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The classical solution to the noise removal problem is
the Wiener filter, which utilizes the second-order statis-
tics of the Fourier decomposition. Subband decomposi-
tions of natural images have significantly non-Gaussian
higher-order point statistics; these statistics capture im-
age properties that elude Fourier-based techniques. We
develop a Bayesian estimator that is a natural exten-
sion of the Wiener solution, and that exploits these
higher-order statistics. The resulting nonlinear esti-
mator performs a “coring” operation. We provide a
simple model for the subband statistics, and use it to
develop a semi-blind noise-removal algorithm based on
a steerable wavelet pyramid.

A common technique for noise reduction is known as
“coring”. An image signal is split into two or more
bands; the highpass bands are subjected to a thresh-
old non-linearity that suppresses low-amplitude values
while retaining high-amplitude values. Use of such
techniques is widespread: for example, most consumer
VCR’s use a simple one-dimensional coring technique.
Many variants of coring have been developed, includ-
ing two-dimensional coring [1], multi-scale oriented cor-
ing [2, 3], pyramid coring [4], and multi-band coring
with orthogonal bases [5]. The nonlinear operator is of-
ten smoothed to give a “soft” threshold, but the exact
choice of function in these techniques has been ad hoc.
Similar techniques, based on the statistical concept of
“shrinkage”, have been recently used with wavelet ex-
pansions [6].
The intuition underlying coring is that images typically
have spatial structure, consisting of smooth areas inter-
spersed with occasional edges. This notion is evident
statistically: the pixels in highpass and bandpass sub-
bands of images have significantly non-Gaussian proba-
bility density functions (pdf’s) that are sharply peaked
at zero with broad tails. Specifically, the coefficient
of kurtosis κ (fourth moment divided by squared vari-
ance) is typically well above the value of 3 that one
expects for a Gaussian pdf.
Field [7] has shown that kurtosis for subbands of nat-
ural scenes varies with filter bandwidth, and is maxi-
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Figure 1. Histograms of a mid-frequency subband
in an octave-bandwidth wavelet decomposition for
two different images. Left: The“Einstein” image.
Right: A white noise image with uniform pdf.

mal at roughly one octave. Significantly wider or nar-
rower bandwidths produce kurtoses near 3 (i.e., Gaus-
sian statistics). Several authors have used Laplacian
pdf models (with kurtosis 6) for image subband statis-
tics (e.g., [8, 9]).
Figure 1 contains an example histogram from a single
subband of a wavelet transform built on the “Einstein”
image, for which the sample kurtosis is 9.8. For com-
parison, the histogram of the same subband built on
uniform white noise is shown. This histogram is nearly
Gaussian, with a sample kurtosis of 2.9. Coring relies
on the striking dissimilarity between the point statis-
tics of these two image types.
In the following, we describe a technique for determin-
ing the optimal coring function in the Bayesian sense1,
and apply it to a steerable wavelet pyramid.

1. BAYESIAN SIGNAL ESTIMATION

Consider a scalar x contaminated with additive noise
n: y = x + n. The mean of the posterior distribution
provides an unbiased least-squares estimate of the vari-
able x, given measurement y. Bayes’ rule allows us to
write this in terms of the probability densities of the
noise and signal:

x̂(y) =
∫

dx Px|y(x|y) x

1An earlier version of this technique is described in [10], a
bachelor’s thesis supervised by the authors.

(a)

  

(b)

(c)

  

(d)

Figure 4. Noise reduction example. (a) Original image (cropped). (b) Image contaminated with additive Gaussian
white noise (SNR = 9.00dB). (c) Image restored using (semi-blind) Wiener filter (SNR = 11.88dB). (d) Image restored
using (semi-blind) Bayesian estimator (SNR = 13.82dB).

ful in other applications, such as image compression or
texture synthesis.
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The classical solution to the noise removal problem is
the Wiener filter, which utilizes the second-order statis-
tics of the Fourier decomposition. Subband decomposi-
tions of natural images have significantly non-Gaussian
higher-order point statistics; these statistics capture im-
age properties that elude Fourier-based techniques. We
develop a Bayesian estimator that is a natural exten-
sion of the Wiener solution, and that exploits these
higher-order statistics. The resulting nonlinear esti-
mator performs a “coring” operation. We provide a
simple model for the subband statistics, and use it to
develop a semi-blind noise-removal algorithm based on
a steerable wavelet pyramid.

A common technique for noise reduction is known as
“coring”. An image signal is split into two or more
bands; the highpass bands are subjected to a thresh-
old non-linearity that suppresses low-amplitude values
while retaining high-amplitude values. Use of such
techniques is widespread: for example, most consumer
VCR’s use a simple one-dimensional coring technique.
Many variants of coring have been developed, includ-
ing two-dimensional coring [1], multi-scale oriented cor-
ing [2, 3], pyramid coring [4], and multi-band coring
with orthogonal bases [5]. The nonlinear operator is of-
ten smoothed to give a “soft” threshold, but the exact
choice of function in these techniques has been ad hoc.
Similar techniques, based on the statistical concept of
“shrinkage”, have been recently used with wavelet ex-
pansions [6].
The intuition underlying coring is that images typically
have spatial structure, consisting of smooth areas inter-
spersed with occasional edges. This notion is evident
statistically: the pixels in highpass and bandpass sub-
bands of images have significantly non-Gaussian proba-
bility density functions (pdf’s) that are sharply peaked
at zero with broad tails. Specifically, the coefficient
of kurtosis κ (fourth moment divided by squared vari-
ance) is typically well above the value of 3 that one
expects for a Gaussian pdf.
Field [7] has shown that kurtosis for subbands of nat-
ural scenes varies with filter bandwidth, and is maxi-
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Figure 1. Histograms of a mid-frequency subband
in an octave-bandwidth wavelet decomposition for
two different images. Left: The“Einstein” image.
Right: A white noise image with uniform pdf.

mal at roughly one octave. Significantly wider or nar-
rower bandwidths produce kurtoses near 3 (i.e., Gaus-
sian statistics). Several authors have used Laplacian
pdf models (with kurtosis 6) for image subband statis-
tics (e.g., [8, 9]).
Figure 1 contains an example histogram from a single
subband of a wavelet transform built on the “Einstein”
image, for which the sample kurtosis is 9.8. For com-
parison, the histogram of the same subband built on
uniform white noise is shown. This histogram is nearly
Gaussian, with a sample kurtosis of 2.9. Coring relies
on the striking dissimilarity between the point statis-
tics of these two image types.
In the following, we describe a technique for determin-
ing the optimal coring function in the Bayesian sense1,
and apply it to a steerable wavelet pyramid.

1. BAYESIAN SIGNAL ESTIMATION

Consider a scalar x contaminated with additive noise
n: y = x + n. The mean of the posterior distribution
provides an unbiased least-squares estimate of the vari-
able x, given measurement y. Bayes’ rule allows us to
write this in terms of the probability densities of the
noise and signal:

x̂(y) =
∫

dx Px|y(x|y) x

1An earlier version of this technique is described in [10], a
bachelor’s thesis supervised by the authors.

y = x+ n
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Figure 3. A 3-scale 3-orientation steerable pyra-
mid. Shown are the three oriented bandpass images
at each scale, and the residual lowpass image.

3. CHOICE OF WAVELET TRANSFORM

We have implemented a noise reduction scheme based
on an oriented multi-scale representation known as a
steerable pyramid [12]. In this decomposition, the im-
age is subdivided into subbands localized in both scale
and orientation. In scale, the subbands have octave
bandwidth with a functional form constrained by a
recursive system diagram. In orientation, a steerable
pyramid can be designed with any number of orienta-
tion bands, k. The resulting transform is overcomplete
by a factor of 4k/3. Orientation tuning is constrained
by the property of steerability [13].
The transform is “self-inverting” (i.e., the matrix cor-
responding to the inverse transformation is equal to
the transpose of the forward ransformation matrix)3,
and has the additional advantages of being translation-
invariant (aliasing-free) and rotation-invariant (steer-
able). Figure 3 shows an example steerable pyramid
decomposition, with three orientation bands.
One disadvantage of the the steerable pyramid for this
task is the lack of orthogonality. An orthonormal ba-
sis guarantees that the noise component of the trans-
form coefficients will be uncorrelated, assuming that
the noise was white in the image domain. For the pur-
poses of this paper, we ignore the off-diagonal terms of
the covariance matrix.

4. EXAMPLES

We implemented the “semi-blind” Bayesian de-noising
algorithm described previously, in which we assumed
a known noise variance. We constructed a 4-scale 4-
orientation steerable pyramid from the contaminated
image. For each wavelet subband, we estimated the
model pdf parameters s and p, and numerically com-
puted an estimator via equation (1). After applying
the estimator, we inverted the transform to give the

3In the wavelet literature, such transforms are known as tight
frames.

Noisy Bayes ideal Bayes blind Wiener
4.78 11.75 11.67 9.79
9.00 13.89 13.82 11.88
13.98 16.49 16.40 14.70

Table 1. SNR values (in dB) for the noise-
contaminated image, and images cleaned using each
of the three noise removal algorithms. See text.

“cleaned” image. To gauge the quality of our model pdf
and fitting procedure, we also computed the idealized
estimator, based on the actual clean signal histograms.
Finally, for comparison, we computed a (semi-blind)
pyramid-based Wiener filter solution in which we as-
sumed a known noise variance.
We applied these three algorithms to the “Einstein”
image for three different levels of Gaussian white noise
contamination. Table 1 gives signal-to-noise ratios for
each case. Note that the semi-blind Bayesian algo-
rithm performs nearly as well in all cases as the ideal
Bayesian, indicating that the model pdf is successfully
approximating the wavelet coefficient statistics. Note
also that the Bayesian algorithm outperforms the Wiener
algorithm (as it should, since it is taking advantage of
additional information).
Figure 4 shows four images corresponding to the mid-
dle row in table 1. The Bayesian image appears to be
both sharper (because high-amplitude coefficients are
preserved) and less noisy (because low-amplitude coef-
ficients are suppressed). The results can be made more
visually appealing by a subsequent sharpening opera-
tion, although this reduces the SNR.

5. DISCUSSION

Removal of noise from images relies on differences in
the statistical properties of noise and signal. The clas-
sic Wiener solution utilizes differences in power spec-
tral density, a second-order property. The Bayesian
estimator described above provides a natural extension
for incorporating the higher-order statistical regularity
present in the point statistics of subband representa-
tions. The estimator is based on two factors – a sub-
band representation and a statistical model – both of
which can be generalized. Theoretically, one would like
a direct link from the properties of the subband pdf to
the quality of noise removal, which could then be used
to optimize the choice of subband transform. In ad-
dition, the statistical model should account for joint
statistics of wavelet coefficients, both within and be-
tween bands. The approach also generalizes to other
types of distortion, including blurring and corruption
with non-additive noise; one only need have the con-
ditional pdf describing the distortion process. Finally,
these types of statistical image model should prove use-

3
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x̂ = argmin
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|y � x|2
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MAP estimate:
=

∫
dx Py|x(y|x) Px(x) x∫
dx Py|x(y|x) Px(x)

=
∫

dx Pn(y − x) Px(x) x∫
dx Pn(y − x) Px(x)

, (1)

where Pn indicates the probability density function of
the noise, and Px the prior probability density function
of the signal. The denominator is the pdf of the noisy
observation, computed via convolution of the noise and
signal pdf’s. In order to use this equation to estimate
the original signal value x, we must know both of these
probability density functions.
Consider a few simple examples. First, let the noise
have a zero-mean Gaussian distribution with variance
σ2

n, and let the signal prior be a zero-mean Gaussian
with variance σ2

s . In this case, a well-known closed-
form solution exists:

x̂(y) =
σ2

s y

σ2
s + σ2

n

.

The solution is a simple linear rescaling of the measure-
ment. When applied to the coefficients of a Fourier
transform, this estimator corresponds to the Wiener
filter. When applied to subbands of a wavelet trans-
form, the solution is an approximation to the Wiener
filter, in which the power spectral density information
is averaged over each of the subbands.
Now consider the case in which the noise distribution
is Gaussian, but the signal prior is a more sharply
peaked distribution, such as that shown in figure 1. In
such cases, a closed-form expression for the estimator
in equation (1) may not be available, but a numerical
solution may be used.2. We have computed a numeri-
cal approximation of the estimator for the histograms
illustrated figure 1. The estimator is illustrated graph-
ically in figure 2. Note that this estimator now corre-
sponds to a nonlinear “coring” operation: large ampli-
tude values are preserved, and small amplitude values
are suppressed. This is intuitively sensible: given the
substantial signal probability mass at x = 0, small val-
ues of y are assumed to have arisen from a value of
x = 0. This curve is similar to the soft-thresholding
functions that have been previously devised by more
ad hoc methods; the Bayesian derivation thus provides
a principled justification for coring systems.

2. PARAMETERIZED MODEL FOR
WAVELET COEFFICIENT STATISTICS

The Bayesian estimator discussed above relies on a
knowledge of the signal point statistics. In order to uti-
lize it, we need a parameterized model for these pdf’s
such that: 1) the model provides a good fit to the

2One must, in practice, take care to regularize singularities
resulting from distribution points with very small probability.
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Figure 2. Bayesian estimator (symmetrized) for
the signal and noise histograms shown in figure 1.
Superimposed on the plot is a straight line indicat-
ing the identity function.

statistics of natural images, and 2) one can estimate
the model parameters from the noisy observation.
For our purposes here, we use a two-parameter gener-
alized Laplacian distribution, also used by Mallat [11]:

Px(x) ∝ e−|x/s|p . (2)

The distribution is zero-mean and symmetric, and the
parameters {s, p} are directly related to the second and
fourth moments. Specifically (after consultation with
an integral table) one obtains:

σ2 =
s2Γ( 3

p )

Γ( 1
p )

, κ =
Γ( 1

p )Γ( 5
p )

Γ2( 3
p )

, (3)

where Γ(x) =
∫ ∞
0 tx−1e−t dt, the well known “gamma”

function. Given the sample variance and kurtosis of
a histogram, we can solve for the two parameters of
our model pdf. Typical values for p are in the range
[0.5, 1.0]. This method of model density estimation is
simple and direct, but clearly suboptimal. In the cur-
rent context, the quality of the estimator should be
tested by comparing the noise removal results using
the sample (histogram) statistics, and those using the
model pdf: such a comparison is given in section 4.
We are also interested in a more realistic “blind” al-
gorithm, in which the parameters are estimated from
noisy observations. We note that the second and fourth
moments of a generalized Laplacian signal corrupted by
additive Gaussian white noise are:

σ2 = σ2
n +

s2Γ( 3
p )

Γ( 1
p )

, m4 = 3σ4
n +

6σ2
ns2Γ( 3

p )

Γ( 1
p )

+
s4Γ( 5

p )

Γ( 1
p )

.

Assuming σn is known, the measurements of these two
moments of the noisy data is sufficient to estimate the
model pdf parameters. Results of such an algorithm
are given in section 4.
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(a)

  

(b)

(c)

  

(d)

Figure 4. Noise reduction example. (a) Original image (cropped). (b) Image contaminated with additive Gaussian
white noise (SNR = 9.00dB). (c) Image restored using (semi-blind) Wiener filter (SNR = 11.88dB). (d) Image restored
using (semi-blind) Bayesian estimator (SNR = 13.82dB).

ful in other applications, such as image compression or
texture synthesis.
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original image image + noise

Wiener filter wavelet coring

=
∫

dx Py|x(y|x) Px(x) x∫
dx Py|x(y|x) Px(x)

=
∫

dx Pn(y − x) Px(x) x∫
dx Pn(y − x) Px(x)

, (1)

where Pn indicates the probability density function of
the noise, and Px the prior probability density function
of the signal. The denominator is the pdf of the noisy
observation, computed via convolution of the noise and
signal pdf’s. In order to use this equation to estimate
the original signal value x, we must know both of these
probability density functions.
Consider a few simple examples. First, let the noise
have a zero-mean Gaussian distribution with variance
σ2

n, and let the signal prior be a zero-mean Gaussian
with variance σ2

s . In this case, a well-known closed-
form solution exists:

x̂(y) =
σ2

s y

σ2
s + σ2

n

.

The solution is a simple linear rescaling of the measure-
ment. When applied to the coefficients of a Fourier
transform, this estimator corresponds to the Wiener
filter. When applied to subbands of a wavelet trans-
form, the solution is an approximation to the Wiener
filter, in which the power spectral density information
is averaged over each of the subbands.
Now consider the case in which the noise distribution
is Gaussian, but the signal prior is a more sharply
peaked distribution, such as that shown in figure 1. In
such cases, a closed-form expression for the estimator
in equation (1) may not be available, but a numerical
solution may be used.2. We have computed a numeri-
cal approximation of the estimator for the histograms
illustrated figure 1. The estimator is illustrated graph-
ically in figure 2. Note that this estimator now corre-
sponds to a nonlinear “coring” operation: large ampli-
tude values are preserved, and small amplitude values
are suppressed. This is intuitively sensible: given the
substantial signal probability mass at x = 0, small val-
ues of y are assumed to have arisen from a value of
x = 0. This curve is similar to the soft-thresholding
functions that have been previously devised by more
ad hoc methods; the Bayesian derivation thus provides
a principled justification for coring systems.

2. PARAMETERIZED MODEL FOR
WAVELET COEFFICIENT STATISTICS

The Bayesian estimator discussed above relies on a
knowledge of the signal point statistics. In order to uti-
lize it, we need a parameterized model for these pdf’s
such that: 1) the model provides a good fit to the

2One must, in practice, take care to regularize singularities
resulting from distribution points with very small probability.
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Figure 2. Bayesian estimator (symmetrized) for
the signal and noise histograms shown in figure 1.
Superimposed on the plot is a straight line indicat-
ing the identity function.

statistics of natural images, and 2) one can estimate
the model parameters from the noisy observation.
For our purposes here, we use a two-parameter gener-
alized Laplacian distribution, also used by Mallat [11]:

Px(x) ∝ e−|x/s|p . (2)

The distribution is zero-mean and symmetric, and the
parameters {s, p} are directly related to the second and
fourth moments. Specifically (after consultation with
an integral table) one obtains:

σ2 =
s2Γ( 3

p )

Γ( 1
p )

, κ =
Γ( 1

p )Γ( 5
p )

Γ2( 3
p )

, (3)

where Γ(x) =
∫ ∞
0 tx−1e−t dt, the well known “gamma”

function. Given the sample variance and kurtosis of
a histogram, we can solve for the two parameters of
our model pdf. Typical values for p are in the range
[0.5, 1.0]. This method of model density estimation is
simple and direct, but clearly suboptimal. In the cur-
rent context, the quality of the estimator should be
tested by comparing the noise removal results using
the sample (histogram) statistics, and those using the
model pdf: such a comparison is given in section 4.
We are also interested in a more realistic “blind” al-
gorithm, in which the parameters are estimated from
noisy observations. We note that the second and fourth
moments of a generalized Laplacian signal corrupted by
additive Gaussian white noise are:

σ2 = σ2
n +

s2Γ( 3
p )

Γ( 1
p )

, m4 = 3σ4
n +

6σ2
ns2Γ( 3

p )

Γ( 1
p )

+
s4Γ( 5

p )

Γ( 1
p )

.

Assuming σn is known, the measurements of these two
moments of the noisy data is sufficient to estimate the
model pdf parameters. Results of such an algorithm
are given in section 4.
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The "Independent Components" of 
Scenes are Edge Filters 
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Natural 

It has previously been suggested that neurons with line and edge selectivities found in primary 
visual cortex of cats and monkeys  form a sparse, distributed representation of natural scenes, and it 
has been reasoned that such responses should emerge from an unsupervised learning algorithm that 
attempts to find a factorial code of  independent visual features. We show here that a new 
unsupervised learning algorithm based on information maximization,  a nonlinear "infomax" 
network,  when applied to an ensemble of natural scenes produces sets of  visual filters that are 
localized and oriented. Some of  these filters are Gabor-like and resemble those produced by the 
sparseness-maximization network.  In addition, the outputs of  these filters are as independent as 
possible, since this infomax network performs Independent Components  Analysis or ICA, for 
sparse (super-gaussian) component  distributions. We compare the resulting ICA filters and their 
associated basis functions, with other decorrelating filters produced by Principal Components  
Analysis (PCA) and zero-phase whitening filters (ZCA). The ICA filters have more sparsely 
distributed (kurtotic) outputs on natural scenes. They also resemble the receptive fields of  simple 
cells in visual cortex, which suggests that these neurons form a natural, information-theoretic 
coordinate system for natural images. © 1997 Elsevier Science Ltd 

Information theory Independent components Neural network learning 

INTRODUCTION 

Both the classic experiments of Hubel & Wiesel (1968) 
on neurons in visual cortex, and several decades of 
theorizing about feature detection in vision (Marr & 
Hildreth, 1980), have left open the question most 
succinctly phrased by Barlow & Tolhurst (1992) "Why 
do we have edge detectors?" 

That is: are there any coding principles which would 
predict the formation of localized, oriented receptive 
fields? Barlow's answer was that edges are suspicious 
coincidences in an image. Since the mathematical 
framework for analysing such "coincidences" is Informa- 
tion Theory (Cover & Thomas, 1991), Barlow was thus 
led to propose that our visual cortical feature detectors 
might be the end result of a "redundancy reduction" 
process (Barlow, 1989; Atick, 1992), in which the 
activation of each feature detector is supposed to be as 
"statistically independent" from the others as possible. 
Such a "factorial code" potentially involves dependen- 
cies of all orders, but most studies have used only the 

*Howard Hughes Medical Institute, Computational Neurobiology 
Laboratory, The Salk Institute, 10010 N. Torrey Pines Road, La 
Jolla, CA 92037, U.S.A. 

tTo whom all correspondence should be addressed [E-mail tony@- 
salk.edu]. 

second-order statistics required for "decorrelating" the 
outputs of a set of feature detectors. 

A variety of Hebbian feature-learning algorithms for 
decorrelation have been proposed (Linsker, 1992; Miller, 
1988; Oja, 1989; Sanger, 1989; Frldi~ik, 1990; Atick & 
Redlich, 1993), but in the absence of particular external 
constraints the solutions to the decorrelation problem are 
non-unique (see: Decorrelation and Independence). One 
popular decorrelating solution is Principal Components 
Analysis (PCA) but the principal components of natural 
scenes amount to a global spatial frequency analysis 
(Hancock et al., 1992). Therefore, second-order statistics 
alone do not suffice to predict the formation of localized 
edge detectors. 

Additional constraints are required. Field (1987, 1994) 
has argued for the importance of sparse, or "minimum 
entropy", coding (Barlow, 1994), in which each feature 
detector is activated as rarely as possible. This has led to 
feature-learning algorithms (Intrator, 1992) with a 
"projection pursuit" (Huber, 1985) flavour, the most 
successful of which has been the Olshausen & Field 
(1996) demonstration of the self-organization of local, 
oriented receptive fields using a sparseness criterion. 

Here we present results similar to those of Olshausen 
and Field, using a direct information-theoretic criterion 
which maximizes the joint entropy of a nonlinearly 
transformed output feature vector. We have previously 
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FIGURE 4. The matrix of  144 filters obtained by training on ZCA-whitened natural images. Each filter is a row of  the matrix W. 
The ICA basis functions on ZCA-whitened data are visually the same as the ICA filters. 

The full ICA transform from the raw image was 
calculated as the product of the sphering (ZCA) matrix 
and the learnt matrix: W, = WWz.  The basis function 
matrix, A, was calculated as W~ ~. A PCA matrix, Wp, 
was calculated from equation (7). The original (un- 
sphered) data were then transformed by all three 
decorrelating transforms, and for each the kurtosis of 
each of the 144 filters was calculated, according to the 
formula: 

K i - -  { ( l ' ~ i -  {bti))4) 3 ( 1 9 )  

Then the mean kurtosis for each filter type (ICA, PCA, 
ZCA) was calculated, averaging over all filters and input 
data. This quantity is used to quantify the sparseness of 
the filters, as will be explained in the Discussion. 

RESULTS 

The filters and basis functions resulting from training 
on natural scenes are displayed in Figs 3 and 4. Figure 3 

displays example filters and basis functions of each type. 
The PCA filters, Fig. 3(a), are spatially global and 
ordered in frequency. The ZCA filters and basis functions 
are spatially local and ordered in phase. The ICA filters, 
whether trained on the ZCA-whitened images, Fig. 3(c), 
or the original images, Fig. 3(d), are semi-local filters, 
most with a specific orientation preference. The basis 
functions, Fig. 3(e), calculated from the Fig. 3(d) ICA 
filters, are not local, and look like the edges that might 
occur in image patches of this size. Basis functions in the 
column Fig. 3(d) (as with PCA filters) are the same as the 
corresponding filters, since the matrix W (as with Wp) is 
orthogonal. This is the ICA-matrix for ZCA-whitened 
images. 

In order to show the full variety of ICA filters, Fig. 4 
shows, with lower resolution, all 144 filters in the matrix 
W. The general result is that ICA filters are localized and 
mostly oriented. Unlike the basis functions displayed in 
Olshausen & Field (1996), they do not cover a broad 
range of spatial frequencies. However, the appropriate 
comparison to make is between the ICA basis functions, 

THE "INDEPENDENT COMPONENTS" OF NATURAL SCENES ARE EDGE FILTERS 3331 

AV cx (I + V)(I  + guT). (16) 

In terms of an individual feedback weight, vii, this rule 
is: 

~Vij (X ~iJ -~- Vij -{- UJ( ~i + Z Vik~k (17) 

where g0 = 1 when i = j,  0 otherwise. Thus, the feedback 
rule is also non-local, this time involving a backwards 
pass through the (recurrent) weights, of quantities, yk, 
calculated from the nonlinear output vector, y. Such a 
recurrent ICA system has been further developed for 
recovering sources which have been linearly convolved 
with temporal filters by Torkkola (1996) and Lee et  al. 
(1997). 

The non-locality of the algorithm is interesting when 
we come to consider the biological significance of the 
learned filters later in this paper. 
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METHODS 

We took four natural scenes involving trees, leaves and 
so on* and converted them to greyscale byte values 
between 0 and 255. A training set, {x}, was then 
generated of 17 595, 12 × 12 samples from the images. 
The training set was "sphered" by subtracting the mean 
and multiplying by twice the local symmetrical (zero- 
phase) whitening filter of equation (8): 

x +--- 2Wz({X} - (x)) (18) 

This removes both first- and second-order statistics 
from the data, and makes the covariance matrix o f x  equal 
to 4I. This is an appropriately scaled starting point for 
further training since infomax [equation (13)] on raw 
data, with the logistic function, Yi = (1 + e x p ( - u i )  -1,  
produces a u-vector which approximately satisfies 
(uu T) = 4I. Therefore, by prewhitening x in this way, 
we can ensure that the subsequent transformation, 
u = Wx, to be learnt should approximate an orthonormal 
matrix (rotation without scaling), roughly satisfying the 
relation w T w  = I (Karhunen et  al. ,  1996). This W moves 
the solution along the decorrelating manifold from ZCA 
to ICA (see Fig. 2). 

The matrix, W, is then initialized to the identity matrix, 
and trained using the logistic function version of equation 
(13), in which equation (12) evaluates as: yi = 1 - 2yi. 
The training was conducted as follows: 30 sweeps 
through the data were performed, at the end of each of 
which the order of the data vectors was permuted to avoid 
cyclical behaviour in the learning. During each sweep, 
the weights were updated only after every 50 presenta- 
tions in order that the vectorized MATLAB code could be 
more efficient. The learning rate [proportionality constant 
in equation (13)] was set as follows: 21 sweeps at 0.001, 
and three sweeps at each of 0.0005, 0.0002 and 0.0001. 
This process took 2 hours running MATLAB on a Sparc- 
20 machine, though a reasonable result for 12 × 12 filters 
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*The images (gif files) used are available in the Web directory ftp:// 
ftp.cnl.salk.edu/pub/tony/VRimages. 
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FIGURE 3. Selected decorrelating filters and their basis functions 
extracted from the natural scene data. Each type of decorrelating filter 
yielded 144 12 × 12 filters, of  which we only display a subset here. 
Each column contains filters or basis functions of  a particular type, and 
each of  the rows has a number relating to which row of the filter or 
basis function matrix is displayed. (a) PCA (Wp): The first, fifth, 
seventh etc principal components, calculated from equation (7), 
showing increasing spatial frequency. There is no need to show basis 
functions and filters separately here since for PCA, they are the same 
thing. (b) ZCA (Wz): The first six entries in this column show the 1- 
pixel wide centre-surround filter which whitens while preserving the 
phase spectrum. All are identical, but shifted. The lower six entries (37, 
60... 144) show the basis functions instead, which are the columns of  
the inverse of  the Wz matrix. (c) W: the weights learnt by the ICA 
network trained on Wz-whitened data, showing (in descending order) 
the DC filter, localized oriented filters, and localized checkerboard 
filters. (d) W1: The corresponding ICA filters, calculated according to 
Wz = WWz,  looking like whitened versions of the W-filters. (e) A: the 
corresponding basis functions, or columns of  W l  1. These are the 
patterns which optimally stimulate their corresponding ICA filters, 

while not stimulating any other ICA filter, so that WzA = I. 

can be achieved in 30 min. To verify that the result was 
not affected by the starting condition of W = I, the 
training was repeated with several randomly initialized 
weight matrices, and also on data that were not 
prewhitened. The results were qualitatively similar, 
though convergence was much slower. 
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First-order Markov process (‘Kalman filter’)

Prediction:

P (xt|y0...yt−1) =

∫
∞

−∞

P (xt|xt−1) P (xt−1|y0...yt−1) dxt−1

Update:

P (xt|y0...yt) ∝ P (yt|xt) P (xt|y0...yt−1)

t← t + 1

xt = Axt−1 + wt−1

yt = Hxt + nt

Linear generative model:


