





jumping spider

C. elegans

desert ant





weakly electric fish

sand wasp

## Spatial perception in weakly electric fish





Non-conductor

## Phototransduction













|    |    | nannei | t  |
|----|----|--------|----|
| /. | 6  |        | Ca |
|    | Th | )      |    |
| 5  | 2  | /      |    |
| 0  | -  |        |    |

glutamate molecule vesicle

### Photoactivation:

A photon is absorbed by a visual pigment molecule lying in one of the membranous discs contained in the outer segment.

#### **Biochemical cascade:**

In the dark there is a steady movement of positively charged ions (cations) into the outer segment, via ionic channels. The visual pigment molecule, activated by the photon, initiates a cascade of events that ultimately closes these channels.

### Electrotonic spread:

Normally, the movement of cations into the outer segment is balanced by the outward movement of cations, mainly through the inner segment. The decrease in inward current creates a net outward current, which makes the interior of the cell even more negative. This hyperpolarization of the cell membrane spreads throughout the cell. This is how the information about light absorption spreads to the synaptic terminal.

# Steps in phototransduction

#### Synaptic deactivation:

At the synaptic terminal there are calcium channels that open when the voltage across the cell membrane depolarizes and close when it hyperpolarizes. Thus the hyperpolarization of the cell membrane leads to a decrease in the rate of entry of calcium ions. Free calcium ions are continuously being removed from the cell interior, so a decrease in the rate of entry of calcium leads to a decrease in the internal concentration of free calcium ion.

### Decrease in glutamate release:

The synaptic terminal contains vesicles that in turn contain glutamate molecules. In the presence of calcium ions, they are continuously released into the synaptic cleft. Thus a decrease in the internal concentration of calcium ions leads to a decrease in the rate of release of glutamate molecules.



## Rhodopsin molecule



# Inner Life of the Cell https://www.youtube.com/watch?v=wJyUtbn005Y



# Spontaneous isomerizations determine lower limit of light detection, or visual threshold





## starlight

10<sup>-5</sup>R\*/rod/integration time



## daylight













False positives





False positives

## Poisson distribution

$$P(k) = \frac{\lambda^k e^{-\lambda}}{k!}$$



mean = 
$$\lambda$$
  
variance =  $\lambda$   
std ( $\sigma$ ) =  $\sqrt{\lambda}$ 

### At threshold of human vision

$$\lambda_{\text{background}} = 1/160$$

$$\lambda_{\rm signal} = 1/160 + 1/5000$$

$$\frac{\lambda_{\text{signal}}}{\lambda_{\text{background}}} = 1.032$$



## Energy expenditure as a function of light level



Rod bipolar cells sum thresholded outputs of rods (not linear) (Sampath, Field, Rieke 2002-2004)

