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Encoding and decoding are related through the joint 
distribution over stimulus (v) and response (n)

decoding encoding
n = f(v)̂v = g(n)

P(stimulus | response) P(response | stimulus)

From Spikes, by Rieke, Warland, de Ruyter, & Bialek
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Strategy for estimating information rate

Adapted from Spikes, by Rieke, Warland, de Ruyter, & Bialek

1. Estimate signal from spikes ⇢(t) ! ŝ(t)

2. Compute noise in estimate ñ(!) = s̃(!)� ˆ̃s(!)

3. Compute SNR SNR(!) =
h|s̃(!)|2i
h|ñ(!)|2i

4. Calculate lower bound to 
information rate from SNR R =

1

2

Z
d!

2⇡
log2[1 + SNR(!)]
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 The coding challenge 

 To recode analogue voltages carrying more than 100 bits per second 
to spikes requires high firing rates. For example, to recode 100 bits per 
second, assuming no noise and no temporal correlation between spikes, 
would require about 30 spikes per second. However, real axons  do  
have noise, plus temporal correlations that increase with spike rate. For 
example, an optic axon firing even at a modest mean rate (~10 Hz) fills only 
about 30% of its theoretical channel capacity (Koch et al., 2004, 2006). 
Moreover, this fraction declines as spike rate rises (Koch et al., 2006). 
Therefore, to encode 100 bits per second would require the spike rate to 
substantially exceed 100 Hz. Although neurons can fire transiently at 
much higher frequencies, those frequencies are uneconomical and largely 
unsustainable. 

 The stage selected for recoding depends on the magnitude of the initial 
information rate. Recall that higher spike rates need larger diameter axons 

smell hearingtouch vision

 Figure 10.1 
  Analogue sensors recode to spikes at different stages . Smell and various touch sen-
sors recode directly to spikes; sound sensors use one synaptic stage (arrowed), and 
photo sensors use two synaptic stages (arrows) before spiking. For exceptions to this 
broad rule, see Baden et al. (2013). 
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and thus use disproportionately more space and energy because they rise as 
diameter squared (chapter 3). Recall that vestibular axons, which fire con-
tinuously at about 100 Hz, are extremely thick (figure 4.6). This design 
works because vestibular axons are relatively few. However, optic axons are 
100-fold more numerous, so if they had the same caliber as a vestibular 
axon, our optic nerve would be 10-fold thicker, one centimeter instead of 
one millimeter — and the  blind spot  where the optic nerve exits the retina 
would be 100-fold greater in area, 75 mm 2  instead of 0.75 mm 2  (B. Peterson 
and D. Dacey,  M. nemestrina , unpublished data). Consequently, sensory 
neurons must either pay a high unit price, like vestibular axons, or use 
lower mean spike rates (figure 10.2).    

 Low-rate sensors code directly 

 An olfactory sensory neuron collects information at low rates. A sensor 
expresses only a single type of receptor protein, and there are about 1,000 
types, so each sensor patrols a relatively small fraction of the full odorant 
spectrum. Odorant particles travel slowly, spreading out as they go, and 
therefore an olfactory source is blurry in space and time. To localize an 
odorant roughly in time and intensity requires a sensor to capture relatively 
few particles, each corroborating the others, and capturing more would add 
little information. Therefore, the sensor ’ s delicate cilia express receptor 
molecules sparsely (  figure 10.3 ).  1   Moreover, when a neuron has signaled the 
binding of a few odorant molecules, it adapts. Thus, the messages are rare, 
slow, and brief. 
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 Figure 10.2 
  Sensor axon caliber trades off with axon number . Axon diameter varies across types 
by 10-fold, so cross-sectional area varies by nearly 100-fold. Array size (axon number) 
varies reciprocally by 1,000-fold. Shown here are mean diameters and axon numbers 
for human (Perge et al., 2012). 

From Sterling & Laughlin
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 Figure 10.5 
  Vestibular hair cells, transducing low frequencies, can sum their analogue signals be-
fore recoding to spikes. Upper : Head rotates slowly (1 Hz). Spikes from second-order 
vestibular axon are modulated linearly through the full cycle around 50 spikes per 
second.  Lower:  Adjacent hair cells each converge multiple active zones onto single 
afferent fiber. Modified from Eatock et al. (2008). 

From Sterling & Laughlin
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Neural responses are half-wave rectified (action 
potentials are positive-only).  Signals are thus combined 
in a push-pull fashion, similar to push-pull amplifiers.

From:  Neural Engineering, by Eliasmith & Anderson



Push-Pull decoding

From:  Neural Engineering, by Eliasmith & Anderson
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pairs of spiking neurons. Specifically, we have defined the encoding

R(t;A) =
M�

i,k

⌦i⇤(t � tik(A)), (4.20)

and decoding

x̂(t) = h(t) ⇥ R(t;A), (4.21)

where

h(↵n) =
⌃A(↵n)R⇥(↵n;A)⌥A⌘

|R(↵n;A)|2
✓

A

. (4.22)

4.3.4 Discussion

Now that we know how to find the optimal temporal filter, and have a means of deter-

mining how good it is, let us consider the linear decoder, h(t), in more detail. As just
noted, our estimate of the signal that is encoded by the neurons into the spike train is

given by (4.21). Substituting (4.20) into (4.21), and recalling the result in (4.13), we

can write

x̂(t) =
M�

i,k

⌦i⇤(t � tik) ⇥ h(t) (4.23)

=
M�

i,k

⌦ih(t � tik). (4.24)

In essence, this equation says that our estimate is found by putting a waveform in the

shape of the linear filter at each spike time and summing the results (see figure 4.7).

This estimate is closely related to the population estimates we used in the previous

chapters. In particular, we could re-write (4.24) as

x̂(t;A) =
M�

i

ai(x(t;A))⌦i(t), (4.25)

where M is the number of time-steps we have divided the signal into, the ai are 1, 0,

or -1, depending whether or not a neuron emitted a spike, and the ⌦i(t) are all time-
shifted versions of h(t) (i.e., h(t � ti)). This notation is unusual because the neuron
activity in the population code is mapped onto activity (the presence of a spike) at

some time ti, so, as in the case of the population code, for each ‘active element’ we
need one decoder. This results in a large number, M , of temporal decoders, all of

which are essentially the same. While awkward, this notation shows exactly how the

temporal decoders and the population decoders perform the same function—both serve

to translate an activity back into the original domain that was encoded (i.e., either x for
the population code or x(t) for the temporal code). As an aside, it is interesting to note
that most of the coefficients, ai, in (4.25) will be zero for any particular signal. In this

sense, the representation is a ‘sparse’ representation. It makes sense that the neural
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'On' spikes

'Off' spikes

Input signal

Decoded estimate

Figure 4.7: An example of linear filtering. The input signal, x(t), is fed into the somas
of a pair of on-off neurons which encode the signal into ‘on’ and ‘off’ spikes. To get

an estimate, x̂(t), of that signal, we can linearly filter those spike trains by effectively
placing the filter at the time of occurrence of each spike and summing the result. When

the on and off neurons are symmetrical, their respective filters will be ‘mirror images’,

as shown in the figure.

code is sparse, as this results in more efficient coding (Olshausen 2000) and a better

use of available energy (Baddeley 1996).

Because x(t) is a function, its representation is much like the representation of x(⇧)
that we discussed in section 3.2. Looking again at equation (3.6) we see that it is indeed

very similar to (4.25). However, there is also an important difference between popula-

tion and temporal encoding that becomes evident from this comparison. Namely, there

is no temporal encoding function in the sense of ⌦̃i(⇧). This is because the temporal
encoding is defined completely by the intrinsic properties of the neuron, which are cap-

tured by Gi [·]. This difference means that it is much more difficult to derive the same
kinds of analytical results for understanding temporal coding as we do for population

coding (see section 7.3).

Nevertheless, it proves to be useful that both temporal and population codes in

neurons can be characterized using linear coding, since it allows us to unify these two

kinds of coding (as we discuss in section 5.1). Before doing so, however, let us consider

a number of examples of how to use this characterization of temporal coding to measure

the efficiency of information transmission in neural models. We begin with the simple

LIF neuron and progress to more complex models. Perhaps the most important lesson

to be learned from these examples is that the basic LIF model has just about the same

information transmission characteristics as its more complex counterparts. And, both

kinds of models perform comparably to real neurons.
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and thus use disproportionately more space and energy because they rise as 
diameter squared (chapter 3). Recall that vestibular axons, which fire con-
tinuously at about 100 Hz, are extremely thick (figure 4.6). This design 
works because vestibular axons are relatively few. However, optic axons are 
100-fold more numerous, so if they had the same caliber as a vestibular 
axon, our optic nerve would be 10-fold thicker, one centimeter instead of 
one millimeter — and the  blind spot  where the optic nerve exits the retina 
would be 100-fold greater in area, 75 mm 2  instead of 0.75 mm 2  (B. Peterson 
and D. Dacey,  M. nemestrina , unpublished data). Consequently, sensory 
neurons must either pay a high unit price, like vestibular axons, or use 
lower mean spike rates (figure 10.2).    

 Low-rate sensors code directly 

 An olfactory sensory neuron collects information at low rates. A sensor 
expresses only a single type of receptor protein, and there are about 1,000 
types, so each sensor patrols a relatively small fraction of the full odorant 
spectrum. Odorant particles travel slowly, spreading out as they go, and 
therefore an olfactory source is blurry in space and time. To localize an 
odorant roughly in time and intensity requires a sensor to capture relatively 
few particles, each corroborating the others, and capturing more would add 
little information. Therefore, the sensor ’ s delicate cilia express receptor 
molecules sparsely (  figure 10.3 ).  1   Moreover, when a neuron has signaled the 
binding of a few odorant molecules, it adapts. Thus, the messages are rare, 
slow, and brief. 
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 Figure 10.2 
  Sensor axon caliber trades off with axon number . Axon diameter varies across types 
by 10-fold, so cross-sectional area varies by nearly 100-fold. Array size (axon number) 
varies reciprocally by 1,000-fold. Shown here are mean diameters and axon numbers 
for human (Perge et al., 2012). 

From: Sterling & Laughlin (2017)
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 Figure 10.4 
  Auditory hair cell, transducing high frequencies, captures too much information to 
recode directly to spikes . Instead, it recodes to vesicles.  Upper left : Each active zone 
drives one dedicated spiking axon (four of about 20 are shown).  Middle left : Tempo-
ral precision is preserved by concatenating two cooperative mechanisms for vesicle 
fusion. This also reduces redundant spiking. Calcium concentration rises at the peak 
of each stimulus cycle (1 kHz), but only the middle cycle opens sufficient calcium 
channels for the concentration to reach threshold for binding five calcium ions to 
the vesicle ’ s calcium sensor.  Lower left : Spike responses in postsynaptic axon to pure 
tone (676 Hz) to which it is selectively tuned (chick). Spikes all align with the peak 
of every cycle, but many trials fail. Reading across 25 cycles of one trial (~35 ms), 
one has little uncertainty about the correlation of spike to stimulus timing, so add-
ing more spikes where there are failures would be redundant.  Upper right : Synaptic 
ribbon tethers to the presynaptic membrane (x) and itself tethers relatively large 
vesicles (45-nm diameter), bringing them into contact with the membrane along a 
ring. Postsynaptic glutamate receptors with low affinity (fast) cluster postsynaptically 
as a gradient that peaks at the ring and declines toward the center. Thus, the recep-
tors are distributed to catch the fast peaks in glutamate concentration.  Lower right : 
Number of active zones peaks near middle of cochlea at middle of frequency range 
and peak of sensitivity. Recording is modified and reprinted with permission from 
Moser et al. (2006); distribution of glutamate receptors, vesicle size, and distribution 
of active zones are modified and reprinted with permission from Meyer et al. (2009). 

From: Sterling & Laughlin (2017)



(from Delgutte 1997)

Spikes of auditory nerve fibers are phase-locked to components of 
sound waveform

58 CHAPTER 4. HUMAN HEARING OVERVIEW

Figure 4.8: Period histograms of auditory nerve fiber firings in response to a periodic vowel sound show
pitch-synchronized activity, for fibers of all CFs (Delgutte, 1997). Even fibers that primarily synchronize to
the formant (vocal tract resonance) frequencies (here F1, 8 cycles per pitch period, and F2, 14 cycles per pitch
period) show a pattern that repeats at the pitch rate. Synchrony to the formant frequencies spreads to fibers
of higher CF. Fibers with CF above 2 kHz show synchrony to a wide range of lower frequencies, in a pattern
prominently synchronized to the pitch rate. The pitch here, 100 Hz, is quite low relative to the cat’s auditory-
system tuning, so we do not see the resolved low harmonics (2 through 5 cycles per pitch period) that would
likely be apparent in human auditory nerve data.

Fig. 3. A. Neurogram display of (cat) auditory-
nerve activity in response to a synthetic [ae] 
vowel presented at 60 dB SPL. Each trace 
shows a smoothed period histogram for one 
auditory-nerve fiber whose CF was 
approximately equal to the vertical ordinate. 
The histogram bin width is 50 μsec, and its base 
period is 20 msec, corresponding to two pitch 
periods of the vowel stimulus. Brackets indicate 
CF regions in which ANFs phase-lock primarily 
to the first or second formant frequency. B. 
Waveform of two pitch periods of the [ae] 
stimulus, which had a 100-Hz fundamental. 

