
Neural Computation (VS 265), Problem Set 3 - Unsupervised learning

Due date: October 10, 3:30pm

Fall 2024

General guidelines:

• We are grading problem sets anonymously. Include your student ID in the submission, but do
not include your name.

• You may work in small groups of 2-3. Note that you are responsible for writing up and submitting
your submission individually.

• You are expected to attach any code you used for this assignment but will be evaluated primarily on
the writeup.

• A link to download the problem set datasets can be found on the course website.

Part 1: PCA and linear Hebbian learning

As discussed in class, a linear neuron undergoing Hebbian learning via Oja’s rule will learn to represent
the first principal component of the data. Sanger’s rule extends this to multiple units - and hence multiple
principal components - by serially subtracting out the previously learned components from the input. Here
we will explore the consequences of these learning rules for capturing the structure contained in different
types of data.
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i. Gaussian dataset. Train a network consisting of two linear neurons, using Sanger’s rule, on the
simple 2D Gaussian dataset. Visualize the solution learned by the network by superimposing the weight
vectors on a scatterplot of the data points. Make an animation showing the evolution of the weight
vectors starting from random initial conditions (or alternatively, plot the solution at different stages of
learning - initial condition, partway through learning, and fully converged).

ii. Non-Gaussian dataset. Now train the network on the non-Gaussian dataset and visualize the learned
solution similar to above. Visualize how well this network captures the structure of the data by syn-
thesizing a dataset using the learned vectors and the corresponding variances on each unit. How do the
two distributions compare?
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iii. Faces dataset. Finally, train a network of five units on the dataset of face images and show the learned
weight vectors as a set of five images.

a) Examine how well the network’s 5-D representation captures these images by attempting to recon-
struct any one of the images from these five components.

b) Visualize the structure learned by the network by synthesizing images from the learned weight vectors
and the corresponding variances of each unit.

Part 2: Winner-take-all learning

One way of learning non-Gaussian structure in data – for example, when there are distinct clusters cor-
responding to different objects – is via a simple competitive learning rule such as winner-take-all (WTA)
learning.

i. Train a WTA network (as discussed in class) on the non-Gaussian 2D dataset as in ii. above, and
visualize the learned solution superimposed on a scatter plot of the data. Show the learned solution for
networks containing different numbers of neurons - e.g., 3, 4 and 5 neurons.

ii. Next train a WTA network with 5 neurons on the faces dataset as in iii. above and visualize the learned
weight vectors as a set of images. How does the solution differ and why?

Part 3: Foldiak’s sparse coding model

WTA learning corresponds to a simple form of clustering called ‘k-means’. It is useful when the data contain
well-defined clusters, and you know how to set k, but otherwise it is a very lossy representation as it forces
any given data point to be represented by a single weight vector. One possible improvement would be to
allow a data point to be represented as a combination of a small number of weight vectors, rather than just
one. This is the idea behind sparse coding.

In 1990 Peter Foldiak proposed a simple neural network model for sparse coding that combines Hebbian
learning, thresholding and lateral inhibition to learn a sparse encoding of data. As in the paper we will
utilize a toy dataset consisting of 8 × 8 pixel images containing a small number of randomly placed vertical
and horizontal bars:

significantly correlated, the above scheme could learn to 
code colour and type on separate sets of units, and to 
represent a particular car as a combination of activity in 
those units (a 'yellow' and a 'Volkswagen' unit). Gener- 
alization may then occur specifically along one feature or 
aspect of the input. An output correlated only with 
'Volkswagen' would get connected to the unit in the 
'type' group, and it could generalise to other colours 
even when it has a large Hamming distance from the 
original. 

7 Combination of  Hebbian and anti-Hebbian 
mechanisms 

In the following network, the detection of suspicious 
coincidences is performed by conventional Hebbian 
feed-forward weights, but units are connected by anti- 
Hebbian inhibitory feedback connections (Fig. 1). For 
linear units, this arrangement has been shown to per- 
form principal component analysis by projecting into the 
subspace of the eigenvectors corresponding to the n 
largest eigenvalues of the covariance matrix of the input 
(Frldifik 1989).' The model discussed here has similar 
architecture, but units here are nonlinear, so it can learn 
not only about the second-order statistics, i.e. pairwise 
correlations between input elements, but also about 
higher-order dependencies and features of the input. 

In order to achieve sparse coding, an additional 
mechanism is assumed: each unit tries to keep its prob- 
ability of firing close to a fixed value by adjusting its 
own threshold. A unit that has been inactive for a long 
time gradually lowers its threshold (i.e~ decreases its 
selectivity), while a frequently active unit gradually 
becomes more selective by raising its threshold. 

The network has m inputs: xy,j = 1 . . .  m, and n 
representation units: Yi, i = 1 . . .  n. Because of the feed- 
back and the nonlinearity of the units, the output 
cannot be calculated in a single step as in the case of 
one unit, because the final output here is influenced by 
the feedback from the other units. Provided that the 
feedback is symmetric (wij = wji), the network is guar- 
anteed to settle into a stable state after an initial 
transient (Hopfield 1982). This transient was simulated 
by numerically solving the following differential equa- 
tion for each input pattern: 

dY*dt = f ~ i  qiyxj+ j=~l w~y* - t i ) -  y* 

where q,j is the weight of the connection from xy to 
y~, w U is the connection between units y, and yj and the 
nonlinearity of the units is represented by the function 
f(u) = 1/(1 +exp(-Au)) .  The outputs are then calcu- 
lated by rounding the values of y* in the stable state to 
0 or 1 (Yi = 1 if y* > .5, y~ = 0 otherwise). The feedfor- 
ward weights are initially random, 2 and the feedback 
weights are 0. 

' A similar but asymmetrically connected network has also been 
proposed for this purpose by Rubner and Sehulten (1990) 
2 Selected from a uniform distribution on [0, 1] and normalised to 
unit length (Y-jq~ = 1) 

167 

x 1 

x 2 

x m 

Yl 

Y2 

Yn 

Fig. 1. The architecture of the proposed network. Empty circles 
are Hebbian excitatory, flied circles are anti-Hebbian inhibitory 
connections 

On each learning trial, after the output has been 
calculated, the connections and thresholds are modified 
according to the following rules: 

anti-Hebbian rule-  

Aw iy = - ot( yiyj - p2) 
(if i = j  or w;j > 0 then w # : = 0 )  

Hebbian rule-  

Aq# = flYi (xj - qij) 
threshold modification- 

Ati = Y( Yi - P) . 
Here ct, fl and T are small positive constants and p is 

the specified bit probability. The Hebbian rule contains 
a weight decay term in order to keep the feed-forward 
weight vectors bounded. The anti-Hebbian rule is inher- 
ently stable so no such normalizing term is necessary. 
Note that these rules only contain terms related to the 
units that the weight connect, so all the information 
necessary for the modification is available locally at the 
site of the connection. 

In the next two sections some aspects of the model 
will be demonstrated on two simple, artificially gener- 
ated distributions. 

8 Example  1: learning fines 

Patterns consisting of random horizontal and vertical 
lines were presented to the network. This example was 
chosen for comparison with that given by Rumelhart 
and Zipser (1985) to demonstrate competitive learning. 

momon  m mo 
Fig. 2. A random sample of the patterns presented to the network in 
Example 1 

Clearly it would be impossible to capture the structure of this dataset with WTA learning since there are
many different ways the bars could be combined to generate an image that won’t coalesce into a small number
of clusters. Yet, the structure is still very simple in that any given image is composed of a small number of
bars.

i. Implement Foldiak’s network dynamics and learning rules for feedforward and lateral connections and
train the network on the bars dataset. It makes the most sense here to use a network of 16 neurons.
Plot the learned feedforward weights, thresholds, and lateral connection weights to see how they change
throughout learning. It is also helpful to show alongside this the average activation for each unit and
their correlations to see how the constraints are satisfied.

ii. (Optional) How would linear Hebbian learning (i.e., PCA) handle this dataset? Try training your
network from part 1 on the bars data and examine the solution and its ability to properly represent the
data.
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