Computing with high-dimensional vectors

aka
Holographic Reduced Representation (HRR)
Vector Symbolic Architecture (VSA)
Hyperdimensional Computing (HDC)



Artificial Intelligence

Alan Turing John von Neumann Marvin Minsky John McCarthy

Among the most challenging scientific questions of our time are the
corresponding analytic and synthetic problems: How does the brain function?
Can we design a machine which will simulate a brain?

-- Automata Studies, 1956



Cybernetics/neural networks

Norbert Wiener Warren McCulloch & Walter Pitts Frank Rosenblatt

“The theory reported here clearly demonstrates the feasibility and fruitfulness of a
quantitative statistical approach to the organization of cognitive systems. By the study of
systems such as the perceptron, it is hoped that those fundamental laws of organization
which are common to all information handling systems, machines and men included, may

eventually be understood.” -- Frank Rosenblatt

The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. In,
Psychological Review, Vol. 65, No. 6, pp. 386-408, November, 1958.



Single neuron recording = Single neuron thinking
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Abstract. The problem discussed is the relationship between the firing of single neurons in sensory
pathways and subjectively experienced sensations. The conclusions are formulated as the following
five dogmas:
1. To understand nervous function one needs to look at interactions at a cellular level, rather than
either a more macroscopic or microscopic level, because behaviour depends upon the organized
pattern of these intercellular interactions.
2. The sensory system is organized to achieve as complete a representation of the sensory stimulus
as possible with the minimum number of active neurons.
3. Trigger features of sensory neurons are matched to redundant patterns of stimulation by
experience as well as by developmental processes.
4. Perception corresponds to the activity of a small selection from the very numerous high-level
neurons, each of which corresponds to a pattern of external events of the order of complexity of
the events symbolized by a word.
5. High impulse frequency in such neurons corresponds to high certainty that the trigger feature is
present.

The development of the concepts leading up to these speculative dogmas, their experimental
basis, and some of their limitations are discussed.




Holographic Reduced Vector Symbolic Hyperdimensional
Representations Architectures Computing

ol

Tony Plate Ross Gayler Pentti Kanerva

Plate, T.A. (1995). Holographic reduced representations. IEEE Transactions on Neural networks, 6(3), 623-641.

Gayler, R.WV. (2004). Vector symbolic architectures answer Jackendoff's challenges for cognitive neuroscience. arXiv:cs/0412059.

Kanerva P (2009) Hyperdimensional Computing: An Introduction to Computing in Distributed Representation
with High-Dimensional Random Vectors. Cognitive Computing, 1: 139-159.

- Everything represented as a high-dimensional vector.

- Algebra over vectors (instead of numbers).




Computing with High-Dimensional Vectors
(aka ‘HD computing’)
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HDC Algebra

Set or Bundling {a,b,c, ...} Z[a] + Z[b] + Z[c] + ....
Key-Value binding X < a K[x] © V[a]
Spatial relations, ‘object a’ at ‘position x’ S =0[a] © Z[x]
transformation shift by y S new=Zy]©S
Sequencing [abc...] Z[a] + p(Z[b]) + p2(Z[c]) + ....

Kanerva P (2009) Hyperdimensional Computing: An Introduction to Computing in Distributed Representation
with High-Dimensional Random Vectors. Cognitive Computing, |.

Kleyko, D., Davies, M., Frady, E. P, Kanerva, P, Kent, S. J., Olshausen, B.A,, ... & Sommer, FT. (2022). Vector symbolic
architectures as a computing framework for emerging hardware. Proceedings of the IEEE, | |0.

Menon,A ... Rabaey,] (2022) On the Role of Hyperdimensional Computing for Behavioral Prioritization in Reactive
Robot Navigation Tasks. ICRA 2022.



Symbolic computing with
variables and binding

Distributed representation

Learn from data

Robust
(error-correcting)

Transparent

Traditional
computing/Al

Neural nets

HD computing
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Holographic Reduced Representations

Tony A. Plate
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Binding via circular convolution

t=¢® X

Unbinding via circular correlation
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Composition via superposition
E=61 ® X1+Cr ® X5
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Variable binding
X=a’, 'Y=D'

t=x® a+y ® b

Language
“Mark ate the fish.”

s; = eat + agt,,, ® mark + obj_,, ® the_fish.



Four examples

- Analogical reasoning
Language identification via trigram statistics
-+ Sequence memory

- Visual scene analysis



Reasoning

What is the dollar of Mexico?



Analogical Mapping with Multiplication by
Hypervector

What 1s the Dollar of Mexico?

