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and thus use disproportionately more space and energy because they rise as 
diameter squared (chapter 3). Recall that vestibular axons, which fire con-
tinuously at about 100 Hz, are extremely thick (figure 4.6). This design 
works because vestibular axons are relatively few. However, optic axons are 
100-fold more numerous, so if they had the same caliber as a vestibular 
axon, our optic nerve would be 10-fold thicker, one centimeter instead of 
one millimeter — and the  blind spot  where the optic nerve exits the retina 
would be 100-fold greater in area, 75 mm 2  instead of 0.75 mm 2  (B. Peterson 
and D. Dacey,  M. nemestrina , unpublished data). Consequently, sensory 
neurons must either pay a high unit price, like vestibular axons, or use 
lower mean spike rates (figure 10.2).    

 Low-rate sensors code directly 

 An olfactory sensory neuron collects information at low rates. A sensor 
expresses only a single type of receptor protein, and there are about 1,000 
types, so each sensor patrols a relatively small fraction of the full odorant 
spectrum. Odorant particles travel slowly, spreading out as they go, and 
therefore an olfactory source is blurry in space and time. To localize an 
odorant roughly in time and intensity requires a sensor to capture relatively 
few particles, each corroborating the others, and capturing more would add 
little information. Therefore, the sensor ’ s delicate cilia express receptor 
molecules sparsely (  figure 10.3 ).  1   Moreover, when a neuron has signaled the 
binding of a few odorant molecules, it adapts. Thus, the messages are rare, 
slow, and brief. 
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 Figure 10.2 
  Sensor axon caliber trades off with axon number . Axon diameter varies across types 
by 10-fold, so cross-sectional area varies by nearly 100-fold. Array size (axon number) 
varies reciprocally by 1,000-fold. Shown here are mean diameters and axon numbers 
for human (Perge et al., 2012). 

(from Sterling & Laughlin 2015)
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 The coding challenge 

 To recode analogue voltages carrying more than 100 bits per second 
to spikes requires high firing rates. For example, to recode 100 bits per 
second, assuming no noise and no temporal correlation between spikes, 
would require about 30 spikes per second. However, real axons  do  
have noise, plus temporal correlations that increase with spike rate. For 
example, an optic axon firing even at a modest mean rate (~10 Hz) fills only 
about 30% of its theoretical channel capacity (Koch et al., 2004, 2006). 
Moreover, this fraction declines as spike rate rises (Koch et al., 2006). 
Therefore, to encode 100 bits per second would require the spike rate to 
substantially exceed 100 Hz. Although neurons can fire transiently at 
much higher frequencies, those frequencies are uneconomical and largely 
unsustainable. 

 The stage selected for recoding depends on the magnitude of the initial 
information rate. Recall that higher spike rates need larger diameter axons 

smell hearingtouch vision

 Figure 10.1 
  Analogue sensors recode to spikes at different stages . Smell and various touch sen-
sors recode directly to spikes; sound sensors use one synaptic stage (arrowed), and 
photo sensors use two synaptic stages (arrows) before spiking. For exceptions to this 
broad rule, see Baden et al. (2013). 
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 Figure 4.6 
  Unit cost of sending information differs greatly across senses .  Upper row : Electron 
micrographs of cross sections through the olfactory, optic, and cochlear nerves 
shown at the same magnification.  Lower left : Distributions of axon diameters. The 
auditory axons are nearly sevenfold thicker than the olfactory axons, so their unit 
volume and energy cost are nearly 50-fold greater. In parentheses are the number of 
axons serving that sense. The relation is reciprocal: low unit cost allows a many-unit 
design (olfactory) whereas high unit cost restricts the design to fewer units (audi-
tory).  Lower right : Higher mean firing rates require thicker axons. Vestibular axon 
unit cost is 100-fold greater than that unit cost of an olfactory axon. Reprinted with 
modifications and permission from Perge et al., 2012. 
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analog signals into an appropriate format for encoding 
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Figure 1: a. Schematic of the model (see text for description). The goal is to maximize information
transfer between images x and the neural response r, subject to metabolic cost of firing spikes. b.
Information about the stimulus is conveyed both by the arrangement of the filters and the steepness
of the neural nonlinearities. Top: two neurons encode two stimulus components (e.g. two pixels of
an image, x1 and x2) with linear filters (black lines) whose output is passed through scalar nonlinear
functions (thick color lines; thin color lines show isoresponse contours at evenly spaced output
levels). The steepness of the nonlinearities specifies the precision with which each projection is
represented: regions of steep slope correspond to finer partitioning of the input space, reducing the
uncertainty about the input. Bottom: joint encoding leads to binning of the input space according to
the isoresponse lines above. Grayscale shading indicates the level of uncertainty (entropy) in regions
of the input (lighter shades correspond to higher uncertainty). Efficient codes optimize this binning,
subject to input distribution, noise levels, and metabolic costs on the outputs.

Parameter λj specifies the trade-off between information gained by firing more spikes, and the cost
of generating them. It is difficult to obtain a biologically valid estimate for this parameter, and
ultimately, the value of sensory information gained depends on the behavioral task and its context
[26]. Alternatively, we can use λj as a Lagrange multiplier to enforce the constraint on the mean
output of each neuron.

