¼ 0.2. Field sizes ranged from 326 to
709 cm2 in the population as a whole. The s.d. among cells recorded
at the same electrode location was 42 cm2.
Although spacing, orientation and field size were almost invariant

at individual recording locations, spacing and field size increased
with distance from the postrhinal border, resulting in more dispersed
fields at more ventral electrode positions. This pattern was observed
both within animals (Fig. 2a–e) and between animals (Fig. 2f–h;
Supplementary Fig. S4). Figure 2 shows the difference between grid
cells at two electrode locations, one near the postrhinal border and
one 560 mmdeeper, in a rat with a double dMEC implant tested in the
large circular enclosure. The spacing of the grid was consistently
denser at the dorsal position (Fig. 2e). In the dorsal cells, the spacing
ranged from 39.1 to 43.0 cm (14 cells recorded over 3 days). In the
more ventrally located cells, the spacing ranged from 48.1 to 52.2 cm
(5 cells recorded over 2 days). The increase in spacing at the ventral
position was accompanied by an increase in the size of the individual
fields (dorsal 353–583 cm2; ventral 511–637 cm2; t(17) ¼ 2.4,
P , 0.05). A similar topographic arrangement was revealed when
one set of tetrodes was lowered tangentially along the border of layers
II and III (yellow circles in Fig. 2b). Over a distance of 100 mm, the
spacing increased from between 41.9 and 45.9 cm (n ¼ 3) to between
44.9 and 49.7 cm (n ¼ 4). These results were replicated in two other
rats with double implants (17 cells) as well as in a larger sample of rats
running in a smaller square box (1m2; 11 rats, 57 cells; Fig. 2f–h and
Supplementary Fig. S4). In the latter group, the distance from the
postrhinal border correlated significantly with both the spacing of the
grid (r ¼ 0.82, degrees of freedom, d.f. ¼ 55, P , 0.001) and the size
of the individual fields (r ¼ 0.79, P , 0.001). The field size was
quadratically proportional to the spacing (r ¼ 0.75, P , 0.001).
Like spacing and field size, orientation of the grid varied between

electrode locations (Fig. 2 and Supplementary Fig. S4). In Fig. 2, the
angle with the camera-defined horizontal line was between 26.7 and
32.7 degrees at the recording location near the postrhinal border
(n ¼ 14) and between 19.7 and 22.1 degrees at the more ventral
location on the contralateral side (n ¼ 5) (Fig. 2e). However,
although the entire range of orientations was represented across
animals, we were unable to detect any systematic change from dorsal
to ventral in dMEC (r ¼ 20.13, P ¼ 0.30).
Although grids of neighbouring cells had similar spacing, field size

and orientation, their phases (the vertex locations) were apparently
not related. Collectively, grids from a small number of units recorded
simultaneously at the same electrode position filled up the entire
space of the recording arena (Fig. 2). Because neighbouring cells had
similar grid spacing and grid orientation, a slight phase shift in each
of the grids was sufficient to superimpose the vertices of the grids
almost completely (Fig. 3a). Cross-correlation of the rate maps of cell
pairs recorded simultaneously at the same electrode location yielded
a regular multi-peaked surface with a structure very similar to that of
each cell’s autocorrelogram, except that the peaks were offset from
the origin in most cases (Fig. 3b). Cross-correlation of cells recorded
at different locations (with different spacing and orientation) gave
cross-correlograms with more dispersed peaks and lower peak
amplitudes (Supplementary Fig. S5). Among the co-localized cells,
the average phase shift, expressed as the distance from the origin to
the nearest peak in the cross-correlogram, was evenly distributed,
extending from 0 to a maximum of 0.5 of the spacing of the
corresponding autocorrelograms, both in the group as a whole and
in individual recordings (Fig. 3c). The distribution of phase shifts did
not deviate significantly from uniformity (x(4) ¼ 0.84 with bins
corresponding to 20% of the maximally possible grid spacing) and
was not related to the distance from the postrhinal border (r ¼ 0.13,
d.f. ¼ 43, n.s.). These results suggest that the complete surface of the

