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1 Wavenumber of a +20 dB active cochlea

Figure 14.3: Three snapshots of a traveling wave in a passive cochlea (left), and in an active cochlea (right),
responding to a sinusoid. The wavenumber, top, is estimated using the methods of Chapter 12, to correspond
with our cascade of asymmetric resonators (CAR) model of Chapter 16. The slightly positive imaginary part
of the one on the right corresponds to the active gain. The wave is calculated via the WKB approximation, at
many more points than we would typically model in a filterbank. In the passive case, the amplitude peak is
not very localized. To display the amplified signal in the active case, we cut its gain by a factor of 10 (–20 dB)
after showing the part near the base that nearly matches the passive case. To get the large number of cycles
from base to apex, we use 10 filter stages per mm, or 350 total, which is more than we would typically use in
a machine hearing system (that is, the wavenumbers as plotted in mm�1 units are 10 times the natural log of
the filter stage transfer functions).

Figure 14.4: The traveling waves shown in Figure 14.3 are here mapped onto a 3D model of the basilar
membrane, greatly exaggerated and stylized with colored lights. The active case with 20 dB more gain (right)
is rendered for a 30 dB lower input level, so it represents the response on the same scale with a factor of
1000 less input power, corresponding to a cube-root-compressive system (10 dB output level change for 30
dB input level change).
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Figure 14.10: Greenwood’s frequency–place map, illustrated on a spiral that approximates the shape of the
human cochlea. Distances from the apex in mm are labeled inside the spiral, and frequencies of octaves on
the outside. The fundamental frequencies, or pitches, of the notes of the 88 keys of a piano are marked by
circles. Notice that geometrically spaced frequencies—octaves and notes—are about equally spaced, at nearly
5 mm per octave, in the basal and mid regions, but are bunched up near the apex, with only about 1 mm for
the lowest octave of the piano. The human cochlea has about two and three-quarter turns; the final quarter
turn shown in the center (the last 1 mm), which maps frequencies down to zero, should be interpreted as the
helicotrema.

base

apex

base
apex



Logarithmic and linear frequency scales

http://www.rctn.org/bruno/data/auditory_demonstrations/ASA-auditory-demonstrations/34%20Logarithmic%20And%20Linear%20Frequency%20Scales.m4a
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Figure 14.1: Four classic cross sections of the cochlea, from the macroscopic to the microscopic, with boxes
and lines to show approximately how they relate.
Upper left: Leo Testut (1897) includes this drawing by Johann Czermak of the outer ear’s sound path through
the ear canal (G) to the eardrum, or tympanic membrane (T), and the middle ear bones that couple sound into
the cochlea of the inner ear, via the oval window (O).
Upper right: Gray’s Anatomy section through the cochlea. The structures that separate scala vestibuli (S. V.)
from scala tympani (S. T.), in the region highlighted, are detailed in the next figure.
Lower left: This cross section through part of one turn of the mammalian cochlea, by Anders Retzius (1884),
shows the cochlear duct (D.C, shown as scala media, S. M., in previous figure), scala vestibuli (s.v), scala
tympani (s.t), basilar membrane (b.m), Reissner’s membrane (R), tectorial membrane (Mt), nerve fibers (n),
and the organ of Corti.
Lower right: This Gray’s Anatomy drawing by Retzius shows a section through the organ of Corti, pointing
out one inner hair cell and four outer hair cells.
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Figure 16.6: The cumulative frequency response (Bode plot) of a cascade of 71 pole–zero CAR stages, with
12 stages per octave at the high-frequency end. Every fifth output tap (or channel) is shown with heavy
solid curves, for the same three damping factors as before; at the middle damping, all channels are plotted,
with light dashed lines. The pole frequencies range from about 9900 Hz (2.818 radians per sample) down to
about 30 Hz, based on equal spacing on a Greenwood map and a 22.050 kHz sample rate. Peak locations of
responses at the lowest damping define the characteristic frequency (CF) values used in subsequent plots.
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Effect of temporal envelope on timbre
(ASA auditory demonstrations CD, tracks 54-56)

Original

Notes played backward

Recording of notes 
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played backward

http://www.rctn.org/bruno/data/auditory_demonstrations/ASA-auditory-demonstrations/54%20Effect%20Of%20Tone%20Envelope%20On%20Timbre.m4a
http://www.rctn.org/bruno/data/auditory_demonstrations/ASA-auditory-demonstrations/55%20Effect%20Of%20Tone%20Envelope%20On%20Timbre.m4a
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engineers are the Gabor filter and the
wavelet filter. Gabor filters, which con-
sist of Gaussian-windowed sinusoids,
provide the optimal joint resolution in
both time and frequency, and they tile
the time–frequency plane with windows
of equal temporal width at all frequen-
cies. Wavelet filters can be viewed as
variants of Gabor filters in which the
temporal windows become narrower as
frequency increases, giving the filters the
property of self-similarity. They are pop-
ular for many signal-processing applica-
tions because they capture the
self-similar structure that is present in
many natural signals. But these are just
examples, and there is no end to the
variety of tiling schemes that can be
imagined.

