
Representation Learning

Hippocampus
.
.
.
.

?
.
.
.
.
.

V1

an absolute depth judgment with respect
to fixation, while fine stereopsis requires
the judgment of relative depth, i.e., com-
paring depth across space; (2) the partic-
ular coarse stereopsis task used requires
the monkey to discriminate a signal in
noise, while the fine task does not; (3)
the range of disparities is quite different.

Chowdhury and DeAngelis (2008) repli-
cate the finding that monkeys initially
trained on coarse stereopsis show im-
paired coarse depth discrimination when
muscimol is injected into MT. Remark-
ably, the same animals, after a second
round of training on fine stereopsis, are
unimpaired at either fine or coarse depth
discrimination by similar injections. More-
over, recordings in MT show that neuronal
responses are not altered by learning the
fine stereopsis task. Given the differences
between the tasks and the large number

of visual areas containing disparity-sensi-
tive neurons, one might not be surprised
to find different areas involved in the two
tasks. But it is quite unexpected that
merely learning one task would change
the contribution of areas previously in-
volved in the other. Chowdhury and
DeAngelis conclude that the change in
outcome reflects a change in neural de-
coding—decision centers that decode
signals to render judgments of depth,
finding MT signals unreliable for the fine
stereopsis task, switch their inputs to se-
lect some better source of disparity infor-
mation. Candidates include ventral
stream areas V4 or IT, where relative dis-
parity signals have been reported (Orban,
2008) and which contain far more neurons
than MT (Figure 1). When challenged
afresh with the coarse depth task, these
same decision centers may now find that

their new sources of information can solve
the coarse task as well as the old ones.
MT is no longer critical.

Perhaps in other monkeys MT would
never have a role in stereopsis at all.
ChowdhuryandDeAngelis’monkeyswere
trained simultaneously or previously to
discriminate motion, which engages MT.
Faced with a qualitatively similar random
dot stimulus, it might make sense for the
cortex to try to solve the new problem of
stereopsis with existing decoding strate-
gies. But if the animals were initially trained
on a different task—say, a texture discrim-
ination—MT might never be engaged at
all. It would also be interesting to see the
outcome if monkeys were trained on depth
tasks that were less different and could
be interleaved in the same sessions, for
example noise-limited depth judgments
using similar absolute or relative disparity

Figure 1. A Scaled Representation of the Cortical Visual Areas of the Macaque
Each colored rectangle represents a visual area, for the most part following the names and definitions used by Felleman and Van Essen (1991). The gray bands
connecting the areas represent the connections between them. Areas above the equator of the figure (reds, browns) belong to the dorsal stream. Areas below the
equator (blues, greens) belong to the ventral stream. Following Lennie (1998), each area is drawn with a size proportional to its cortical surface area, and the lines
connecting the areas each have a thickness proportional to the estimated number of fibers in the connection. The estimate is derived by assuming that each area
has a number of output fibers proportional to its surface area and that these fibers are divided among the target areas in proportion to their surface areas. The
connection strengths represented are therefore not derived from quantitative anatomy and furthermore represent only feedforward pathways, though most or all
of the pathways shown are bidirectional. The original version of this figure was prepared in 1998 by John Maunsell.

196 Neuron 60, October 23, 2008 ª2008 Elsevier Inc.

Neuron

Previews

Wallisch & Movshon (2008)

lines, edges surface boundaries ? objects faces

motion,
optic flow,

spatial-
relationships

Supervised learning

Perceptron model
(Rosenblatt, ca. 1960)

.

.

.

Σ

x1
x2
x3

xn

w1
w2
w3

wn
w0

yu
σ

y = �(u)

u = w0 +
nX

i=1

wi xi

Perceptron learning rule
(Rosenblatt 1962)

.

.

.

Σ

x1
x2
x3

xn

w1
w2
w3

wn
w0

yu
σ

= ⌘ (T (↵) � y(↵))xk

�wk =

⇢
2⌘ T (↵) x(↵)

k y(↵) 6= T (↵)

0 otherwise

0
0.5

1
1.5

2
2.5

3
3.5

4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-1

-0.5

0

0.5

1

W1
W2

Gradient descent in weight space

.