Figure 1 | Firing fields of grid cells have a repetitive triangular structure.
a, Sagittal Nissl-stained section indicating the recording location (red dot) in
layer II of the dMEC. Red line indicates border to postrhinal cortex. b, Firing
fields of three simultaneously recorded cells at the dot in a during 30min of
running in a large circular enclosure. Cell names refer to tetrode (t) and cell
(c). Left, trajectory of the rat (black) with superimposed spike locations
(red). Middle, colour-coded rate map with the peak rate indicated. Red is
maximum, dark blue is zero. Right, spatial autocorrelation for each rate map
(see Supplementary Methods). The colour scale is from blue (r ¼ 21)
through green (r ¼ 0) to red (r ¼ 1). c, Box plot showing distribution of
angles f1, f2 and f3 between the central peak of the autocorrelogram and
the vertices of a hexagon defined by the nearest six peaks. The diagram shows
median angles (horizontal lines inside boxes), interquartile distances
(boxes), upper and lower limits, and outliers (horizontal lines). d, Discharge
maps (as in b) showing similar triangular structure in enclosures of different
size (left, large; middle, small; right, large).
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grid cells per session; 7.8% to 25.6% of total number of cells; Extended 
Data Fig. 2a–d, g, h). Each grid module cluster contained a mixture 
of nondirectional (‘pure’) grid cells and conjunctive grid × direction 
cells28, from 66 to 189 grid cells per module (total pure and conjunctive 
grid cells; Extended Data Fig. 2g). We initially limited our analyses to 
the subset of pure grid cells because (i) the expected toroidal topol-
ogy might be distorted by additional directional modulation; and (ii) 
detection of topology in conjunctive cells may require a larger number 
of cells than recorded here27.

To visually inspect the structure of the population activity of grid 
cells for signatures of toroidal topology, we constructed a three 
dimensional (3D) embedding of the n-dimensional population activ-
ity of a module of n = 149 pure grid cells (Fig. 1a). For this, we applied 
a two-stage dimensionality reduction procedure on the matrix of 
firing rates. First, to improve robustness to noise, we conducted a 

principal component analysis (PCA). We retained the first six prin-
cipal components, which explained a particularly large fraction of 
the variance for all grid modules in the OF condition (with a similar 
tendency seen during sleep; Extended Data Fig. 4a). Next, we applied 
uniform manifold approximation and projection (UMAP) to reduce 
the six principal components into a 3D visualization. This visualiza-
tion revealed a torus-like structure (Fig. 1b, Supplementary Video 1). 
Movement of the rat in the OF was accompanied by similarly continu-
ous movement of the population activity across the toroidal mani-
fold (Fig. 1b). When the activity of individual cells was plotted with 
reference to the 3D population representation, spikes for each cell 
were localized within a single patch of the population state space 
(Fig. 1c). The offsets between the firing locations of individual cells 
in the arena corresponded with the relative firing locations of the 
cells in the toroidal state space.
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Fig. 1 | Signatures of toroidal structure in the activity of a module of grid 
cells. a, Firing rates of 149 grid cells co-recorded from the same module and 
shown, in order of spatial information content, as a function of rat position in OF 
arena (rates colour-coded, max 0.2–35.0 Hz; rat ‘R’ day 1, module 2; Extended 
Data Fig. 2b). b, Nonlinear dimensionality reduction reveals torus-like structure 
in the population activity of a single grid module (same 149 cells; 3 different views 
of same point cloud). Each dot represents the population state at one time point 
(dots coloured by first principal component). Bold line shows a 5-s trajectory, 
demonstrating smooth movement over the toroidal manifold. Right, 
corresponding trajectory in OF. c, Toroidal positions of spikes from three grid 
cells from the module in a. Each panel shows the same 3D point cloud of 
population states as in b, with black dots indicating when the cell fired. Insets 
show: left: the cell’s 2D firing locations in OF (black dots on grey trajectory); 

middle: colour-coded firing rate map in OF (range 0 to max); right: colour-coded 
autocorrelogram of the rate map (range −1 to +1). Maximum rate and grid score 
(GS) are indicated. d, Same as in c (same cells) but with the rat running on an 
elevated, wheel-shaped track (‘wagon-wheel track’; WW). Note preserved 
toroidal field locations. e, f, Barcodes indicate toroidal topology of grid-cell 
population activity. Results of persistent cohomology analyses (30 longest bars 
in the first three dimensions: H0, H1 and H2) are shown for three grid modules 
from one rat (R1–R3 day 1, n = 93, 149 and 145 cells, respectively), in OF (e) and WW 
(f). Grey shading indicates longest lifetimes among 1,000 iterations in shuffled 
data (aligned to lower values of original bars). Arrows show four most prominent 
bars across all dimensions (all longer than in shuffled data). One prominent bar in 
dimension 0, two in dimension 1 and one in dimension 2 indicates cohomology 
equal to that of a torus.
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In summary, down to the noise floor (SNR) of the present data, 
and if the recorded cells are representative samples, the popula-
tion manifold reveals that the several thousand neuron-sized ADn 
population collectively encodes a single 1D variable, and no other, 
during waking.