Which scheme is ‘optimal’ would
seem to depend on a number of factors:
the relative behavioral importance of dif-
ferent types of information, neurobio-
logical or biophysical constraints, and
the statistical  properties of signals pre-
sent in the environment. Lewicki focus-
es on the last of these, attempting to find
a time–frequency tiling scheme that
maximizes statistical independence
among the filters. The motivation for
maximizing independence is related to
ideas proposed long ago by Attneave2

and Barlow3, who argued that the ner-
vous system should try to exploit the
redundancies present in signals in order
to form representations of the structure
present in the environment. It is also
related to principles of efficient coding,
which aim to make the most use of lim-
ited neural resources4.

Lewicki’s method1 for deriving a set
of optimal filters draws on a recent
advance in signal analysis called ‘inde-
pendent component analysis’ (ICA). ICA
provides a method for extracting a lin-

pre-existing properties of the peripheral
auditory system.

Lewicki’s analysis does not attempt to
provide a comprehensive account of
auditory coding. For example, it does not
consider the effect of changing sound
intensity. The tuning of Lewicki’s filters
is independent of sound intensity, but
this is not true of real auditory nerve
fibers. Most fibers reach the limit of their
dynamic range roughly 30–40 dB above
threshold, meaning their firing rates sat-
urate at even moderate intensities7. At
these intensities, their frequency tuning
also becomes considerably broader8. But
these facts are not necessarily inconsis-
tent with Lewicki’s results, because most
physiological measurements are made
using isolated pure tones. Less is known
about how auditory nerve fibers behave
in response to more ecologically realistic
broadband stimuli, and it is possible that
gain control mechanisms maintain fre-
quency selectivity even with high-inten-
sity stimuli9.

There are also a few peculiarities to
Lewicki’s filters that arise from the par-
ticular way in which ICA was imple-
mented. For example, the filters learned
by the algorithm are fairly symmetric in
time (the attack and decay occur at
about the same rate), whereas the
‘gamma-tone’ filters that have been char-
acterized physiologically are asymmet-
ric in time (they rise more steeply than
they decay). In addition, the algorithm
produces filters with the same frequen-
cy response but shifted in time, whereas
auditory nerve fibers do not show such
delays. But it would be fairly straight-
forward to modify the algorithm so that
the filters are constrained to be causal
(that is, filter outputs are determined
from present and past values of the
input), in which case their temporal

ear decomposition of signals that mini-
mizes not just correlations but many
higher-order statistical dependencies as
well5. Lewicki shows that when ICA is
applied to different ensembles of natur-
al sounds (using short samples of 8 ms
duration), the time–frequency tiling pat-
terns that emerge are strikingly differ-
ent. For environmental sounds (such as
crackling twigs), one obtains time–fre-
quency windows similar to a wavelet,
whereas for animal vocalizations (mon-
key coos), one obtains a tiling pattern
similar to the Fourier transform. Speech,
which (as noted above) contains a mix-
ture of temporal and frequency cues,
gives rise to an intermediate tiling pat-
tern, somewhere between a Gabor and a
wavelet; the temporal accuracy increases
with frequency, but to a lesser extent
than with wavelet filters.

The tiling pattern that is optimal for
speech is thus intermediate between
those optimized for environmental
sounds and animal vocalizations. As
Lewicki shows, a close match is obtained
with a 2:1 mixture of environmental to
animal sounds. Interestingly, this pattern
is similar to what has been observed
physiologically in cat auditory nerve
fibers, and it also bears similarity to the
auditory filters that have been charac-
terized psychophysically in humans and
other animals. Although auditory filters
measured behaviorally are not necessar-
ily determined by the cochlea6 (they
could theoretically arise anywhere with-
in the auditory system), these results,
taken together, suggest that the cochlea
and auditory nerve may be optimized to
transmit a wide range of naturally occur-
ring sounds to the brain. It is even pos-
sible, as the author suggests, that the
acoustic properties of human speech
have evolved to make efficient use of the

news and views

best time
localization

? wavelet Gabor ? best frequency
localization
(Fourier transform)

time

fr
eq

ue
nc

y

. . . . . . . . . . . . . . .

