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The cortical column: a structure without
a function

Jonathan C. Horton* and Daniel L. Adams
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This year, the field of neuroscience celebrates the 50th anniversary of Mountcastle’s discovery of the
cortical column. In this review, we summarize half a century of research and come to the disappointing
realization that the column may have no function. Originally, it was described as a discrete structure,
spanning the layers of the somatosensory cortex, which contains cells responsive to only a single
modality, such as deep joint receptors or cutaneous receptors. Subsequently, examples of columns
have been uncovered in numerous cortical areas, expanding the original concept to embrace a variety
of different structures and principles. A ‘column’ now refers to cells in any vertical cluster that share
the same tuning for any given receptive field attribute. In striate cortex, for example, cells with the
same eye preference are grouped into ocular dominance columns. Unaccountably, ocular dominance
columns are present in some species, but not others. In principle, it should be possible to determine
their function by searching for species differences in visual performance that correlate with their
presence or absence. Unfortunately, this approach has been to no avail; no visual faculty has emerged
that appears to require ocular dominance columns. Moreover, recent evidence has shown that the
expression of ocular dominance columns can be highly variable among members of the same species,
or even in different portions of the visual cortex in the same individual. These observations deal a fatal
blow to the idea that ocular dominance columns serve a purpose. More broadly, the term ‘column’
also denotes the periodic termination of anatomical projections within or between cortical areas. In
many instances, periodic projections have a consistent relationship with some architectural feature,
such as the cytochrome oxidase patches in V1 or the stripes in V2. These tissue compartments appear
to divide cells with different receptive field properties into distinct processing streams. However, it is
unclear what advantage, if any, is conveyed by this form of columnar segregation. Although the
column is an attractive concept, it has failed as a unifying principle for understanding cortical
function. Unravelling the organization of the cerebral cortex will require a painstaking description of
the circuits, projections and response properties peculiar to cells in each of its various areas.
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1. INTRODUCTION
Half a century ago, Mountcastle et al. (1955) made a
seminal observation while recording from cat somato-
sensory cortex.Theynoted that all cells in a given vertical
electrode penetration responded either to superficial
(skin, hair) or deep (joint, fascia) stimulation (figure 1). It
appeared that for a common receptive field location (e.g.
the cat’s foreleg), cells were segregated into domains
representing different sensory modalities. This discovery
ledMountcastle (1957, p. 430) tohypothesize ‘there is an
elementary unit of organization in the somatic cortex
made up of a vertical group of cells extending through all
the cellular layers’. He termed this unit a ‘column’. By
making multiple, closely spaced penetrations, Mount-
castle concluded that individual columns are no more
than 500 mm wide and ‘intermingled in a mosaic-like
fashion’. These blocks of tissue contain neurons whose
salient physiological properties are identical. The identi-
fication of the column has been considered a break-
through in neuroscience because it seems to simplify the

daunting task of understanding one of the most intricate
structures in biology: the cerebral cortex.

Mountcastle’s concept of the cortical column has
endured as a fundamental principle of brain organiz-
ation. Yet when one stops to ponder its significance, it
becomes apparent that neuroscience has no commonly
accepted definition of ‘column’. The term has been
used loosely by subsequent investigators to refer to
many different entities, some bearing only a vague
analogy to the modality-specific columns in the cat
somatosensory cortex. Here, we trace the evolution of
ideas about columns, challenge the notion that they are
essential processing elements within the nervous
system and review new insights regarding their for-
mation. Our review deals principally with the visual
cortex, where columns have been studied most
intensively, but draws freely upon examples from
other cortical areas to emphasize certain points.

2. MINICOLUMNS, COLUMNS AND
MACROCOLUMNS
Mountcastle proposed the cortical column based on
observations made by recording from single cells,
but he was influenced strongly by new ideas about the
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particular, fractal models have been found to provide an 
effective description of many natural image phenomena 
(e.g. Keller, Crownover & Chen, 1987; Pentland, 1984) 
and fractals are increasingly used in the study of visual 
processing (e.g. Cutting & Garvin, 1987; Knill, Field & 
Kersten, 1989; Westheimer, 1991). 

In this study, we have data from only a single fre- 
quency band. To determine how the human visual system 
integrates information across neighboring frequency 

bands would require further experiments, which we leave 
for a later paper. However, we should point out that the 
proposed association field may have a number of par- 
ameters other than those of orientation and position. 

Relation to texture segregation 
A number of studies have been concerned with the prin- 

ciples by which textures group together and segregate 
from other textures. The Gestalt rules of organization 

FIGURE 16. The a.ssociarion$eld. The diagram at the top of the figure (a) represents the rules by which the elements in the 
path are associated and segregated from the background. The precise size of this field would be difficult to determine from 
this study since it will certainly vary with the particular experimental conditions employed. For example, in this study, the 
subjects were required to detect 12 elements in a grid of 256 elements. Changing either the path size or the grid size would 
change our estimate of the association field. The curves in (b) represent the specific rules of alignment. Grouping occurs only 
when the orientation of elements conforms to first-order curves (i.e. curves with no points of inflection) like those shown by 
the rays extending from the center of the elements as shown in this figure. The integration process thus appears to show strong 
joint constraints of position and orientation. Thus, our results suggest that elements with alignment like that shown on the 
bottom left will be “associated” while elements like that shown on the right will not even though the difference in orientation 

is the same in both examples. 

demonstration of combined modular and axial specificity in the
tree shrew, and the observation of patchy distributions of labeled
neurons after large tracer injections in V1 of many species, sug-
gests that modular specificity alone might be insufficient to explain
the distribution of horizontal connections. Indeed, preliminary
results, using combined optical imaging and biocytin injections,
suggest that a combined modular and axial specificity might be
present in the squirrel monkey (Sincich and Blasdel, 1995). It is
possible that a relationship between preferred orientation and axis
of projection also exists in cats and other primates but is difficult
to demonstrate due to other factors such as large anisotropies in
the map of visual space.

Functional implications
Combined with the evidence that horizontal connections are
largely reciprocal (Kisvarday and Eysel, 1992), these results indi-
cate that individual neurons in layer 2/3 receive input from other
neurons whose receptive fields are co-oriented (of similar orien-
tation preference) and co-axial (displaced along an axis in visual
space that corresponds to their preferred orientation; Fig.
12A,B). This relationship raises the possibility that horizontal
connections might contribute to the orientation selectivity of layer
2/3 neurons. For example, a neuron that responds best to a
vertical stimulus might do so, at least in part, because it receives
input from a network of other layer 2/3 neurons whose receptive
fields are aligned along the vertical axis of visual space. This
arrangement could be viewed as the intracortical equivalent of the
Hubel and Wiesel model in which layer 4 neurons derive their
orientation selectivity by sampling from a population of lateral
geniculate nucleus neurons whose receptive fields are aligned

along an axis in visual space (Hubel and Wiesel, 1962). Presum-
ably, the intrinsic circuitry in layer 2/3 acts in concert with orien-
tation selective inputs derived from layer 4 to generate the orien-
tation selectivity of layer 2/3 neurons. Indeed, the contribution of
axially aligned horizontal connections could explain why layer 2/3
neurons in the tree shrew and ferret are more tightly tuned for
orientation than those in layer 4 (Humphrey et al., 1980a; Chap-
man and Stryker, 1993). It could also explain why many neurons
exhibit sharper orientation tuning (a smaller half width at half
height) when longer stimuli are used to determine tuning (Henry
et al., 1974).

Because of their extensive spread, horizontal connections
have been implicated as one of the potential substrates for
receptive field surround effects— changes in the response pat-
tern of neurons produced by visual stimulation of the region
that lies outside of the receptive field as defined by a small,
simple stimulus (for review, see Gilbert, 1992). In the tree
shrew, for example, these connections extend for up to 4 mm
from the injection site—a distance that corresponds to ;208 of
visual space—whereas the classically defined receptive field at
this eccentricity extends for less than 58. The results of the
present study suggest that horizontal connections could be the
source of a particular class of receptive field surround effects
that exhibit axial specificity, exerting a greater influence in
regions of visual space that lie along the axis of the neuron’s
preferred orientation (i.e., end-zones) than along the orthog-
onal axis (side-zones). Effects of this type have been described
in both cat and monkey striate cortex and in several cases the
effects are primarily facilitatory (Nelson and Frost, 1985; Fio-
rani et al., 1992; Kapadia, 1995). Some neurons in macaque

Figure 12. Summary of specificity of horizontal connections in V1. A, Example of axon arborizations from two cells shown over a combined map of visual
space and difference map of orientation preference. The dark regions of the difference map indicate regions that prefer 908, and the lighter areas indicate
areas that prefer 08. A neuron found in a dark region of the map projects to other areas of the map with the same orientation preference and that lie
along a line corresponding to a vertical line in the map of visual space. A neuron found in a light region of the map (orientation preference 08) projects
to other parts of the cortex that prefer 08 and that lie along a horizontal line in the map of visual space. B, Input to layer 2/3 cells via horizontal connections.
Because horizontal connections are largely reciprocal, cells in layer 2/3 will receive input from other layer 2/3 cells with the same orientation preference,
the receptive fields of which are displaced along a line in visual space. The solid rectangles indicate the receptive fields of the two cells shown in A. The
open rectangles indicate the receptive fields of cells that would provide input to these two cells via horizontal connections. Nearby cells with overlapping
receptive fields are omitted for clarity.
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Building high-level features using large-scale unsupervised learning

the cortex. They also demonstrate that convolutional
DBNs (Lee et al., 2009), trained on aligned images of
faces, can learn a face detector. This result is inter-
esting, but unfortunately requires a certain degree of
supervision during dataset construction: their training
images (i.e., Caltech 101 images) are aligned, homoge-
neous and belong to one selected category.

Figure 1. The architecture and parameters in one layer of
our network. The overall network replicates this structure
three times. For simplicity, the images are in 1D.

3.2. Architecture

Our algorithm is built upon these ideas and can be
viewed as a sparse deep autoencoder with three impor-
tant ingredients: local receptive fields, pooling and lo-
cal contrast normalization. First, to scale the autoen-
coder to large images, we use a simple idea known as
local receptive fields (LeCun et al., 1998; Raina et al.,
2009; Lee et al., 2009; Le et al., 2010). This biologi-
cally inspired idea proposes that each feature in the
autoencoder can connect only to a small region of the
lower layer. Next, to achieve invariance to local defor-
mations, we employ local L2 pooling (Hyvärinen et al.,
2009; Gregor & LeCun, 2010; Le et al., 2010) and lo-
cal contrast normalization (Jarrett et al., 2009). L2
pooling, in particular, allows the learning of invariant
features (Hyvärinen et al., 2009; Le et al., 2010).

Our deep autoencoder is constructed by replicating
three times the same stage composed of local filtering,
local pooling and local contrast normalization. The
output of one stage is the input to the next one and
the overall model can be interpreted as a nine-layered
network (see Figure 1).

The first and second sublayers are often known as fil-
tering (or simple) and pooling (or complex) respec-
tively. The third sublayer performs local subtractive
and divisive normalization and it is inspired by bio-

logical and computational models (Pinto et al., 2008;
Lyu & Simoncelli, 2008; Jarrett et al., 2009).2

As mentioned above, central to our approach is the use
of local connectivity between neurons. In our experi-
ments, the first sublayer has receptive fields of 18x18
pixels and the second sub-layer pools over 5x5 over-
lapping neighborhoods of features (i.e., pooling size).
The neurons in the first sublayer connect to pixels in all
input channels (or maps) whereas the neurons in the
second sublayer connect to pixels of only one channel
(or map).3 While the first sublayer outputs linear filter
responses, the pooling layer outputs the square root of
the sum of the squares of its inputs, and therefore, it
is known as L2 pooling.

Our style of stacking a series of uniform mod-
ules, switching between selectivity and toler-
ance layers, is reminiscent of Neocognition and
HMAX (Fukushima & Miyake, 1982; LeCun et al.,
1998; Riesenhuber & Poggio, 1999). It has also
been argued to be an architecture employed by the
brain (DiCarlo et al., 2012).

Although we use local receptive fields, they are
not convolutional: the parameters are not shared
across different locations in the image. This is
a stark difference between our approach and pre-
vious work (LeCun et al., 1998; Jarrett et al., 2009;
Lee et al., 2009). In addition to being more biolog-
ically plausible, unshared weights allow the learning
of more invariances other than translational invari-
ances (Le et al., 2010).

In terms of scale, our network is perhaps one of the
largest known networks to date. It has 1 billion train-
able parameters, which is more than an order of magni-
tude larger than other large networks reported in liter-
ature, e.g., (Ciresan et al., 2010; Sermanet & LeCun,
2011) with around 10 million parameters. It is
worth noting that our network is still tiny com-
pared to the human visual cortex, which is 106

times larger in terms of the number of neurons and
synapses (Pakkenberg et al., 2003).

3.3. Learning and Optimization

Learning: During learning, the parameters of the
second sublayers (H) are fixed to uniform weights,

2The subtractive normalization removes the
weighted average of neighboring neurons from the
current neuron gi,j,k = hi,j,k −

∑

iuv Guvhi,j+u,i+v

The divisive normalization computes yi,j,k =
gi,j,k/max{c, (

∑

iuv Guvg
2
i,j+u,i+v)

0.5}, where c is set
to be a small number, 0.01, to prevent numerical errors.
G is a Gaussian weighting window. (Jarrett et al., 2009)

3For more details regarding connectivity patterns and
parameter sensitivity, see Appendix B and E.
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and minimum activation values, then picked 20 equally
spaced thresholds in between. The reported accuracy
is the best classification accuracy among 20 thresholds.

4.3. Recognition

Surprisingly, the best neuron in the network performs
very well in recognizing faces, despite the fact that no
supervisory signals were given during training. The
best neuron in the network achieves 81.7% accuracy in
detecting faces. There are 13,026 faces in the test set,
so guessing all negative only achieves 64.8%. The best
neuron in a one-layered network only achieves 71% ac-
curacy while best linear filter, selected among 100,000
filters sampled randomly from the training set, only
achieves 74%.

To understand their contribution, we removed the lo-
cal contrast normalization sublayers and trained the
network again. Results show that the accuracy of
best neuron drops to 78.5%. This agrees with pre-
vious study showing the importance of local contrast
normalization (Jarrett et al., 2009).

We visualize histograms of activation values for face
images and random images in Figure 2. It can be seen,
even with exclusively unlabeled data, the neuron learns
to differentiate between faces and random distractors.
Specifically, when we give a face as an input image, the
neuron tends to output value larger than the threshold,
0. In contrast, if we give a random image as an input
image, the neuron tends to output value less than 0.

Figure 2. Histograms of faces (red) vs. no faces (blue).
The test set is subsampled such that the ratio between
faces and no faces is one.

4.4. Visualization

In this section, we will present two visualization tech-
niques to verify if the optimal stimulus of the neuron is
indeed a face. The first method is visualizing the most
responsive stimuli in the test set. Since the test set
is large, this method can reliably detect near optimal
stimuli of the tested neuron. The second approach
is to perform numerical optimization to find the op-
timal stimulus (Berkes & Wiskott, 2005; Erhan et al.,
2009; Le et al., 2010). In particular, we find the norm-
bounded input x which maximizes the output f of the

tested neuron, by solving:

x∗ = argmin
x

f(x;W,H), subject to ||x||2 = 1.

Here, f(x;W,H) is the output of the tested neuron
given learned parameters W,H and input x. In our
experiments, this constraint optimization problem is
solved by projected gradient descent with line search.

These visualization methods have complementary
strengths and weaknesses. For instance, visualizing
the most responsive stimuli may suffer from fitting to
noise. On the other hand, the numerical optimization
approach can be susceptible to local minima. Results,
shown in Figure 3, confirm that the tested neuron in-
deed learns the concept of faces.

Figure 3. Top: Top 48 stimuli of the best neuron from the
test set. Bottom: The optimal stimulus according to nu-
merical constraint optimization.

4.5. Invariance properties

We would like to assess the robustness of the face de-
tector against common object transformations, e.g.,
translation, scaling and out-of-plane rotation. First,
we chose a set of 10 face images and perform distor-
tions to them, e.g., scaling and translating. For out-
of-plane rotation, we used 10 images of faces rotating
in 3D (“out-of-plane”) as the test set. To check the ro-
bustness of the neuron, we plot its averaged response
over the small test set with respect to changes in scale,
3D rotation (Figure 4), and translation (Figure 5).6

6Scaled, translated faces are generated by standard
cubic interpolation. For 3D rotated faces, we used 10 se-