The manifold is autonomously generated and attractive. We 
next show how the manifold perspective directly reveals the col-
lective intrinsic dynamics of the circuit. These analyses test the 
key predictions1,3–5 of continuous attractor models (properties 1, 
3–5) and models of neural integrators for continuous variables 
(properties 1–6; Fig. 3a; see Supplementary Fig. 10 for a network 
model). (1) The high-dimensional network response occupies a 
low-dimensional continuum of states with a dimension and topol-
ogy matching the encoded variable (or variables). (2) There is isom-
etry of encoded state intervals so that equal velocity inputs produce  
equal changes in the encoded state, regardless of the starting state. 

(3) States are autonomously generated and stabilized, and capable 
of self-sustained activation when sensory inputs are removed. (4) 
The manifold is an attractor, whereby states initialized away from 
the manifold rapidly flow back. (5) Manifold states are energetically 
equal, with no net flow along the manifold. (6) A velocity input, 
encoding the time-derivative of the represented variable, drives the 
circuit in a special direction in the high-dimensional state space, 
specifically along the low-dimensional manifold. These predictions 
are fundamentally applied in terms of the population manifold and 
hence most naturally tested at that level.

The results presented above directly support properties 1 and 2, 
which alone are not sufficient for establishing continuous attractor 
dynamics. To study autonomous dynamics, we examined the cir-
cuit during sleep, in the absence of spatial or directional input from  
the world.

During REM sleep, states again lie on a 1D ring (Fig. 3b; 
Supplementary Video 2; see also Supplementary Note 2.3 for a new 
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Fig. 2 | Unsupervised discovery and time-resolved decoding of encoded variables through manifold characterization. Throughout this figure, θ 
represents the direct measurement of the head orientation of the animal from light-emitting diode tracking, ̂θ represents the supervised decoder’s 
estimate of the brain’s representation (using tuning curves), and α represents the unsupervised latent variable estimate. This figure shows ADn data 
from a single animal for a full waking episode (31-min interval). a, Visualization of the manifold (using Isomap43), with every alternate pair of temporally 
adjacent points connected. The inset shows a point cloud (upper) and an alternative view of the manifold (lower). Note that the manifold does not occupy 
a very low-dimensional linear subspace, and PCA often fails to extract a ring structure (Supplementary Fig. 2). b, Betti 0, 1 and 2 barcodes. Each row shows 
a different feature. Simplicial complex radii are shown on the abscissa (schematic is shown at the top of the chart: complexes were constructed from 
data at different radii). The start and end of a horizontal bar in the middle plot signals the appearance and disappearance of some ring (a non-zero Betti 1 
feature) in the data at the corresponding radii. The long bar represents a ring that appears at ~16 Hz  and persists until ~43 Hz  ( Hz  because of variance 
stabilization; see Methods). c, Spline fit to the point cloud. d, Parameterization of the spline by coordinate α (arbitrary origin). e, Coloring of neural states 
via the unsupervised latent variable estimate (that is, α). f, Comparison of α and θ. The origin and direction around the ring for the measured head angle 
and for unsupervised decoding, both arbitrary choices, are matched to facilitate comparison, only after unsupervised decoding is complete. g, Histogram 
of differences between α and θ and between α and ̂θ. h, Fully unsupervised tuning-curve estimate (blue) versus supervised tuning-curve estimate (black). 
Unsupervised tuning curves capture 71!±!2.8% of the variance of tuning curves constructed using the traditional, supervised way (Supplementary Fig. 6). 
i, Left: fraction of variance explained by θ (left) and α (right) under a Poisson-spiking model. Means are shown in orange. Significance is calculated from 
two-sided binomial tests. Right: as in the left panel, but using an overdispersed model. P values left to right: P!<!10−4, P!=!0.11, P!<!10−4, P!=!0.047, P!=!0.11 
and P!=!0.017 (*P!<!0.05, ***P!<!10−3). n!=!37, 10 and 22 cells from mouse 12, mouse 25 and mouse 28, respectively. j, Manifold from data (blue) and from 
an overdispersed spiking model (red), with overdispersion (Fano factor) estimated from the data and applied as uncorrelated across neurons. The inset 
shows the distribution of distances from the manifold fit for data and model. k, Covariance of firing rates (left) and covariance conditioned on either θ 
(center) or α (right). The covariance matrix is only 6% of the raw covariance matrix when conditioning on α, which suggests that α captures ~94% of data 
covariance; the ratio after conditioning on θ is 25%. All panels show data from mouse 28, session 140313.
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