Fig. 1. The time–frequency plane can be tiled in multiple ways, any of which  provides a complete representation of a signal. Some of these possi-
bilities have been named by engineers (Gabor, wavelet, Fourier  transform). Each row within a tiling represents one filter. The vertical dimension of
each row represents the frequency specificity  of the filter. The width of each box within a row represents the temporal resolution of the filter.
Note that although the shapes vary, the area of each box is the same; this area represents the lower bound imposed by the fact that it is impossible
to achieve arbitrarily precise resolution of both timing and frequency. How the boxes within a tiling are shaped reflects the chosen trade-off
between time and frequency.
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assumed model. Methods for deriving efficient codes for mod-
els of the form in equation (1) fall under the rubric of either
sparse coding11 or independent component analysis (ICA)15,16,
and are aimed at finding the features (or basis functions) that
model the statistical distribution of the pattern ensemble14.

Predicting codes for natural sounds
The notion of an efficient code cannot be separated from the
ensemble of signals that are being encoded6,17. To make predic-
tions for sensory codes, it is necessary to make conjectures about
what class of stimuli the sensory system has evolved to process.
This could range from a broad class of signals in the natural envi-

ronment to only those crucial for reproduction and survival.
Many auditory systems, such as those of barn owns and bats,
have highly-specialized adaptations. The goal here, however, was
to make predictions about less specialized, ‘general’ auditory
systems. We therefore chose to analyze three classes of sounds
as representatives of a natural auditory environment—environ-
mental sounds, animal vocalizations and human speech—with
each class containing a broad array of different sounds, animals
or speakers (see Methods). Environmental sounds, such as
rustling brush, crunching leaves and snapping twigs, call for
rapid and accurate auditory localization. These sounds are typ-
ically broadband, non-harmonic and of short duration. Animal
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Fig. 1. Auditory filters derived from efficient coding of different natural sounds classes. Individual waveforms show the entire filter in the time domain
(∼8 ms). The set of filter shapes is optimized to form an efficient code by maximizing the statistical independence of their response over the sound
ensemble. Each plot shows a representative subset of the total population of 128 filters, displayed in increasing order of peak resonance frequency. 
(a) Efficient coding of non-harmonic environmental sounds yields a set of filters that resemble a wavelet representation. The majority have a dominant
resonance frequency (see Fig. 2) and an amplitude envelope that is localized in time. (b) Efficient coding of animal vocalizations results in filters that
resemble a Fourier representation. All filters are sinusoidal and the majority extend over the entire length of the analysis window. The moiré-like pat-
terns visible at the highest frequencies arise from the cyclic alignment of the underlying filter resonance frequency and the sampling frequency. 
(c) Efficient coding of speech, which contains both harmonic and non-harmonic sounds (that is, vowels and consonants), yields a representation inter-
mediate between those in (a) and (b). (d) Comparison to cochlear filter shapes measured experimentally at the auditory nerve. The physiological fil-
ters are redrawn from original figures4,5. Left (from ref. 4), filters with peak resonance frequencies of 0.53, 1.0, 2.1 and 4.7 kHz from top to bottom
(note different time scales). Right (from ref. 5), measured filters (upper) and modeled functions (lower). Each waveform is 20 ms in duration; the peak
resonance frequencies are 364, 642 and 999 Hz. Like the filter shapes predicted by efficient coding, the auditory nerve filters integrate the auditory
signal over a time period that depends on frequency.
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Fig. 1. Auditory filters derived from efficient coding of different natural sounds classes. Individual waveforms show the entire filter in the time domain
(∼8 ms). The set of filter shapes is optimized to form an efficient code by maximizing the statistical independence of their response over the sound
ensemble. Each plot shows a representative subset of the total population of 128 filters, displayed in increasing order of peak resonance frequency. 
(a) Efficient coding of non-harmonic environmental sounds yields a set of filters that resemble a wavelet representation. The majority have a dominant
resonance frequency (see Fig. 2) and an amplitude envelope that is localized in time. (b) Efficient coding of animal vocalizations results in filters that
resemble a Fourier representation. All filters are sinusoidal and the majority extend over the entire length of the analysis window. The moiré-like pat-
terns visible at the highest frequencies arise from the cyclic alignment of the underlying filter resonance frequency and the sampling frequency. 
(c) Efficient coding of speech, which contains both harmonic and non-harmonic sounds (that is, vowels and consonants), yields a representation inter-
mediate between those in (a) and (b). (d) Comparison to cochlear filter shapes measured experimentally at the auditory nerve. The physiological fil-
ters are redrawn from original figures4,5. Left (from ref. 4), filters with peak resonance frequencies of 0.53, 1.0, 2.1 and 4.7 kHz from top to bottom
(note different time scales). Right (from ref. 5), measured filters (upper) and modeled functions (lower). Each waveform is 20 ms in duration; the peak
resonance frequencies are 364, 642 and 999 Hz. Like the filter shapes predicted by efficient coding, the auditory nerve filters integrate the auditory
signal over a time period that depends on frequency.
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and are aimed at finding the features (or basis functions) that
model the statistical distribution of the pattern ensemble14.
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This could range from a broad class of signals in the natural envi-