Encoding of USA and MEXico: Name of country,
Capital city, Monetary unit

USA
MEX

Nam*Us + Cap*Dc + Mon*$
Nam*Mx + Cap*Mc + Mon*P

Pairing up the two--binding
Pair = USA*MEX
Analyzing the pair

Pair = Us*Mx + Dc*Mc + $*P + noise



Literal interpretation of Dollar of Mexico
produces nonsense:

$*+*MEX $ * (Nam*Mx + Cap*Mc + Mon*P)
$*Nam*Mx + $*Cap*Mc + $*Mon*P
noise + noise + noise

(nothing cancels out)

However, what 1n Mexico corresponds to Dollar in USA?
$*Pair = $ * (USA*MEX)

$ * (Us*Mx + Dc*Mc + $*P + noise)

$*Us*Mx + $*Dc*Mc + $*$*P + $*noise
noise + noise + P + noise

P + noise

~ P



Language identification from trigram statistics
(Joshi, Halseth, Kanerva 2017)

Encode a trigram vector for each three-letter sequence A, B, C
as

ABC = p(p(A)) * p(B) x C = ppAx pB*C

Add all trigram vectors of a text into a 10,000-D Profile Vector.
For example, the text segment

“the quick brown fox jumped over ...”

gives rise to the following trigram vectors, which are added into
the profile for English

Engl += THE + HE# + E#Q + #QU + QUI + UIC + ...



ell eng ita ces est spa nld por lav lit ron pol fra bul deu dan fin hun swe slk slv

ell 987 1 . : : .3 3 . : .1 . 4 . .1 .

eng 2982 . 4 . .1 . 2 . . . 6 . . 1 . 2

ita : .992 . 1 2 . . : .2 3 . : . : . : : : .
ces 1 1 .940 1 . . .1 1 1 1 . 5 1 . . . . 35 12
est 1 . . 1983 . . .3 . . .3 1 1 5 1 1

spa . . 6 . .946 2 30 &8 1 2 . 5 . . . . . .

nld .1 . . . 980 1 . .2 1 . : 5 9 . . 1

por . 1 2 . . 1 1991 . . . . 3 1 . . : .

lav 2 . .1 . . . 2963 26 . 2 . 2 . 1 . . .1 .
lit 2 . 1 2 1 1 . 2 18969 . A . : . . .1 2
ron . .1 . .1 . 2 . 1987 2 4 2 . . . . . . .
pol 2 1 . 3 1 . . . . . .94 . 4 . L .. 401
fra 3 . 2 . .4 2 1 1 2 1 .982 . . 1 . . .1 .
bul 1 . .7 4 . 984 . : : : .3 1
deu . 2 1 1 3 3 .98 4 . . 1

dan . 2 . : : 9 2 974 . 13

fin . . : .4 2 1 993 .

hun 6 1 1 1 . 2 . 989 .

swe . 1 . . .1 5 . .4 . 1 . 4 10 . . 974 . .
slk 2 . 72 . .1 . 2 1 4 18 . 6 1 . . . . 881 12
slv 1 . .5 2 . .1 . .1 . .6 1 1 . . . . 982

LEGEND: bul = Bulgarian, ces = Czech, dan = Danish, deu = German, ell = Greek,
eng = English, est = Estonian, fin = Finnish, fra = French, hun = Hungarian, ita =
Italian, lav = Latvian, lit = Lithuanian, nld = Dutch, pol = Polish, por = Portuguese,
ron = Romanian, slk = Slovak, slv = Slovene, spa = Spanish, swe = Swedish.



1. Language Vectors: We made 10,000-D language
vectors for 21 EU languages from seed vectors

representing letters. Projected onto a plane,
the languages cluster according to known families:

Ttalian
* *Romanian
Portuguese
* *Spanish
*Slovene *French
*Bulgari *Czech
*S1ovak *English
*Greek
*Pol1sh *Lithuanian
*Latvian
*Estonian
*Finnish
Hungarian

*Dutch
*Danish *German
*Swedish



Reservoir computing and
recurrent neural networks

An Echo State
Network [
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Jaeger (2001), GMD Report 148

Maass, Natshlager & Markram (2002), Neural Computation



A simple working memory
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x(m)=Wx(m—1) + Pa(m)

Each input gets a time tag and is
added to the memory

W:unitary, mixing properties
®:random

Frady, Kleyko & Sommer (2018). Neural Computation



A theory for information readout
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Image sequence storage and retrieval




Other efforts

- Berkeley/Stanford EE (Rabaey, Salahuddin, Mitra, Wong) -
hardware implementation, cnFET’s, PCM/RRAM

-+ Waterloo (Eliasmith) - SPAUN

- U Maryland (Fernmuller, Aloimonos) - event-based camera
robot navigation

- BMW (Mirus, Blouw, Stewart, Conradt) - vehicle position
monitoring and prediction.

- VSA online seminar series: https://sites.google.com/Itu.se/
vsaonline/winter-2021

- Website: https://www.hd-computing.com
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