.

.

Σ

x1
x2
x3

xn

w1
w2
w3

wn
w0

y

inputs weights bias output

Linear neuron learning rule
(Widrow & Hoff 1960)

Objective function Learning rule

�wk = �⌘
@E

@wk

= ⌘
X

↵

�(↵) x(↵)
k

�(↵) = T (↵) � y(↵)
<latexit sha1_base64="0sfuhCC4PaThNwyBhW9Qj+FE5sk=">AAACtXicbVFLj9MwEHbCawmvLhy5WFSgBe1WSS/LBWnFQ+K4SNvdSnWJJs6kteo4wXYWoij/kBM3/g1OG4mwZSRL33zzzcMzSSmFsWH42/Nv3b5z997B/eDBw0ePn4wOn16aotIcZ7yQhZ4nYFAKhTMrrMR5qRHyROJVsvnQxa+uURtRqAtbl7jMYaVEJjhYR8WjnyzBlVANflOgNdRv2oB9RGmBfo839BV9594JQwvsmLJMA29YCdoKkPRT+xc7cctY0Cds9abKYwayXANlaVfxa3O081+37PhHvBn6LNjT9LUuhtQJrQduwFClw8nj0TichFuj+yDqwZj0dh6PfrG04FWOynIJxiyisLTLpvsUl+gaVAZL4BtY4cJBBTmaZbPdektfOialWaHdU5Zu2WFGA7kxdZ44ZQ52bW7GOvJ/sUVls7fLRqiysqj4rlFWSWoL2p2QpkIjt7J2ALgWblbK1+BuY92huyVEN7+8Dy6nkyicRF+m47P3/ToOyHPyghyRiJySM/KZnJMZ4d7Um3vgJf6pv/RTP9tJfa/PeUb+Mb/4A8CT0dw=</latexit><latexit sha1_base64="0sfuhCC4PaThNwyBhW9Qj+FE5sk=">AAACtXicbVFLj9MwEHbCawmvLhy5WFSgBe1WSS/LBWnFQ+K4SNvdSnWJJs6kteo4wXYWoij/kBM3/g1OG4mwZSRL33zzzcMzSSmFsWH42/Nv3b5z997B/eDBw0ePn4wOn16aotIcZ7yQhZ4nYFAKhTMrrMR5qRHyROJVsvnQxa+uURtRqAtbl7jMYaVEJjhYR8WjnyzBlVANflOgNdRv2oB9RGmBfo839BV9594JQwvsmLJMA29YCdoKkPRT+xc7cctY0Cds9abKYwayXANlaVfxa3O081+37PhHvBn6LNjT9LUuhtQJrQduwFClw8nj0TichFuj+yDqwZj0dh6PfrG04FWOynIJxiyisLTLpvsUl+gaVAZL4BtY4cJBBTmaZbPdektfOialWaHdU5Zu2WFGA7kxdZ44ZQ52bW7GOvJ/sUVls7fLRqiysqj4rlFWSWoL2p2QpkIjt7J2ALgWblbK1+BuY92huyVEN7+8Dy6nkyicRF+m47P3/ToOyHPyghyRiJySM/KZnJMZ4d7Um3vgJf6pv/RTP9tJfa/PeUb+Mb/4A8CT0dw=</latexit><latexit sha1_base64="0sfuhCC4PaThNwyBhW9Qj+FE5sk=">AAACtXicbVFLj9MwEHbCawmvLhy5WFSgBe1WSS/LBWnFQ+K4SNvdSnWJJs6kteo4wXYWoij/kBM3/g1OG4mwZSRL33zzzcMzSSmFsWH42/Nv3b5z997B/eDBw0ePn4wOn16aotIcZ7yQhZ4nYFAKhTMrrMR5qRHyROJVsvnQxa+uURtRqAtbl7jMYaVEJjhYR8WjnyzBlVANflOgNdRv2oB9RGmBfo839BV9594JQwvsmLJMA29YCdoKkPRT+xc7cctY0Cds9abKYwayXANlaVfxa3O081+37PhHvBn6LNjT9LUuhtQJrQduwFClw8nj0TichFuj+yDqwZj0dh6PfrG04FWOynIJxiyisLTLpvsUl+gaVAZL4BtY4cJBBTmaZbPdektfOialWaHdU5Zu2WFGA7kxdZ44ZQ52bW7GOvJ/sUVls7fLRqiysqj4rlFWSWoL2p2QpkIjt7J2ALgWblbK1+BuY92huyVEN7+8Dy6nkyicRF+m47P3/ToOyHPyghyRiJySM/KZnJMZ4d7Um3vgJf6pv/RTP9tJfa/PeUb+Mb/4A8CT0dw=</latexit><latexit sha1_base64="0sfuhCC4PaThNwyBhW9Qj+FE5sk=">AAACtXicbVFLj9MwEHbCawmvLhy5WFSgBe1WSS/LBWnFQ+K4SNvdSnWJJs6kteo4wXYWoij/kBM3/g1OG4mwZSRL33zzzcMzSSmFsWH42/Nv3b5z997B/eDBw0ePn4wOn16aotIcZ7yQhZ4nYFAKhTMrrMR5qRHyROJVsvnQxa+uURtRqAtbl7jMYaVEJjhYR8WjnyzBlVANflOgNdRv2oB9RGmBfo839BV9594JQwvsmLJMA29YCdoKkPRT+xc7cctY0Cds9abKYwayXANlaVfxa3O081+37PhHvBn6LNjT9LUuhtQJrQduwFClw8nj0TichFuj+yDqwZj0dh6PfrG04FWOynIJxiyisLTLpvsUl+gaVAZL4BtY4cJBBTmaZbPdektfOialWaHdU5Zu2WFGA7kxdZ44ZQ52bW7GOvJ/sUVls7fLRqiysqj4rlFWSWoL2p2QpkIjt7J2ALgWblbK1+BuY92huyVEN7+8Dy6nkyicRF+m47P3/ToOyHPyghyRiJySM/KZnJMZ4d7Um3vgJf6pv/RTP9tJfa/PeUb+Mb/4A8CT0dw=</latexit>