ronment to only those crucial for reproduction and survival.
Many auditory systems, such as those of barn owns and bats,
have highly-specialized adaptations. The goal here, however, was
to make predictions about less specialized, ‘general’ auditory
systems. We therefore chose to analyze three classes of sounds
as representatives of a natural auditory environment—environ-
mental sounds, animal vocalizations and human speech—with
each class containing a broad array of different sounds, animals
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Fig. 1. Auditory filters derived from efficient coding of different natural sounds classes. Individual waveforms show the entire filter in the time domain
(∼8 ms). The set of filter shapes is optimized to form an efficient code by maximizing the statistical independence of their response over the sound
ensemble. Each plot shows a representative subset of the total population of 128 filters, displayed in increasing order of peak resonance frequency. 
(a) Efficient coding of non-harmonic environmental sounds yields a set of filters that resemble a wavelet representation. The majority have a dominant
resonance frequency (see Fig. 2) and an amplitude envelope that is localized in time. (b) Efficient coding of animal vocalizations results in filters that
resemble a Fourier representation. All filters are sinusoidal and the majority extend over the entire length of the analysis window. The moiré-like pat-
terns visible at the highest frequencies arise from the cyclic alignment of the underlying filter resonance frequency and the sampling frequency. 
(c) Efficient coding of speech, which contains both harmonic and non-harmonic sounds (that is, vowels and consonants), yields a representation inter-
mediate between those in (a) and (b). (d) Comparison to cochlear filter shapes measured experimentally at the auditory nerve. The physiological fil-
ters are redrawn from original figures4,5. Left (from ref. 4), filters with peak resonance frequencies of 0.53, 1.0, 2.1 and 4.7 kHz from top to bottom
(note different time scales). Right (from ref. 5), measured filters (upper) and modeled functions (lower). Each waveform is 20 ms in duration; the peak
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trast, is composed of filters that are localized in both time
and frequency (Fig. 6b). Because the two codes cover the
time–frequency space with the same number of functions, a
wavelet representation sacrifices frequency resolution while
improving time resolution. The tiling of time–frequency space
(that is, the partitioning of time–frequency space by the filter
set) plays a central role in the design of wavelet transforms21.
Because the individual filters derived from efficient coding
are localized in their amplitude envelope and their spectral
power, it is possible to plot how each population covers

time–frequency space. For coding purposes, the best tiling depends
on the statistical structure of the signals.

Time–frequency analysis (see Methods) of the derived filters
shows that the majority of filters are localized (Fig. 2). The
time–frequency distribution for the environmental sounds code is
similar to a wavelet representation, with bandwidth increasing
and temporal width decreasing as function of frequency (Fig. 6c).
One difference, however, is that instead of discrete increases in
bandwidth and decreases in temporal width, as is common for
many types of wavelets, bandwidth and temporal width change
gradually with frequency. For animal vocalizations, the efficient
code most closely resembles a Fourier representation, and the
bandwidths are much narrower than the codes for the other
datasets. The time–frequency distribution for the efficient code
of speech falls between the two others in both temporal extent
and filter bandwidth. Deriving an optimal code provides a solution
to the choice of how to tile time–frequency space, but it is more
general because the filters are not restricted to be localized in
time–frequency space. Harmonic structure is one example of non-
local time–frequency structure, and is obtained for an efficient
code of a single speaker22 (Fig. 5b). That the majority of the fil-
ters are localized reflects the statistical structure of the signals.

The differences between the time–frequency tiling for the
three sound classes can be summarized by plotting characteristics

Fig. 4. Principal components of natural sounds. A representative
subset of filters derived from PCA of environmental sounds are
plotted in decreasing order of captured variance. PCA, which can
only model second-order correlations, does not yield filters that
are localized in time, and only the largest are sinusoidal.

ronmental sounds to animal vocalizations yielded filters similar
to those for speech (Fig. 3).

Principal-components analysis (PCA or the Karhunen-Loéve
transform) has long been used in efficient coding of speech sig-
nals20. To contrast PCA-derived with ICA-derived predictions, a
set of filters for the same ensemble of environmental sounds was
derived using PCA (Fig. 4). The largest principal components are
sinusoidal, but most are not localized in either time or frequen-
cy and bear little resemblance to auditory filters. A Fourier-like
code would be expected for sufficiently large data ensembles,
because of the assumption of stationarity (that the statistical struc-
ture of the sound ensemble is not dependent on the temporal
position of the analysis window). PCA selects filter shapes that
decorrelate the outputs, and embodies an implicit assumption
that the outputs follow a Gaussian distribution. For the datasets
used here, however, the outputs are highly non-Gaussian, and
decorrelation, which results in a less efficient code, is not suffi-
cient to explain the auditory filter properties. Furthermore, the
PCA filters are restricted to be mutually orthogonal, which great-
ly restricts the class of filters that can be used to model structure in
the sound ensemble. This restriction is not imposed by ICA.

To check for a bias in the efficient coding algorithm giving
wavelet-like filters, the algorithm was run on a data ensemble
in which the samples were drawn independently from a sparse
distribution (p(x) ∝ exp(–x0.5)). As expected for a data set
that contains no temporal structure, the resulting filters were
maximally localized in time, with each representing a differ-
ent temporal position (Fig. 5a). If the algorithm is run on a
single speaker from the speech dataset, the filters are not local-
ized in time and adapt to encode particular harmonics of the
speaker’s voice (Fig. 5b).

Analysis and characterization of the derived codes
How the filter populations encode the three sound classes can be
characterized using time–frequency analysis, or the distribution
of the filters in terms of their temporal envelopes and spectral
power. For example, a Fourier transform represents a signal by a
linear superposition of sinusoids. Thus, the filters are localized in
frequency but not in time (Fig. 6a). A wavelet transform, by con-

Fig. 5. Control analyses. Sinusoidal filters that are localized in frequency
are not inherently preferred by the algorithm. (a) Applying the same algo-
rithm to sparse noise, where there is no temporal structure, results in an
impulse representation where the filters are maximally localized in time.
(b) Applying the algorithm to speech from a single speaker results in non-
localized filters that are adapted to the harmonics of the speaker’s voice.

a
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(Lewicki 2002)
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One argument for explaining the increase in filter bandwidth
with center frequency is based on the observation that the aver-
age power spectrum for speech, music and some natural sounds
is approximately 1/f (refs. 26,27). If frequency bandwidths are
chosen so that each band has equal average power, the bandwidth
must increase linearly with frequency28. The functions of equal

power bandwidth versus center frequency derived from
the power spectra of the natural sound ensembles do
not agree as closely with physiological and psychophys-
ical observations, and differ from those derived from
efficient coding (Fig. 8). The vertical position of the
curves in Fig. 8b is arbitrary and was adjusted to best
match the range in Fig. 7a. The position is influenced
by the number of assumed frequency channels: dou-
bling the number halves the bandwidth of each chan-
nel. Auditory nerve fibers have highly overlapping

Fig. 7. Comparison of filter population characteristics to physi-
ological data. (a–c) Characteristics of the derived filters as a
function of center frequency for environmental sounds (×),
speech (O), and vocalizations (+). (a) Filter bandwidth. 
(b) Filter temporal envelope width. (c) Filter sharpness or cen-
ter frequency divided by bandwidth (Q10dB). For comparison, the
linear regression lines from the physiological data (d) are super-
imposed. The curves for a combined ensemble of environmental
sounds and animal vocalizations can be varied smoothly from
one extreme to the other by changing the relative proportion of
the two sound classes (data not shown). (d) Q10dB measured
from cat auditory nerve fibers. Lines show linear regressions of
each dataset in the range 0.5–8 kHz. Data are replotted from 
ref. 24 (5 and solid line) and ref. 25 (o and dashed line).

of the filters in time–frequency space as a function of center
frequency (Fig. 7). For comparison to auditory nerve filter-
ing properties derived physiologically and psychophysical-
ly, we analyze bandwidth, filter sharpness (center frequency
divided by bandwidth, or Q) and the temporal envelope23.
Bandwidth is measured 10 dB down from the spectral peak.
Filters that did not have a full 10 dB drop on both sides of
the spectral peak (the lowest and highest frequencies) were
omitted from the plots to avoid artifacts resulting from the
limited size of the analysis window. The filters optimized for
environmental sounds show the steepest increase in band-
width as a function of frequency, similar to a wavelet repre-
sentation (Fig. 7a). By contrast, the filters derived for
vocalizations have bandwidth that is nearly constant across
frequency, as in a Fourier representation. The curve for
speech lies intermediate between the other two. The corre-
sponding curves for the temporal envelope necessarily show
the same pattern because of the time/frequency trade-off
(Fig. 7b). The filters for all three sounds classes show an
increase in sharpness with center frequency (Fig. 7c). All
curves approximately follow a power law.

Deriving an efficient code for the combined set of envi-
ronmental sounds and animal vocalizations (Fig. 3) yields
similar bandwidth and sharpness curves. The curves for these fil-
ters can be shifted from one extreme to the other by changing
the relative proportion of the two types of sounds in the dataset
(unpublished data). The curves most consistent with physiolog-
ical measurements24,25 are those for the speech data set and the
combined sound ensembles (Fig. 7d).

Fig. 6. Time–frequency analysis. (a) The filters in a Fourier trans-
form are localized in frequency but not in time. (b) Wavelet filters
are localized in both time and frequency. (c–e) The statistical
structure of the signals determines how the filter shapes derived
from efficient coding of the different data ensembles are distrib-
uted in time–frequency space. Each ellipse is a schematic of the
extent of a single filter in time–frequency space. (c) Environmental
sounds. (d) Animal vocalizations. (e) Speech.
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One argument for explaining the increase in filter bandwidth
with center frequency is based on the observation that the aver-
age power spectrum for speech, music and some natural sounds
is approximately 1/f (refs. 26,27). If frequency bandwidths are
chosen so that each band has equal average power, the bandwidth
must increase linearly with frequency28. The functions of equal

power bandwidth versus center frequency derived from
the power spectra of the natural sound ensembles do
not agree as closely with physiological and psychophys-
ical observations, and differ from those derived from
efficient coding (Fig. 8). The vertical position of the
curves in Fig. 8b is arbitrary and was adjusted to best
match the range in Fig. 7a. The position is influenced
by the number of assumed frequency channels: dou-
bling the number halves the bandwidth of each chan-
nel. Auditory nerve fibers have highly overlapping

Fig. 7. Comparison of filter population characteristics to physi-
ological data. (a–c) Characteristics of the derived filters as a
function of center frequency for environmental sounds (×),
speech (O), and vocalizations (+). (a) Filter bandwidth. 
(b) Filter temporal envelope width. (c) Filter sharpness or cen-
ter frequency divided by bandwidth (Q10dB). For comparison, the
linear regression lines from the physiological data (d) are super-
imposed. The curves for a combined ensemble of environmental
sounds and animal vocalizations can be varied smoothly from
one extreme to the other by changing the relative proportion of
the two sound classes (data not shown). (d) Q10dB measured
from cat auditory nerve fibers. Lines show linear regressions of
each dataset in the range 0.5–8 kHz. Data are replotted from 
ref. 24 (5 and solid line) and ref. 25 (o and dashed line).

of the filters in time–frequency space as a function of center
frequency (Fig. 7). For comparison to auditory nerve filter-
ing properties derived physiologically and psychophysical-
ly, we analyze bandwidth, filter sharpness (center frequency
divided by bandwidth, or Q) and the temporal envelope23.
Bandwidth is measured 10 dB down from the spectral peak.
Filters that did not have a full 10 dB drop on both sides of
the spectral peak (the lowest and highest frequencies) were
omitted from the plots to avoid artifacts resulting from the
limited size of the analysis window. The filters optimized for
environmental sounds show the steepest increase in band-
width as a function of frequency, similar to a wavelet repre-
sentation (Fig. 7a). By contrast, the filters derived for
vocalizations have bandwidth that is nearly constant across
frequency, as in a Fourier representation. The curve for
speech lies intermediate between the other two. The corre-
sponding curves for the temporal envelope necessarily show
the same pattern because of the time/frequency trade-off
(Fig. 7b). The filters for all three sounds classes show an
increase in sharpness with center frequency (Fig. 7c). All
curves approximately follow a power law.

Deriving an efficient code for the combined set of envi-
ronmental sounds and animal vocalizations (Fig. 3) yields
similar bandwidth and sharpness curves. The curves for these fil-
ters can be shifted from one extreme to the other by changing
the relative proportion of the two types of sounds in the dataset
(unpublished data). The curves most consistent with physiolog-
ical measurements24,25 are those for the speech data set and the
combined sound ensembles (Fig. 7d).

Fig. 6. Time–frequency analysis. (a) The filters in a Fourier trans-
form are localized in frequency but not in time. (b) Wavelet filters
are localized in both time and frequency. (c–e) The statistical
structure of the signals determines how the filter shapes derived
from efficient coding of the different data ensembles are distrib-
uted in time–frequency space. Each ellipse is a schematic of the
extent of a single filter in time–frequency space. (c) Environmental
sounds. (d) Animal vocalizations. (e) Speech.
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One argument for explaining the increase in filter bandwidth
with center frequency is based on the observation that the aver-
age power spectrum for speech, music and some natural sounds
is approximately 1/f (refs. 26,27). If frequency bandwidths are
chosen so that each band has equal average power, the bandwidth
must increase linearly with frequency28. The functions of equal

power bandwidth versus center frequency derived from
the power spectra of the natural sound ensembles do
not agree as closely with physiological and psychophys-
ical observations, and differ from those derived from
efficient coding (Fig. 8). The vertical position of the
curves in Fig. 8b is arbitrary and was adjusted to best
match the range in Fig. 7a. The position is influenced
by the number of assumed frequency channels: dou-
bling the number halves the bandwidth of each chan-
nel. Auditory nerve fibers have highly overlapping

Fig. 7. Comparison of filter population characteristics to physi-
ological data. (a–c) Characteristics of the derived filters as a
function of center frequency for environmental sounds (×),
speech (O), and vocalizations (+). (a) Filter bandwidth. 
(b) Filter temporal envelope width. (c) Filter sharpness or cen-
ter frequency divided by bandwidth (Q10dB). For comparison, the
linear regression lines from the physiological data (d) are super-
imposed. The curves for a combined ensemble of environmental
sounds and animal vocalizations can be varied smoothly from
one extreme to the other by changing the relative proportion of
the two sound classes (data not shown). (d) Q10dB measured
from cat auditory nerve fibers. Lines show linear regressions of
each dataset in the range 0.5–8 kHz. Data are replotted from 
ref. 24 (5 and solid line) and ref. 25 (o and dashed line).

of the filters in time–frequency space as a function of center
frequency (Fig. 7). For comparison to auditory nerve filter-
ing properties derived physiologically and psychophysical-
ly, we analyze bandwidth, filter sharpness (center frequency
divided by bandwidth, or Q) and the temporal envelope23.
Bandwidth is measured 10 dB down from the spectral peak.
Filters that did not have a full 10 dB drop on both sides of
the spectral peak (the lowest and highest frequencies) were
omitted from the plots to avoid artifacts resulting from the
limited size of the analysis window. The filters optimized for
environmental sounds show the steepest increase in band-
width as a function of frequency, similar to a wavelet repre-
sentation (Fig. 7a). By contrast, the filters derived for
vocalizations have bandwidth that is nearly constant across
frequency, as in a Fourier representation. The curve for
speech lies intermediate between the other two. The corre-
sponding curves for the temporal envelope necessarily show
the same pattern because of the time/frequency trade-off
(Fig. 7b). The filters for all three sounds classes show an
increase in sharpness with center frequency (Fig. 7c). All
curves approximately follow a power law.

Deriving an efficient code for the combined set of envi-
ronmental sounds and animal vocalizations (Fig. 3) yields
similar bandwidth and sharpness curves. The curves for these fil-
ters can be shifted from one extreme to the other by changing
the relative proportion of the two types of sounds in the dataset
(unpublished data). The curves most consistent with physiolog-
ical measurements24,25 are those for the speech data set and the
combined sound ensembles (Fig. 7d).

Fig. 6. Time–frequency analysis. (a) The filters in a Fourier trans-
form are localized in frequency but not in time. (b) Wavelet filters
are localized in both time and frequency. (c–e) The statistical
structure of the signals determines how the filter shapes derived
from efficient coding of the different data ensembles are distrib-
uted in time–frequency space. Each ellipse is a schematic of the
extent of a single filter in time–frequency space. (c) Environmental
sounds. (d) Animal vocalizations. (e) Speech.
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One argument for explaining the increase in filter bandwidth
with center frequency is based on the observation that the aver-
age power spectrum for speech, music and some natural sounds
is approximately 1/f (refs. 26,27). If frequency bandwidths are
chosen so that each band has equal average power, the bandwidth
must increase linearly with frequency28. The functions of equal

power bandwidth versus center frequency derived from
the power spectra of the natural sound ensembles do
not agree as closely with physiological and psychophys-
ical observations, and differ from those derived from
efficient coding (Fig. 8). The vertical position of the
curves in Fig. 8b is arbitrary and was adjusted to best
match the range in Fig. 7a. The position is influenced
by the number of assumed frequency channels: dou-
bling the number halves the bandwidth of each chan-
nel. Auditory nerve fibers have highly overlapping

