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 Can we design a machine which will simulate a brain?
-- Automata Studies, 1956
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Holographic Reduced 
Representations

Vector Symbolic 
Architectures

Hyperdimensional 
Computing

• Everything represented as a high-dimensional vector.
• Algebra over vectors (instead of numbers).



Computing with High-Dimensional Vectors
(aka ‘HD computing’)
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Set or Bundling { a, b, c, … } Z[a] + Z[b] + Z[c] + ….

Key-Value binding x  a← K[x]  V[a]⊙

Spatial relations, 
transformation

‘object a’ at ‘position x’
shift by y

S = O[a]  Z[x]⊙
S_new = Z[y]  S⊙

Sequencing [ a b c … ] Z[a] + (Z[b]) + (Z[c]) + ….ρ ρ2
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Holographic Reduced Representations 
Tony A. Plate 

Abstract- Associative memories are conventionally used to 
represent data with very simple structure: sets of pairs of vectors. 
This paper describes a method for representing more com- 
plex compositional structure in distributed representations. The 
method uses circular convolution to associate items, which are 
represented by vectors. Arbitrary variable bindings, short se- 
quences of various lengths, simple frame-like structures, and 
reduced representations can be represented in a fixed width 
vector. These representations are items in their own right and 
can be used in constructing compositional structures. The noisy 
reconstructions extracted from convolution memories can be 
cleaned up by using a separate associative memory that has good 
reconstructive properties. 

I. INTRODUCTION 
ISTRIBUTED representations [13] are attractive for a D number of reasons. They offer the possibility of repre- 

senting concepts in a continuous space, they degrade gracefully 
with noise, and they can be processed in a parallel network 
of simple processing elements. The problem of representing 
compositional structure’ in distributed representations, how- 
ever, has been for some time a prominent concern of both 
proponents and critics of connectionism [9], [32], [12]. 

Most work on neural-network style associative memories 
has focussed on either auto-associative or hetero-associative 
memories. Auto-associative memories, e.g., Hopfield networks 
[14], store an unordered set of items. They can be used to recall 
item given a distorted version. Hetero-associative memories, 
e.g., holographic memories and matrix memories [37], [8], 
[22], [5], [38], store a set of pairs of items. One item of a pair 
can be recalled using the other as a cue. Matrix style memories 
are the more popular class, owing to superior storage capacity 
and fewer constraints on vectors to be stored. 

For artificial intelligence tasks such as language processing 
and reasoning the need arises to represent more complex 
data structures such as sequences and trees. It is difficult 
to represent sequences or trees in distributed representations 
using associations of pairs (or even n-tuples) of items and 
retain the benefits of distributed representations. The problem 
with representing compositional structure in most associative 
memories is that items and associations are represented in 
different spaces. For example, in a Hopfield memory (a matrix 
style memory) items are represented on unit activations (a vec- 
tor) and associations are represented on connections weights 
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‘i.e., recursive, or tree-like structure. 

(a matrix). This makes it difficult to represent relationships 
with recursive structure in which an association of items may 
be the subject of another association. 

Hinton [12] discusses this problem and proposes a frame- 
work in which “reduced descriptions” are used to represent 
parts and objects in a part-whole hierarchy (a frame-like rep- 
resentation). This framework requires that a number of vectors, 
each a part and together forming a whole, be compressed 
(reduced) into a single vector of the same dimension as the 
original vectors. This reduced vector can in turn be used as a 
part in the representation of some greater whole. The reduction 
must be reversible so that one can move in both directions in 
a part-whole hierarchy, i.e., reduce a set of vectors (a whole) 
to a single vector (a potential part), and expand a single 
vector (a part) to a set of vectors (a whole). In this way, 
compositional structure is represented. An essential aspect 
of reduced descriptions is that they should be systematically 
related to their components, so that information about the 
components can be. gleaned without expansion. It is this aspect 
that distinguishes reduced descriptions from arbitrary pointers. 
Unfortunately, Hinton does not suggest any concrete way of 
performing the reduction and expansion mappings. 

Some researchers have built models or designed frame- 
works in which some compositional structure is present in 
distributed representations. For some examples see the papers 
of Touretzky [33], Pollack [27], or Smolensky [32]. 