First formant

Second formant
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Information in the Zero Crossings 
of Bandpass Signals 

By B. F. LOGAN, JR. 

(Manuscript received October 4, 1976) 

An interesting subclass of bandpass signals \h \ is described wherein 
the zero crossings of h determine h within a multiplicative constant. 
The members may have complex zeros, but it is necessary that h should 
have no zeros in common with its Hilbert transform fi other than real 
simple zeros. It is then sufficient that the band be less than an octave 
in width. The subclass is shown to include full-carrier upper-sideband 
signals (of less than an octave bandwidth). Also it is shown that full-
carrier lower-sideband signals have only real simple zeros (for any ratio 
of upper and lower frequencies) and, hence, are readily identified by 
their zero crossings. However, under the most general conditions for 
uniqueness, the problem of actually recovering h from its sign changes 
appears to be very difficult and impractical. 

I. INTRODUCTION 

Voelcker and Requicha1 raised the question, among others, as to when 
a bandpass signal h(t) might be recovered (within a multiplicative 
constant) from sgn \h(t)\, that is, from its zero crossings. There are really 
two questions here that should be treated separately: the question of 
uniqueness and the question of recoverability. Recoverability implies 
that there is an effective (stable) way of recovering the signal from the 
data. Uniqueness does not always imply recoverability. For example, 
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Retinal oscillations carry information to cortex
(Koepsell, Wang, Hirsch & Sommer 2009)

www.frontiersin.org May 2010 | Volume 4 | Issue 1 | 58

One possibility we explore is the case in which 
the oscillatory trend of the retinal cell does not con-
tain information about the visual stimulus. Even 
in this situation, the oscillations might increase the 
amount of information about local retinal features 
transmitted by the thalamic rate code. They would 
do so by a process akin to amplitude modulation, 
in which information about the retinal feature is 
reproduced in the frequency band of the oscilla-
tions. This redundant information could be read 
out and decoded in the cortex by various mecha-
nisms, such as coincidence detection of afferent 
inputs or by the relative phase of the thalamic and 
cortical oscillations. A specific role for the second 
channel could be de-noising. Further, the amplitude 
modulation of the afferent spike train generates a 
signal that might enable cortical oscillations (e.g., 

relay cells that received periodic synaptic inputs 
transmitted a significant amount of information 
in the gamma frequency band. For some cells, the 
amount of information in the oscillation-based 
(high frequency) channel was severalfold higher 
than that conveyed by rate-coded (low frequency) 
channel; compare Figure 4C with Figure 4D.

POTENTIAL NEW ROLES FOR OSCILLATIONS
Gamma oscillations in retina and thalamus pro-
vide a novel channel that is able to convey infor-
mation to the cortex. How might this channel 
contribute to visual function? In the following 
we outline various hypotheses about the potential 
roles for the new channel and how they might 
be tested.

Koepsell et al.

Figure 4 | Multiplexed information in the visual system. (A) Event times 
aligned to stimulus onset displayed as averaged spike rate (red curve)  
and rasters for spikes (red), and EPSPs (blue) for 20 trials of a movie clip; spike 
rasters were smoothed with a Gaussian window (S = 2 ms) before averaging. 
(B) Responses corrected for variation in latency o10 ms by using periodicity  
in the ongoing activity that preceded stimulus onset; conventions as in (A).  
(C) Top, power spectrum of thalamic spike trains decomposed into signal 
(solid line) and noise (dashed line). Bottom, spectral information rate. The area 

under the curve corresponds to a total information rate of 12.7 bit/s; the mean 
spike rate 29 spikes/s yields a value of 0.4 bit/spike. (D) Power spectrum  
(top) of de-jittered spike train decomposed into signal (solid line) and noise 
(dashed line); spectral information rate (bottom). De-jittering increased the 
total information from 0.4 bit/spike (C) to 1.2 bit/spike (Koepsell et al., 2009). 
The movie stimulus was presented with 30 frames/s on a monitor with 
a high refresh rate (150 Hz). The neural response did not lock to the frame 
update or monitor refresh.

See also Haider et al. (2023) Narrowband gamma oscillations propagate and synchronize 
throughout the mouse thalamocortical visual system. Neuron, 111(7), 1076-1085.

Locked to external stimulus onset Locked to ongoing oscillation phase