Fig. 7. Comparison of filter population characteristics to physi-
ological data. (a–c) Characteristics of the derived filters as a
function of center frequency for environmental sounds (×),
speech (O), and vocalizations (+). (a) Filter bandwidth. 
(b) Filter temporal envelope width. (c) Filter sharpness or cen-
ter frequency divided by bandwidth (Q10dB). For comparison, the
linear regression lines from the physiological data (d) are super-
imposed. The curves for a combined ensemble of environmental
sounds and animal vocalizations can be varied smoothly from
one extreme to the other by changing the relative proportion of
the two sound classes (data not shown). (d) Q10dB measured
from cat auditory nerve fibers. Lines show linear regressions of
each dataset in the range 0.5–8 kHz. Data are replotted from 
ref. 24 (5 and solid line) and ref. 25 (o and dashed line).

of the filters in time–frequency space as a function of center
frequency (Fig. 7). For comparison to auditory nerve filter-
ing properties derived physiologically and psychophysical-
ly, we analyze bandwidth, filter sharpness (center frequency
divided by bandwidth, or Q) and the temporal envelope23.
Bandwidth is measured 10 dB down from the spectral peak.
Filters that did not have a full 10 dB drop on both sides of
the spectral peak (the lowest and highest frequencies) were
omitted from the plots to avoid artifacts resulting from the
limited size of the analysis window. The filters optimized for
environmental sounds show the steepest increase in band-
width as a function of frequency, similar to a wavelet repre-
sentation (Fig. 7a). By contrast, the filters derived for
vocalizations have bandwidth that is nearly constant across
frequency, as in a Fourier representation. The curve for
speech lies intermediate between the other two. The corre-
sponding curves for the temporal envelope necessarily show
the same pattern because of the time/frequency trade-off
(Fig. 7b). The filters for all three sounds classes show an
increase in sharpness with center frequency (Fig. 7c). All
curves approximately follow a power law.

Deriving an efficient code for the combined set of envi-
ronmental sounds and animal vocalizations (Fig. 3) yields
similar bandwidth and sharpness curves. The curves for these fil-
ters can be shifted from one extreme to the other by changing
the relative proportion of the two types of sounds in the dataset
(unpublished data). The curves most consistent with physiolog-
ical measurements24,25 are those for the speech data set and the
combined sound ensembles (Fig. 7d).

Fig. 6. Time–frequency analysis. (a) The filters in a Fourier trans-
form are localized in frequency but not in time. (b) Wavelet filters
are localized in both time and frequency. (c–e) The statistical
structure of the signals determines how the filter shapes derived
from efficient coding of the different data ensembles are distrib-
uted in time–frequency space. Each ellipse is a schematic of the
extent of a single filter in time–frequency space. (c) Environmental
sounds. (d) Animal vocalizations. (e) Speech.

0 2 4 6 8
0

1

2

3

4

5

6

7

Time (ms)

F
re

qu
en

cy
 (

kH
z)

0 2 4 6 8
0

1

2

3

4

5

6

7

8

Time (ms)

Fr
eq

ue
nc

y 
(k

H
z)

F
re

qu
en

cy
F

re
qu

en
cy

Time 0 2 4 6 8
0

1

2

3

4

5

6

7

Time (ms)

F
re

qu
en

cy
 (

kH
z)

a

b

c

d

e

0.5 1 2 5 10

0.5

1

2

4

8

Center frequency (kHz)

T
em

po
ra

l e
nv

el
op

e 
(m

s)

0.5 1 2 5 10

0.2

0.5

1

2

Center frequency (kHz)

B
an

dw
id

th
 (

kH
z)

0.2 0.5 1 2 5 10 20

1

2

5

10

20

Center frequency (kHz)

Q
10

dB

0.2 0.5 1 2 5 10 20

1

2

5

10

20

Characteristic frequency (kHz)

Q
10

dB

Evans, 1975
Rhode and Smith, 1985

a b

c d

©
20

02
 N

at
ur

e 
P

ub
lis

hi
ng

 G
ro

up
  h

tt
p:

//n
eu

ro
sc

i.n
at

ur
e.

co
m

ICA of natural sound
(Lewicki 2002)
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