.

.

.

Σ

x1
x2
x3

xn

w1
w2
w3

wn
w0

yu
σ

Linear neuron with output non-linearity

y = �(u) ⌘ 1

1 + e�� u

Two-layer network

. . .
x1 x2 x3 xn

. . .

Wij

. . .

y1 y2 yh

Vij

z1 z2 zm
output

"hidden units"

input

Learning rule for output layer

. . .
x1 x2 x3 xn

. . .

Wij

. . .

y1 y2 yh

Vij

z1 z2 zm
output

"hidden units"

input

where

Learning rule for hidden layer

. . .
x1 x2 x3 xn

. . .

Wij

. . .

y1 y2 yh

Vij

z1 z2 zm
output

"hidden units"

input

where
back-propagation
of error

Unsupervised learning

(Neural Computation, 1993)

Hebbian Learning and PCA

PCA
(Principal Components Analysis)

x1

x2 y2
y1

ET

E =

2

4
| |
e1 e2
| |

3

5 e1 · e2 = 0

|e1| = |e2| = 1

y1 = e1 · x
y2 = e2 · x

hx1 x2i = c12

6= 0
hy1 y2i = hy1i hy2i

= 0

x1

x2 e1
e2

a.

x1

x2 e1
e2

b.

PCA
(Principal Components Analysis)

Hebbian learning

A B
…

…
WAB

�WAB / < AB >

(bell) (‘time to eat’)

(food cues)

ẇi /
*
X

j

wj xj xi

+

ẇi ∝ 〈y xi〉

.

.

.

Σ

x1
x2
x3

xn

w1
w2
w3

wn
w0

y

inputs weights bias output

Linear Hebbian learning

ẇ ∝ Cw Cij = 〈xi xj〉

y =
X

j

wj xj

=
X

j

wj hxj xii

ẇ ∝ Cw

ẇ1 / C11 w1 + C12 w2

ẇ2 / C21 w1 + C22 w2

C = E⇤ET

E =

2

4
| | |
e1 e2 · · · en
| | |

3

5 ⇤ =

2

6664

�1 0 · · · 0
0 �2 · · · 0
...

. . .
...

0 · · · 0 �n

3

7775

ET Λ E

C

v = ET wdefine:

ẇ / Cw

= E⇤ET w

= E⇤v

ET ẇ / ET E⇤v

v̇ / ⇤v

v̇1 / �1 v1

v̇2 / �2 v2

w = Ev

w → α e1

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

W1’

W
2’

v1(t) = e�1 t v1(0)

v2(t) = e�2 tv2(0)

v1
<latexit sha1_base64="xrtXQ+viJELIsOZrxfwDSqtLKRA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbSbt0dxN2N4US+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEAturOt+O6WNza3tnfJuZW//4PCoenzSNlGiGbZYJCLdDahBwRW2LLcCu7FGKgOBnWByn/udKWrDI/VkZzH6ko4UDzmjNpemA68yqNbcursAWSdeQWpQoDmofvWHEUskKssENabnubH1U6otZwLnlX5iMKZsQkfYy6iiEo2fLm6dk4tMGZIw0lkpSxbq74mUSmNmMsg6JbVjs+rl4n9eL7HhrZ9yFScWFVsuChNBbETyx8mQa2RWzDJCmebZrYSNqabMZvHkIXirL6+T9lXdc+ve43WtcVfEUYYzOIdL8OAGGvAATWgBgzE8wyu8OdJ5cd6dj2VrySlmTuEPnM8fPbqNsg==</latexit><latexit sha1_base64="xrtXQ+viJELIsOZrxfwDSqtLKRA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbSbt0dxN2N4US+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEAturOt+O6WNza3tnfJuZW//4PCoenzSNlGiGbZYJCLdDahBwRW2LLcCu7FGKgOBnWByn/udKWrDI/VkZzH6ko4UDzmjNpemA68yqNbcursAWSdeQWpQoDmofvWHEUskKssENabnubH1U6otZwLnlX5iMKZsQkfYy6iiEo2fLm6dk4tMGZIw0lkpSxbq74mUSmNmMsg6JbVjs+rl4n9eL7HhrZ9yFScWFVsuChNBbETyx8mQa2RWzDJCmebZrYSNqabMZvHkIXirL6+T9lXdc+ve43WtcVfEUYYzOIdL8OAGGvAATWgBgzE8wyu8OdJ5cd6dj2VrySlmTuEPnM8fPbqNsg==</latexit><latexit sha1_base64="xrtXQ+viJELIsOZrxfwDSqtLKRA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbSbt0dxN2N4US+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEAturOt+O6WNza3tnfJuZW//4PCoenzSNlGiGbZYJCLdDahBwRW2LLcCu7FGKgOBnWByn/udKWrDI/VkZzH6ko4UDzmjNpemA68yqNbcursAWSdeQWpQoDmofvWHEUskKssENabnubH1U6otZwLnlX5iMKZsQkfYy6iiEo2fLm6dk4tMGZIw0lkpSxbq74mUSmNmMsg6JbVjs+rl4n9eL7HhrZ9yFScWFVsuChNBbETyx8mQa2RWzDJCmebZrYSNqabMZvHkIXirL6+T9lXdc+ve43WtcVfEUYYzOIdL8OAGGvAATWgBgzE8wyu8OdJ5cd6dj2VrySlmTuEPnM8fPbqNsg==</latexit><latexit sha1_base64="xrtXQ+viJELIsOZrxfwDSqtLKRA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbSbt0dxN2N4US+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEAturOt+O6WNza3tnfJuZW//4PCoenzSNlGiGbZYJCLdDahBwRW2LLcCu7FGKgOBnWByn/udKWrDI/VkZzH6ko4UDzmjNpemA68yqNbcursAWSdeQWpQoDmofvWHEUskKssENabnubH1U6otZwLnlX5iMKZsQkfYy6iiEo2fLm6dk4tMGZIw0lkpSxbq74mUSmNmMsg6JbVjs+rl4n9eL7HhrZ9yFScWFVsuChNBbETyx8mQa2RWzDJCmebZrYSNqabMZvHkIXirL6+T9lXdc+ve43WtcVfEUYYzOIdL8OAGGvAATWgBgzE8wyu8OdJ5cd6dj2VrySlmTuEPnM8fPbqNsg==</latexit>

v2
<latexit sha1_base64="hFvtxiZBdHIotNYnp8NmcEESUEo=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Fj04rGC/YA2lM120y7d3YTdSaGE/gUvHhTx6h/y5r8xaXPQ1gcDj/dmmJkXxFJYdN1vZ2Nza3tnt7RX3j84PDqunJy2bZQYxlsskpHpBtRyKTRvoUDJu7HhVAWSd4LJfe53ptxYEeknnMXcV3SkRSgYxVyaDurlQaXq1twFyDrxClKFAs1B5as/jFiiuEYmqbU9z43RT6lBwS Sfl/uJ5TFlEzrivYxqqrj108Wtc3KZKUMSRiYrjWSh/p5IqbJ2poKsU1Ec21UvF//zegmGt34qdJwg12y5KEwkwYjkj5OhMJyhnGWEMiOyWwkbU0MZZvHkIXirL6+Tdr3muTXv8brauCviKME5XMAVeHADDXiAJrSAwRie4RXeHOW8OO/Ox7J1wylmzuAPnM8fPz+Nsw==</latexit><latexit sha1_base64="hFvtxiZBdHIotNYnp8NmcEESUEo=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Fj04rGC/YA2lM120y7d3YTdSaGE/gUvHhTx6h/y5r8xaXPQ1gcDj/dmmJkXxFJYdN1vZ2Nza3tnt7RX3j84PDqunJy2bZQYxlsskpHpBtRyKTRvoUDJu7HhVAWSd4LJfe53ptxYEeknnMXcV3SkRSgYxVyaDurlQaXq1twFyDrxClKFAs1B5as/jFiiuEYmqbU9z43RT6lBwS Sfl/uJ5TFlEzrivYxqqrj108Wtc3KZKUMSRiYrjWSh/p5IqbJ2poKsU1Ec21UvF//zegmGt34qdJwg12y5KEwkwYjkj5OhMJyhnGWEMiOyWwkbU0MZZvHkIXirL6+Tdr3muTXv8brauCviKME5XMAVeHADDXiAJrSAwRie4RXeHOW8OO/Ox7J1wylmzuAPnM8fPz+Nsw==</latexit><latexit sha1_base64="hFvtxiZBdHIotNYnp8NmcEESUEo=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Fj04rGC/YA2lM120y7d3YTdSaGE/gUvHhTx6h/y5r8xaXPQ1gcDj/dmmJkXxFJYdN1vZ2Nza3tnt7RX3j84PDqunJy2bZQYxlsskpHpBtRyKTRvoUDJu7HhVAWSd4LJfe53ptxYEeknnMXcV3SkRSgYxVyaDurlQaXq1twFyDrxClKFAs1B5as/jFiiuEYmqbU9z43RT6lBwS Sfl/uJ5TFlEzrivYxqqrj108Wtc3KZKUMSRiYrjWSh/p5IqbJ2poKsU1Ec21UvF//zegmGt34qdJwg12y5KEwkwYjkj5OhMJyhnGWEMiOyWwkbU0MZZvHkIXirL6+Tdr3muTXv8brauCviKME5XMAVeHADDXiAJrSAwRie4RXeHOW8OO/Ox7J1wylmzuAPnM8fPz+Nsw==</latexit><latexit sha1_base64="hFvtxiZBdHIotNYnp8NmcEESUEo=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Fj04rGC/YA2lM120y7d3YTdSaGE/gUvHhTx6h/y5r8xaXPQ1gcDj/dmmJkXxFJYdN1vZ2Nza3tnt7RX3j84PDqunJy2bZQYxlsskpHpBtRyKTRvoUDJu7HhVAWSd4LJfe53ptxYEeknnMXcV3SkRSgYxVyaDurlQaXq1twFyDrxClKFAs1B5as/jFiiuEYmqbU9z43RT6lBwS Sfl/uJ5TFlEzrivYxqqrj108Wtc3KZKUMSRiYrjWSh/p5IqbJ2poKsU1Ec21UvF//zegmGt34qdJwg12y5KEwkwYjkj5OhMJyhnGWEMiOyWwkbU0MZZvHkIXirL6+Tdr3muTXv8brauCviKME5XMAVeHADDXiAJrSAwRie4RXeHOW8OO/Ox7J1wylmzuAPnM8fPz+Nsw==</latexit>

Constraining the growth of the weight vector

Oja’s rule

or

. . .
x1 x2 x3 xn

y1 y2 ym. . .

Multiple output units

Sanger’s rule:

Competitive Learning

x1

x2 e1e2

a.

x1

x2 e1e2

b.

Gaussian non-Gaussian

Non-linear Hebbian learning

Non-linear neuron:

Hebbian learning then yields:

Winner-take-all learning

Network:

Learning rule:

Winner-take-all learning

before learning after learning

Winner-take-all learning

Energy function:

Gradient descent:

significantly correlated, the above scheme could learn to
code colour and type on separate sets of units, and to
represent a particular car as a combination of activity in
those units (a 'yellow' and a 'Volkswagen' unit). Gener-
alization may then occur specifically along one feature or
aspect of the input. An output correlated only with
'Volkswagen' would get connected to the unit in the
'type' group, and it could generalise to other colours
even when it has a large Hamming distance from the
original.

7 Combination of Hebbian and anti-Hebbian
mechanisms

In the following network, the detection of suspicious
coincidences is performed by conventional Hebbian
feed-forward weights, but units are connected by anti-
Hebbian inhibitory feedback connections (Fig. 1). For
linear units, this arrangement has been shown to per-
form principal component analysis by projecting into the
subspace of the eigenvectors corresponding to the n
largest eigenvalues of the covariance matrix of the input
(Frldifik 1989).' The model discussed here has similar
architecture, but units here are nonlinear, so it can learn
not only about the second-order statistics, i.e. pairwise
correlations between input elements, but also about
higher-order dependencies and features of the input.

In order to achieve sparse coding, an additional
mechanism is assumed: each unit tries to keep its prob-
ability of firing close to a fixed value by adjusting its
own threshold. A unit that has been inactive for a long
time gradually lowers its threshold (i.e~ decreases its
selectivity), while a frequently active unit gradually
becomes more selective by raising its threshold.

The network has m inputs: xy,j = 1 . . . m, and n
representation units: Yi, i = 1 . . . n. Because of the feed-
back and the nonlinearity of the units, the output
cannot be calculated in a single step as in the case of
one unit, because the final output here is influenced by
the feedback from the other units. Provided that the
feedback is symmetric (wij = wji), the network is guar-
anteed to settle into a stable state after an initial
transient (Hopfield 1982). This transient was simulated
by numerically solving the following differential equa-
tion for each input pattern:

dY*dt = f ~ i qiyxj+ j=~l w~y* - t i) - y*

where q,j is the weight of the connection from xy to
y~, w U is the connection between units y, and yj and the
nonlinearity of the units is represented by the function
f(u) = 1/(1 +exp(-Au)) . The outputs are then calcu-
lated by rounding the values of y* in the stable state to
0 or 1 (Yi = 1 if y* > .5, y~ = 0 otherwise). The feedfor-
ward weights are initially random, 2 and the feedback
weights are 0.