Our goal is to adjust both the filters and the nonlinearities of the neural population so as to maximize
the expectation of (3) under the joint distribution of inputs and outputs, p(x, r). We assume the
filters are unit norm (‖wj‖=1) to avoid an underdetermined model in which the nonlinearity scales
along its input dimension to compensate for filter amplification. The nonlinearities fj are assumed
to be monotonically increasing. We parameterized the slope of the nonlinearity gj =dfj/dyj using
a weighted sum of Gaussian kernels,

gj(yj |cjk, µjk,σj) =
K
∑

k=1

cjk exp

(

−
(yj − µjk)2

2σ2
j

)

, (4)

with coefficients cjk≥0. The number of kernelsK was chosen for sufficiently flexible nonlinearity
(in our experimentsK = 500). We spaced µjk evenly over the range of yj and chose σj for smooth
overlap of adjacent kernels (kernel centers 2σj apart).

2.1 Computing mutual information

How can we compute the information transmitted by the nonlinear network of neurons? Mutual
information can be expressed as the difference between two entropies, I(X ;R) = H(X)−H(X |R).
The first term is the entropy of the data, which is constant (i.e. it does not depend on the model) and
can therefore be dropped from the objective function. The second term is the conditional differential
entropy and represents the uncertainty in the input after observing the neural response. It is computed
by taking the expectation over output values H(X |R) = Er

[

−
∫

p(x|r) ln p(x|r)dx
]

. In general,
computing the entropy of an arbitrary high dimensional distribution is not tractable. We make several
assumptions that allow us to approximate the posterior, compute its entropy, and maximize mutual
information. The posterior is proportional to the product of the likelihood and the prior, p(x|r) ∝
p(r|x)p(x); below we describe these two functions in detail.
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Figure 2: In the presence of biologically realistic level of noise, the optimal filters are center-
surround and contain both On-center and Off-center profiles; the optimal nonlinearities are hard-
rectifying functions. a. The set of learned filters for 100 model neurons. b. In pixel coordinates,
contours of On-center (Off-center) filters at 50% maximum (minimum) levels. c. The learned non-
linearities for the first four model neurons, superimposed on distributions of filter outputs.
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Figure 3: a. A characterization of two retinal ganglion cells obtained with white noise stimulus
[31]. We plot the estimated linear filters, horizontal slices through the filters, and mean output as
a function of input (black line, shaded area shows one standard deviation of response). b. For
comparison, we performed the same analysis on two model neurons. Note that the spatial scales of
model and data filters are different.

in the number of On-center neurons (bottom left panel). In this case, increasing the number of
neurons restored the balance of On- and Off-center filters (not shown). In the case of vanishing
input and output noise, we obtain localized oriented filters (top left panel), and the nonlinearities are
smoothly accelerating functions that map inputs to an exponential output distribution (not shown).
These results are consistent with previous theoretical work showing that optimal nonlinearity in the
low noise regime maximizes the entropy of the output subject to response constraints [11, 7, 17].

How important is the choice of linear filters for efficient information transmission? We compared
the performance of different filtersets across a range of firing rates (Fig. 5). For each simulation, we
re-optimized the nonlinearities, adjusting λj’s for desired mean rate, while holding the filters fixed.
As a rough estimate of input entropyH(X), we used an upper bound – a Gaussian distribution with
the covariance of natural images. Our results show that when filters are mismatched to the noise
levels, performance is significantly degraded. At equivalent output rate, the “wrong” filters transmit
approximately 10 fewer bits; conversely, it takes about 50% more spikes to encode the same amount
of information.

We also compared the coding efficiency of networks with variable number of neurons. First, we
fixed the allotted population spike budget to 100 (per input), fixed the absolute output noise, and
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Efficient coding model of retina
(Karklin & Simoncelli 2012)



input noise→

←
ou
tp
ut
no
ise

σ
n
r
=

0
.
1
0
(2

0
dB

)
σ
n
r
=

2
(−

6
dB

)

σnx
=0.10 (20dB) σnx

=0.18 (15dB) σnx
=0.40 (8dB)
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Figure 5: Information transmitted as a function of spike rate, under noisy conditions (8dB SNRin,
−6dB SNRout). We compare the performance of optimal filters (W1) to filters obtained under low
noise conditions (W2, 20dB SNRin, 20dB SNRout) and PCA filters, i.e. the first 100 eigenvectors
of the data covariance matrix (W3).

varied the number of neurons from 1 (very precise) neuron to 150 (fairly noisy) neurons (Fig. 6a).
We estimated the transmitted information as described above. In this regime of noise and spiking
budget, the optimal population size was around 100 neurons. Next, we repeated the analysis but
used neurons with fixed precision, i.e., the spike budget was scaled with the population to give 1
noisy neuron or 150 equally noisy neurons (Fig. 6b). As the population grows, more information is
transmitted, but the rate of increase slows. This suggests that incorporating an additional penalty,
such as a fixed metabolic cost per neuron, would allow us to predict the optimal number of canonical
noisy neurons.

4 Discussion

We have described an efficient coding model that incorporates ingredients essential for computa-
tion in sensory systems: non-Gaussian signal distributions, realistic levels of input and output noise,
metabolic costs, nonlinear responses, and a large population of neurons. The resulting optimal solu-
tion mimics neural behaviors observed in the retina: a combination of On and Off center-surround
receptive fields, halfwave-rectified nonlinear responses, and pronounced asymmetries between the
On- and the Off- populations. In the noiseless case, our method provides a generalization of ICA
and produces localized, oriented filters.

In order to make the computation of entropy tractable, we made several assumptions. First, we
assumed a smooth response nonlinearity, to allow local linearization when computing entropy. Al-
though some of our results produce non-smooth nonlinearities, we think it unlikely that this sys-
tematically affected our findings; nevertheless, it might be possible to obtain better estimates by
considering higher order terms of local Taylor expansion. Second, we used the global curvature of
the prior density to estimate the local posterior in Eqn. 7. A better approximation would be obtained
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Efficient coding model of retina
(Karklin & Simoncelli 2012)