In this paper I propose a new method for representing 
compositional structure in distributed representations. Circular 
convolutions are used to construct associations of vectors. The 
representation of an association is a vector of the same dimen- 
sionality as the vectors which are associated. This allows the 
construction of representations of objects with compositional 
structure. I call these holographic reduced representations 
(IBR’s), since convolution and correlation based memories 
are closely related to holographic storage, and they provide 
an implementation of Hinton’s [ 121 reduced descriptions. I 
describe how HRR’s and auto-associative item memories can 
be used to build distributed connectionist systems which ma- 
nipulate complex structures. The item memories are necessary 
to clean up the noisy items extracted from the convolution 
representations. 

Convolutiodcorrelation (holographic) memories have been 
generally regarded as inferior to matrix style associative mem- 
ories for associating pairs of items, for reasons concerning 
capacity and constraints (see [37] and [8]). Matrix style 
memories have a problem of expanding dimensionality when 
used for representing compositional structure, however. Con- 
volutiodcorrelation memories do not have this problem. Their 
storage capacity is sufficient to be useful and restrictions on 
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CO c1 c2 B. The Problem of Complex Structure 

Pairwise associations do not suffice for the practical repre- 
sentation of more complex data structures, such as trees. The 
need to represent such data structures arises in systems which 
use higher-order predicates, e.g., predicates such as “cause,” 
“think,” and “believe,” in language processing or reasoning 
systems. 

One approach to representing more complex data structures 
in associative memory is to use three-way associations, as are 
used in LISP data structures (car, cdr, and address). Touretzky 
and Hinton [35] and Touretzky [33]  describe systems based on 
this idea. A major problem with this approach is that access 
is slow; many pointers must be followed to determine the 
constituents of a structure. This removes one of the major 
advantages of distributed representations; fast determination 
of similarity. 

Another approach is to use an associative memory operator 
that can be applied recursively. This corresponds to an operator 
that can map from I x T t TI, and I x TI + TI’, etc. A 
major problem with most implementations of this approach 
is the expanding dimensionality of the association spaces I, 
TI, T”, etc. Vectors that grow arbitrarily in dimension are 
difficult to use in practical systems. This approach has been 
used by a number of researchers, and the problem of expanding 
dimensionality has been tackled in a number of ways. Eich [ 181 
and Murdock [20] both describe methods based on aperiodic 
convolution. Eich discards outside elements of convolution 
products to avoid expanding dimensionality. Murdock uses 
infinite-dimensional vectors. Smolensky [32] proposes Tensor- 
product memories, which use a generalized outer product as 
the associative operator. In these memories the dimensionality 
of the association space is exponential in the depth of recursion 
involved. Smolensky suggests placing a hard limit on the 
depth of recursion in order to keep the size of the association 
space tractable (e.g., no structure can be more than four levels 
deep). In a later paper Legendre et al. [16] describe a scheme 
which permits a soft limit on the depth of recursion, though 
its properties as the limit is approached or exceeded are not 
clear. In Pollack’s [27] recursive auto-associative memories 
(RAAM’s) items, associations, and recursive associations are 
all represented in the same vector space. A backpropagation 
network learns the encoding and decoding mappings. This 
solves the problem of expanding dimensionality. The learning 
is slow and the generalization of the mappings to novel items 
and structures is highly variable, however. In HRR’s items and 
associations are also represented in the same vector space and 
circular convolution and its approximate inverse are used as 
the encoding and decoding operators. 

C. Convolution-Correlation Memories 
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Fig. 1. 
example location shown. 

The outer product of two vectors, Z: and X with the content of an 

t 2  

k = - ( n - 1 ) / 2  

f o r j  = -(n - 1) ton - 1 

Fig. 2. A periodic convolution represented as a compressed outer product 
for n = 3. The indices are centered on zero since vectors “grow” (at both 
ends) in dimensionality with repeated convolutions. 

Fig. 3. 
pressed outer product for n = 3. 

Metcalfe’s truncated aperiodic convolution represented as a com- 

with another vector (recursive convolution); and if that vector 
has n elements, the result has 3n - 2 elements. Thus the 
dimensionality of the resulting vectors expands with recursive 
convolution.4 

The problem of expanding dimensionality can be avoided 
entirely by the use of circular convolution, an operation well 
known in signal processing (e.g., see [lo]). The circular 
convolution of two vectors of n elements has just n elements. 

Matrix and convolution memories provide different instan- 
tiations of the abstract associative memory operators set out 
in Section 11-A. They are more closely related, however, 
than might be suggested by this. The convolution of two 
vectors (whether circular or aperiodic) can be regarded as a 
compression of the outer product of those two vectors. The 
compression is achieved by summing along the top-right to 
bottom-left diagonals of the outer product, as illustrated in 

In nearly all convolution memory models the aperiodic 
convolution operation has been used to form  association^.^ 
Traces are usually composed by addition. The aperiodic con- 

vector with 2n - 1 elements. This result can be convolved 

Figs. ’-’. 
4For the sake of mathematical elegance, many authors have considered 

the vectors to have an infinite number of elements centered on the zero’th 
element, i.e., indexed from -CG through 0 to CG. The vectors must have a 

Of two vectors each with in a 

finite number of nonzero elements in order for the convolution operation to 
be defined, and these are usually centered about the zero’th element [201, [31, 3The exception is the nonlinear correlograph of Willshaw [37], first 

published in 1969. [261. 
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t = CQDX 

t o  = cox0 + C Z X l  + C l X Z  
11 = clxo+coxl  + c z x 2  
t z  = C Z X O  + C l X l  + c0x.l 

forj  = 0 ton - 1 
(Subscripts are modulo-n) 

Y2 Y l  YO 

y = c e t  

Yo = 
Y I  = 
92 = 

cot0 + C l t l  + e222 
clto + cot1 + Cl t2  
clto + czt1 + cot2 

n -1  

& = k=O Cktk+j 

for j  = 0 t o n  - 1 
(Subscripts are modulo-n) 

Fig. 4. 
n = 3. 

Circular convolution represented as a compressed outer product for Fig. 5. circular 
n = 3. 

repsented as a Outer product for 

The outer product of two vectors is illustrated in Fig. 1, 
which is intended to help with the understanding of the four 
subsequent figures. Fig. 2 shows standard aperiodic convoy 
lution, and Fig. 3 shows the truncated aperiodic convolution 
used by Metcalfe Eich [HI. The circular convolution opera- 
tion, @, is illustrated in Fig. 4. Elements are summed along the 
indicated trans-diagonals in these figures. While the circular 
convolution operation is straightforward, what is remarkable 
is that circular correlation, @, (illustrated in Fig. 5 )  is an 
approximate inverse operation of it.5 If a pair of vectors is 
convolved together to give a memory trace, then one member 
of the pair can be correlated with the trace to produce the 
other member of the pair. Suppose we have! trace which is 
the convolution of a cue with another vector, t = 2. 0 2. Then 
correlation allows the reconstruction of a distorted version of x 
from i and 2. : y = 2.e- and y NN x. The correlation operation 
also has an aperiodic version, which is an approximate inverse 
of aperiodic convolution. 

Multiple associations can be represented by the sum of the 
individual associations. Upon decoding the contribution of the 
irrelevant terms can be ignored as distortion. For example, if 
i = 2.1 0 x 1  + 2.2 Q x 2 ,  then the result of decoding of i with 
El is el@ Cl 0 x 1  + El@ 2.2 0 5i2. If the vectors have been 
chosen randomly the second term will, with high probability, 
have low conelation with all of 2.1, 2 .2 , j i l  and k 2  and the sum 
will be recognizable as a distorted version of 21. 

D. Distributional Constraints on the Elements of Vectors 

A sufficient condition for correlation to decode convolution 
is that the elements of each vector (of dimension n) be 

5Pr0vided that the elements of the vectors satisfy certain distributional 
constraints. 

independently and identically distributed with mean zero and 
variance l/n. This results in the expected Euclidean length 
of a vector being one. Examples of suitable distributions 
for elements are the normal distribution and the discrete 
distribution with values, equiprobably kl / f i .  The reasons 
for these distributional constraints should become apparent in 
the next subsection. 

The tension between these constraints and the conventional 
use of particular elements of vectors to represent mean- 
ingful features in distributed representations is discussed in 
Section VI. 

E. Why Correlation Decodes Convolution 

It is not immediately obvious why correlation decodes 
convolution. It is not hard to see, however, if an example 
is worked through. Consider vectors with three elements, 
E = ( C O , C ~ , C ~ )  and f = ( 2 0 , 2 1 , 2 2 )  where the 2; and c; are 
independently drawn from N(0 ,  i) (i.e., a normal distribution 
with mean zero and variance l /n ,n  = 3 in this example). 
The convolution of 2. and x is 

The decoding of this trace with 2. to retrieve 17: is shown at 
the bottom of the page, where E and the can be treated 
as zero mean noise. The variances of 5 and the are 
inversely proportional to n. The distributions of the and 

are normal in the limit as n goes to infinity, but the 
approximation is good for n as small as 16. ?Lpical values 
for n in convolution associative memory systems are in the 
hundreds and thousands. 

__I 
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for these distributional constraints should become apparent in 
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The tension between these constraints and the conventional 
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convolution. It is not hard to see, however, if an example 
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The decoding of this trace with 2. to retrieve 17: is shown at 
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as zero mean noise. The variances of 5 and the are 
inversely proportional to n. The distributions of the and 

are normal in the limit as n goes to infinity, but the 
approximation is good for n as small as 16. ?Lpical values 
for n in convolution associative memory systems are in the 
hundreds and thousands. 
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B. Chunking of Sequences 
All of the above methods have soft limits on the length of 

sequences that can be stored. As the sequences get longer, 
the noise in the retrieved items increases until the items are 
impossible to identify. This limit can be overcome by chunk- 
ing-creating new “nonterminal” items representing subse- 
quences [2 11. 

The second sequence representation method is the more 
suitable one to do chunkhg-with. Suppose we want to repre- 
sent the sequence abCd6fgh. We can create three new items 
representing subsequences 

gabc = a + a @ b + a @ b @ 5 
Sde = d + d  @ 6 

gfgh = f + f  @ g + f  @ g @ h. 

These new items must be added to the item memory. The 
representation for the whole sequence is 

filler). The role vectors for different frames can be frame 
specific, i.e., agt,,, can be different from agt,,,, or they can 
be the same (or just similar). 

A role filler binding such as agt,,, @ mark is uncorrelated 
with either the role or the filler, because the expected value of 
x 0 y . x is zero. If it is desired that the representation for 
a frame be somewhat similar to its fillers they can be added 
in an appropriate proportion. 

E. Recursive Frames: Holographic Reduced Representations 
The vector representation of a frame is of the same dimen- 

sion as the vector representation of a filler and can be used 
as a filler in another frame. In this way, convolution encoding 
affords the representation of hierarchical structure in a fixed 
width vector.12 

For example, we can use an instantiated frame13 from the 
previous section as a filler in another frame representing 
“Hunger caused Mark to eat the fish” 

Decoding this chunked sequence is slightly more difficult, 
requiring the use of a stack and decisions on whether an item 
in a nonterminal that should be further decoded. A machine 
to decode such representations is described in Section VII-B. 

C. Variable Binding 
It is simple to implement variable binding with convolution: 

convolve the variable representation with the value represen- 
tation. For example, the binding of the value a to the variable 
x and the value b to the variable y is 

i = x 0 a + y  @ b. 

Variables can be unbound by convolving the binding with 
the approximate inverse of the variable. This binding method 
allows multiple instances of variable in trace to be substituted 
in a single-operation (approximately). 

Nonrecursive variable binding can also be implemented 
easily in other types of associative memory, e.g., the triple- 
space of BoltzCONS [35], or the outer product of roles and 
fillers in DUCS [34]. 

D. Simple Frame (Slot/Filler) Structures 
Simple frame-like structures can be represented using con- 

volution encoding in a manner analogous to cross products 
of roles and fillers in Hinton [ l l ]  or the frames of DUCS 
[34]. A frame consists of a frame label and a set of roles, 
each represented by a vector. An instantiated frame is the 
sum of the frame label and the roles (slots) convolved with 
their respective fillers. For example, suppose we have a (very 
simplified) frame for “eating.” The vector for the frame label 
is eat and the vectors for the roles are agteat and obj,,,. This 
frame can be instantiated with the fillers mark and thefish, 
to represent “Mark ate the fish” 

51 = eat + agt,,, @ mark + obj,,, @ thefish. 

Fillers (or roles) can be retrieved from the instantiated frame 
by convolving with the approximate inverse of the role (or 

= cause + agtcause @ hunger + objCause @ eat 
+obj,,,,, @ agt,,, o mark 
+objC,,,, @ obj,, 0 thefish. 

The decoding of this and other frames is discussed in 
Section X, where simulation results are also given. 

These recursive representations can be manipulated with 
or without chunking. Without chunking, we could extract 
the agent of the object by convolving with (obj,,,,,O 
agteat)* = obj,+,,,, agt:,,. Using chunking, we could first 
extract the object, clean it up, and then extract its agent, giving 
a less noisy result. There is a tradeoff between accuracy and 
speed-if intermediate chunks are not cleaned up the retrievals 
are faster but less accurate. 

The commutativity of the circular convolution operation CZI 

cause ambiguity in some situations. This results from the fact 
that i 0 f; 0 fa = i 0 Fa 0 f;. The ambiguity is greatly 
alleviated by using frame specific role vectors rather than 
generic role vectors (e.g., a generic “agent” vector). A situation 
when ambiguity can still arise is when two instantiations of 
the same frame are nested in another instantiation of that same 
frame. In this case the agent of the object can be confused 
with the object of the agent. Whether this causes problems 
remains to be seen. In any case, there are variants of circular 
convolution that are not commutative (Section VIII-G). 

Holographic reduced representations provide a way of real- 
izing Hinton’s [12] hypothetical system that could, in the same 
physical set of units, either focus attention on constituents 
or have the whole meaning present at once. Furthermore, 
the systematic relationship between the representations for 
components and frames (i.e., reduced descriptions) means that 
frames do not need to be decoded to gain some information 
about the components (see Section X-B). 

‘*Slack [31] suggests a distributed memory representation for Fees involv- 
ing convolution products that is similar to the representation suggested here, 
except that it uses noncircular convolution, and thus does not work with fixed 
width vectors. 

‘3Normalization of Euclidean lengths of the frame becomes an issue, see 
Section X-E. 

Variable binding

‘X=a’, ‘Y=b’
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previous section as a filler in another frame representing 
“Hunger caused Mark to eat the fish” 

Decoding this chunked sequence is slightly more difficult, 
requiring the use of a stack and decisions on whether an item 
in a nonterminal that should be further decoded. A machine 
to decode such representations is described in Section VII-B. 

C. Variable Binding 
It is simple to implement variable binding with convolution: 

convolve the variable representation with the value represen- 
tation. For example, the binding of the value a to the variable 
x and the value b to the variable y is 

i = x 0 a + y  @ b. 

Variables can be unbound by convolving the binding with 
the approximate inverse of the variable. This binding method 
allows multiple instances of variable in trace to be substituted 
in a single-operation (approximately). 

Nonrecursive variable binding can also be implemented 
easily in other types of associative memory, e.g., the triple- 
space of BoltzCONS [35], or the outer product of roles and 
fillers in DUCS [34]. 

D. Simple Frame (Slot/Filler) Structures 
Simple frame-like structures can be represented using con- 

volution encoding in a manner analogous to cross products 
of roles and fillers in Hinton [ l l ]  or the frames of DUCS 
[34]. A frame consists of a frame label and a set of roles, 
each represented by a vector. An instantiated frame is the 
sum of the frame label and the roles (slots) convolved with 
their respective fillers. For example, suppose we have a (very 
simplified) frame for “eating.” The vector for the frame label 
is eat and the vectors for the roles are agteat and obj,,,. This 
frame can be instantiated with the fillers mark and thefish, 
to represent “Mark ate the fish” 

51 = eat + agt,,, @ mark + obj,,, @ thefish. 

Fillers (or roles) can be retrieved from the instantiated frame 
by convolving with the approximate inverse of the role (or 

= cause + agtcause @ hunger + objCause @ eat 
+obj,,,,, @ agt,,, o mark 
+objC,,,, @ obj,, 0 thefish. 

The decoding of this and other frames is discussed in 
Section X, where simulation results are also given. 

These recursive representations can be manipulated with 
or without chunking. Without chunking, we could extract 
the agent of the object by convolving with (obj,,,,,O 
agteat)* = obj,+,,,, agt:,,. Using chunking, we could first 
extract the object, clean it up, and then extract its agent, giving 
a less noisy result. There is a tradeoff between accuracy and 
speed-if intermediate chunks are not cleaned up the retrievals 
are faster but less accurate. 

The commutativity of the circular convolution operation CZI 

cause ambiguity in some situations. This results from the fact 
that i 0 f; 0 fa = i 0 Fa 0 f;. The ambiguity is greatly 
alleviated by using frame specific role vectors rather than 
generic role vectors (e.g., a generic “agent” vector). A situation 
when ambiguity can still arise is when two instantiations of 
the same frame are nested in another instantiation of that same 
frame. In this case the agent of the object can be confused 
with the object of the agent. Whether this causes problems 
remains to be seen. In any case, there are variants of circular 
convolution that are not commutative (Section VIII-G). 

Holographic reduced representations provide a way of real- 
izing Hinton’s [12] hypothetical system that could, in the same 
physical set of units, either focus attention on constituents 
or have the whole meaning present at once. Furthermore, 
the systematic relationship between the representations for 
components and frames (i.e., reduced descriptions) means that 
frames do not need to be decoded to gain some information 
about the components (see Section X-B). 

‘*Slack [31] suggests a distributed memory representation for Fees involv- 
ing convolution products that is similar to the representation suggested here, 
except that it uses noncircular convolution, and thus does not work with fixed 
width vectors. 

‘3Normalization of Euclidean lengths of the frame becomes an issue, see 
Section X-E. 

“Mark ate the fish.”

Language



Four examples

• Analogical reasoning

• Language identification via trigram statistics

• Sequence memory

• Visual scene analysis



Reasoning

What is the dollar of Mexico?



 
3. Analogical Mapping with Multiplication by 
   Hypervector 
 
  What is the Dollar of Mexico? 
 
Encoding of USA and MEXico: Name of country, 
 Capital city, Monetary unit 
 
  USA = Nam*Us + Cap*Dc + Mon*$ 
  MEX = Nam*Mx + Cap*Mc + Mon*P 
 
Pairing up the two--binding 
 
  Pair = USA*MEX 
 
Analyzing the pair 
 
  Pair = Us*Mx + Dc*Mc + $*P + noise 
 



 
Literal interpretation of Dollar of Mexico 
produces nonsense: 
 
 $*MEX = $ * (Nam*Mx + Cap*Mc + Mon*P) 
       = $*Nam*Mx + $*Cap*Mc + $*Mon*P 
       =  noise   +  noise   +  noise 
          (nothing cancels out) 
 
 
However, what in Mexico corresponds to Dollar in USA? 
 
 $*Pair = $ * (USA*MEX) 
        = $ * (Us*Mx + Dc*Mc + $*P + noise) 
        = $*Us*Mx + $*Dc*Mc + $*$*P + $*noise 
        =  noise  +  noise  +     P +  noise 
        = P + noise 
        ≈ P 



Language identification from trigram statistics
(Joshi, Halseth, Kanerva 2017)

Encode a trigram vector for each three-letter sequence A, B, C 
as

Add all trigram vectors of a text into a 10,000-D Profile Vector. 
For example, the text segment

“the quick brown fox jumped over ...”

gives rise to the following trigram vectors, which are added into 
the profile for English

Engl += THE + HE# + E#Q + #QU + QUI + UIC + ...

as cos(A,B) = |A0 ⇤ B0|, where A
0 and B

0 are the normalized vectors of A and
B, respectively, and |C| denotes the sum of the elements in C.

Information from a pair of vectors A and B is stored and utilized in a single
vector by exploiting the summation operation. That is, the sum of two separate
vectors naturally preserves unique information from each vector because of the
mathematical properties of the space. To see this, note that cos(A,A) = 1, while
for all B 6= A, cos(A,B) < 1. The cosine of two random, unrelated vectors tends
to be close to 0. Because of this, the vector B can easily be found in the vector
A+B: cos(B,A+B) di↵ers significantly from 0.

For encoding a sequence of vectors, we use a random (but fixed throughout
all our computations) permutation operation ⇢ of the vector coordinates. Hence,
the sequence A-B-C is encoded as the D-dimensional vector ABC by permuting
the first vector twice, permuting the second vector once, taking the third vector
as is, and by multiplying the tree: ABC = ⇢(⇢(A)) ⇤ ⇢(B) ⇤C = ⇢⇢A ⇤ ⇢B ⇤C =
⇢
2
A⇤⇢B ⇤C. This e�ciently distinguishes the sequence A-B-C from, say, A-C-B.

This can be seen from looking at their cosine (here c is the normalization factor):

V1 = ⇢⇢A ⇤ ⇢B ⇤ C
V2 = ⇢⇢A ⇤ ⇢C ⇤B

=) cos(V1, V2) = c · |(⇢⇢A ⇤ ⇢B ⇤ C) ⇤ (⇢⇢A ⇤ ⇢C ⇤B)|
= c · |⇢⇢A ⇤ ⇢⇢A ⇤ ⇢B ⇤ ⇢C ⇤ C ⇤B)|
= c · |⇢⇢(A ⇤A) ⇤ ⇢(B ⇤ C) ⇤ (B ⇤ C))|
= c · |1 ⇤ ⇢(B ⇤ C) ⇤ (B ⇤ C))|
⇡ c · 0

since a random permutation ⇢V of a random vector V is uncorrelated to V .

2.1 Making and Comparing of Text Vectors

We use the properties of high-dimensional vectors to extract certain properties
of text into a single vector. [11] shows how Random Indexing can be used for
representing the contexts in which a word appears in a text, into that word’s
context vector. We show here how to use a similar strategy for recognizing a
text’s language by creating and comparing Text Vectors : the Text Vector of an
unknown text sample is compared for similarity to precomputed Text Vectors of
known language samples—the latter are referred to as Language Vectors.

Simple language recognition can be done by comparing letter frequencies
of a given text to known letter frequencies of languages. Given enough text, a
text’s letter distribution will approach the letter distribution of the language in
which the text was written. The phenomenon is called an “ergodic” process in
[1], as borrowed from similar ideas in physics and thermodynamics. This can
be generalized to using letter blocks of di↵erent sizes. By a block of size N , we
mean N consecutive letters in the text so that a text of length M would have
M �N +3 blocks. When the letters are taken in the order in which they appear
in the text, they are referred to as a sequences (of length N) or as N -grams.



ell eng ita ces est spa nld por lav lit ron pol fra bul deu dan fin hun swe slk slv

ell 987 1 . . . . 3 3 . . . 1 . 4 . . 1 . . . .
eng 2 982 . 4 . . 1 . 2 . . . 6 . . 1 . 2 . . .
ita . . 992 . 1 2 . . . . 2 3 . . . . . . . . .
ces 1 1 . 940 1 . . . 1 1 1 1 . 5 1 . . . . 35 12
est 1 . . 1 983 . . . 3 . . . 3 . 1 1 5 1 1 . .
spa . . 6 . . 946 2 30 8 1 2 . 5 . . . . . . . .
nld . 1 . . . . 980 1 . . 2 1 . . 5 9 . . 1 . .
por . 1 2 . . 1 1 991 . . . . 3 1 . . . . . . .
lav 2 . . 1 . . . 2 963 26 . 2 . 2 . 1 . . . 1 .
lit 2 . 1 2 1 1 . 2 18 969 . . 1 . . . . . . 1 2
ron . . 1 . . 1 . 2 . 1 987 2 4 2 . . . . . . .
pol 2 1 . 3 1 . . . . . . 984 . 4 . . . . . 4 1
fra 3 . 2 . . 4 2 1 1 2 1 . 982 . . 1 . . . 1 .
bul 1 . . 7 . . 4 . . . . . . 984 . . . . . 3 1
deu . 2 1 1 . . 3 . . . . . 3 . 985 4 . . 1 . .
dan . 2 . . . . 9 . . . . . 2 . . 974 . . 13 . .
fin . . . . 4 . 2 . 1 . . . . . . . 993 . . . .
hun . . . . . . 6 1 1 1 . . . . . 2 . 989 . . .
swe . 1 . . . 1 5 . . . 4 . 1 . 4 10 . . 974 . .
slk 2 . . 72 . . 1 . 2 1 4 18 . 6 1 . . . . 881 12
slv 1 . . 5 2 . . 1 . . 1 . . 6 1 1 . . . . 982

LEGEND: bul = Bulgarian, ces = Czech, dan = Danish, deu = German, ell = Greek,
eng = English, est = Estonian, fin = Finnish, fra = French, hun = Hungarian, ita =
Italian, lav = Latvian, lit = Lithuanian, nld = Dutch, pol = Polish, por = Portuguese,
ron = Romanian, slk = Slovak, slv = Slovene, spa = Spanish, swe = Swedish.

Table 2: The confusion matrix of language detection using 10,000-dimensional
Language Vectors based on letter trigrams. Each row corresponds to the correct
label and each column is the predicted label for the Europarl corpus detection
test. The entry (i, j) is the number of sentences (out of a 1,000) that language j

was guessed for language i. A high value diagonal shows the very high accuracy.

only one permutation is needed, and the permutation is iterated a few times at
most (much fewer than 10,000).

The experiment was programmed in Python and run on a laptop computer.
The following run-time statistics are from a 64-bit, 2.70GHz (100MHz clock)
Intel processor, 4 cores and 32GB of 1600 MHz memory (total). Computing
a 10,000-dimensional Language Vector from a million bytes of text takes 14.5
seconds. Computing the 10,000-dimensional Text Vectors for the 21,000 test
sentences and comparing them to the 21 Language Vectors, to make the confusion
matrix, takes 2 minutes. The run time for a round of experiments to make Table
starting with a random seed is just over 7 minutes.



Examples of Hypervector Computing 
 
1. Language Vectors: We made 10,000-D language 
vectors for 21 EU languages from seed vectors 
representing letters.  Projected onto a plane, 
the languages cluster according to known families: 
 
 
                                      Italian 
                                       *    *Romanian 
                                      Portuguese 
                                       *    *Spanish 
     *Slovene                                   *French 
*Bulgari *Czech 
      *Slovak                                    *English 
                           *Greek 
   *Polish                      *Lithuanian 
                                 *Latvian 
                           *Estonian 
                    *       *Finnish 
                   Hungarian 
 
 
                                                *Dutch 
                                        *Danish  *German 
                                           *Swedish 



Reservoir computing and 
recurrent neural networks

Jaeger (2001), GMD Report 148

Maass, Natshlager & Markram (2002), Neural Computation



A simple working memory

𝒙(𝑚) = 𝑾𝒙(𝑚 − 1) + 𝚽𝒂(𝑚)


𝑾:unitary,  mixing properties
𝚽: random

Each input gets a time tag and is 
added to the memory


Frady, Kleyko & Sommer (2018). Neural Computation



A theory for information readout 



Indexing and Memory in Neural Networks 1489

Figure 13: Analog coef!cient storage and retrieval. (A, B) A long sequence of
image patches was stored in networks with different N values, with τ propor-
tional to N. The recent images were retrieved with VSA readout (A) and MMSE
trained readout (B) and reconstructed for different look-back values, K. (C) The
measured SNR of MMSE readout (dashed lines) is greatly increased compared
to the SNR of VSA readout. (D) Indexing language n-grams with compositional
binding operations has the same cross-talk properties as sequence indexing.
(E) The measured readout error of language statistics (dots) matches the the-
ory (lines).

all composite representations of discrete VSA base symbols ultimately fol-
low these assumptions and are effectively a set of superposed random vec-
tors. In terms of the neural network, the storage of n-gram statistics can be
interpreted as the network accumulating the encoded n-gram vectors gen-
erated by external computations. The recurrent weight matrix is the iden-
tity, and thus the network counts up each n-gram vector that is given as
input. The n-gram counts are indexed by the key vector made by the com-
posite VSA operations and integrated into the memory state. We see that the

Image sequence storage and retrieval



Other efforts

• Berkeley/Stanford EE (Rabaey, Salahuddin, Mitra, Wong) - 
hardware implementation, cnFET’s, PCM/RRAM

• Waterloo (Eliasmith) - SPAUN

• U Maryland (Fernmuller, Aloimonos) - event-based camera 
robot navigation 

• BMW (Mirus, Blouw, Stewart, Conradt) - vehicle position 
monitoring and prediction.

• VSA online seminar series:  https://sites.google.com/ltu.se/
vsaonline/winter-2021

• Website:  https://www.hd-computing.com

https://sites.google.com/ltu.se/vsaonline/winter-2021
https://sites.google.com/ltu.se/vsaonline/winter-2021
https://www.hd-computing.com