' A similar but asymmetrically connected network has also been
proposed for this purpose by Rubner and Sehulten (1990)
2 Selected from a uniform distribution on [0, 1] and normalised to
unit length (Y-jq~ = 1)

167

x 1

x 2

x m

Yl

Y2

Yn

Fig. 1. The architecture of the proposed network. Empty circles
are Hebbian excitatory, flied circles are anti-Hebbian inhibitory
connections

On each learning trial, after the output has been
calculated, the connections and thresholds are modified
according to the following rules:

anti-Hebbian rule-
Aw iy = - ot(yiyj - p2)
(if i = j or w;j > 0 then w # : = 0)

Hebbian rule-

Aq# = flYi (xj - qij)
threshold modification-

Ati = Y(Yi - P) .
Here ct, fl and T are small positive constants and p is

the specified bit probability. The Hebbian rule contains
a weight decay term in order to keep the feed-forward
weight vectors bounded. The anti-Hebbian rule is inher-
ently stable so no such normalizing term is necessary.
Note that these rules only contain terms related to the
units that the weight connect, so all the information
necessary for the modification is available locally at the
site of the connection.

In the next two sections some aspects of the model
will be demonstrated on two simple, artificially gener-
ated distributions.

8 Example 1: learning fines

Patterns consisting of random horizontal and vertical
lines were presented to the network. This example was
chosen for comparison with that given by Rumelhart
and Zipser (1985) to demonstrate competitive learning.

momon m mo
Fig. 2. A random sample of the patterns presented to the network in
Example 1

significantly correlated, the above scheme could learn to
code colour and type on separate sets of units, and to
represent a particular car as a combination of activity in
those units (a 'yellow' and a 'Volkswagen' unit). Gener-
alization may then occur specifically along one feature or
aspect of the input. An output correlated only with
'Volkswagen' would get connected to the unit in the
'type' group, and it could generalise to other colours
even when it has a large Hamming distance from the
original.

7 Combination of Hebbian and anti-Hebbian
mechanisms

In the following network, the detection of suspicious
coincidences is performed by conventional Hebbian
feed-forward weights, but units are connected by anti-
Hebbian inhibitory feedback connections (Fig. 1). For
linear units, this arrangement has been shown to per-
form principal component analysis by projecting into the
subspace of the eigenvectors corresponding to the n
largest eigenvalues of the covariance matrix of the input
(Frldifik 1989).' The model discussed here has similar
architecture, but units here are nonlinear, so it can learn
not only about the second-order statistics, i.e. pairwise
correlations between input elements, but also about
higher-order dependencies and features of the input.

In order to achieve sparse coding, an additional
mechanism is assumed: each unit tries to keep its prob-
ability of firing close to a fixed value by adjusting its
own threshold. A unit that has been inactive for a long
time gradually lowers its threshold (i.e~ decreases its
selectivity), while a frequently active unit gradually
becomes more selective by raising its threshold.

The network has m inputs: xy,j = 1 . . . m, and n
representation units: Yi, i = 1 . . . n. Because of the feed-
back and the nonlinearity of the units, the output
cannot be calculated in a single step as in the case of
one unit, because the final output here is influenced by
the feedback from the other units. Provided that the
feedback is symmetric (wij = wji), the network is guar-
anteed to settle into a stable state after an initial
transient (Hopfield 1982). This transient was simulated
by numerically solving the following differential equa-
tion for each input pattern:

dY*dt = f ~ i qiyxj+ j=~l w~y* - t i) - y*

where q,j is the weight of the connection from xy to
y~, w U is the connection between units y, and yj and the
nonlinearity of the units is represented by the function
f(u) = 1/(1 +exp(-Au)) . The outputs are then calcu-
lated by rounding the values of y* in the stable state to
0 or 1 (Yi = 1 if y* > .5, y~ = 0 otherwise). The feedfor-
ward weights are initially random, 2 and the feedback
weights are 0.

' A similar but asymmetrically connected network has also been
proposed for this purpose by Rubner and Sehulten (1990)
2 Selected from a uniform distribution on [0, 1] and normalised to
unit length (Y-jq~ = 1)

167

x 1

x 2

x m

Yl

Y2

Yn

Fig. 1. The architecture of the proposed network. Empty circles
are Hebbian excitatory, flied circles are anti-Hebbian inhibitory
connections

On each learning trial, after the output has been
calculated, the connections and thresholds are modified
according to the following rules:

anti-Hebbian rule-
Aw iy = - ot(yiyj - p2)
(if i = j or w;j > 0 then w # : = 0)

Hebbian rule-

Aq# = flYi (xj - qij)
threshold modification-

Ati = Y(Yi - P) .
Here ct, fl and T are small positive constants and p is

the specified bit probability. The Hebbian rule contains
a weight decay term in order to keep the feed-forward
weight vectors bounded. The anti-Hebbian rule is inher-
ently stable so no such normalizing term is necessary.
Note that these rules only contain terms related to the
units that the weight connect, so all the information
necessary for the modification is available locally at the
site of the connection.

In the next two sections some aspects of the model
will be demonstrated on two simple, artificially gener-
ated distributions.

8 Example 1: learning fines

Patterns consisting of random horizontal and vertical
lines were presented to the network. This example was
chosen for comparison with that given by Rumelhart
and Zipser (1985) to demonstrate competitive learning.

momon m mo
Fig. 2. A random sample of the patterns presented to the network in
Example 1

<latexit sha1_base64="5ZaczyMhc5ojruih1mKyBJd5Y04=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbabt2s4m7G6GE/ggvHhTx6u/x5r9x0+agrQ8GHu/NMDMviAXXxnW/ncLK6tr6RnGztLW9s7tX3j9o6ihRDBssEpFqB1Sj4BIbhhuB7VghDQOBrWB8k/mtJ1SaR/LeTGL0QzqUfMAZNVZqPfZS/jAt9coVt+rOQJaJl5MK5Kj3yl/dfsSSEKVhgmrd8dzY+ClVhjOB01I30RhTNqZD7FgqaYjaT2fnTsmJVfpkEClb0pCZ+nsipaHWkzCwnSE1I73oZeJ/Xicxgys/5TJODEo2XzRIBDERyX4nfa6QGTGxhDLF7a2EjaiizNiEshC8xZeXSfOs6l1Uz+/OK7XrPI4iHMExnIIHl1CDW6hDAxiM4Rle4c2JnRfn3fmYtxacfOYQ/sD5/AEcFY9u</latexit>qij
<latexit sha1_base64="rNw6PTs239CN1bCc68BSpLVnNLA=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbbbt2swm7E6WE/ggvHhTx6u/x5r9x0+agrQ8GHu/NMDMviKUw6LrfTmFldW19o7hZ2tre2d0r7x80TZRoxhsskpFuB9RwKRRvoEDJ27HmNAwkbwXjm8xvPXJtRKTucRJzP6RDJQaCUbRS66mXiodpqVeuuFV3BrJMvJxUIEe9V/7q9iOWhFwhk9SYjufG6KdUo2CST0vdxPCYsjEd8o6liobc+Ons3Ck5sUqfDCJtSyGZqb8nUhoaMwkD2xlSHJlFLxP/8zoJDq78VKg4Qa7YfNEgkQQjkv1O+kJzhnJiCWVa2FsJG1FNGdqEshC8xZeXSfOs6l1Uz+/OK7XrPI4iHMExnIIHl1CDW6hDAxiM4Rle4c2JnRfn3fmYtxacfOYQ/sD5/AElUY90</latexit>wij

<latexit sha1_base64="A3MAO5GrU3jlBqCvlNxgS2sZY/8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0Io/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHkyXoR3QoecgZNVZ6yPq8X664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGn1BlOBM4LfVSjQllYzrErqWSRqj9yfzUKTmzyoCEsbIlDZmrvycmNNI6iwLbGVEz0sveTPzP66YmvPYnXCapQckWi8JUEBOT2d9kwBUyIzJLKFPc3krYiCrKjE2nZEPwll9eJa2LqndZrd3XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gBlBI3i</latexit>yi

Learning lines

Input patterns:

Learned weights:

