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…problem solving behavior, language, expert knowledge and 
application, and reason, are all pretty simple once the 
essence of being and reacting are available.  That essence is 
the ability to move around in a dynamic environment, sensing 
the surroundings to a degree sufficient to achieve the 
necessary maintenance of life and reproduction.  This part of 
intelligence is where evolution has concentrated its time--it is 
much harder.

— Rodney Brooks, “Intelligence without representation,” 
Artificial Intelligence (1991)



Fig. 5 – Two views of thalamocortical pathways. The upper
figure illustrates a motor instruction to the lower motor
center, coming either from the cortex or from the upper parts
of the brainstem. Each can send an efference copy shown in
red to the thalamus. The lower figure shows the afferents to
the thalamus, also in red, all serving essentially the same
function as copies of motor instructions. Abbreviations: FO
first order, HO higher order.

Fig. 6 – Ramon y Cajal's (1911) illustration of the thalamic
branches given off by the mamillotegmental tract. The upper
figure (644) is a sagittal section (anterior to right, dorsal up)
that shows the principal mamillary tract (Fmpr) giving off the
mamillothalamic tract (Fthm) anteriorly and continuing
posteriorly as the mamillotegmental tract (Ftm). FM,
habenulo-peduncular tract. The lower figure (645) shows the
detail of the branching.
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an absolute depth judgment with respect
to fixation, while fine stereopsis requires
the judgment of relative depth, i.e., com-
paring depth across space; (2) the partic-
ular coarse stereopsis task used requires
the monkey to discriminate a signal in
noise, while the fine task does not; (3)
the range of disparities is quite different.

Chowdhury and DeAngelis (2008) repli-
cate the finding that monkeys initially
trained on coarse stereopsis show im-
paired coarse depth discrimination when
muscimol is injected into MT. Remark-
ably, the same animals, after a second
round of training on fine stereopsis, are
unimpaired at either fine or coarse depth
discrimination by similar injections. More-
over, recordings in MT show that neuronal
responses are not altered by learning the
fine stereopsis task. Given the differences
between the tasks and the large number

of visual areas containing disparity-sensi-
tive neurons, one might not be surprised
to find different areas involved in the two
tasks. But it is quite unexpected that
merely learning one task would change
the contribution of areas previously in-
volved in the other. Chowdhury and
DeAngelis conclude that the change in
outcome reflects a change in neural de-
coding—decision centers that decode
signals to render judgments of depth,
finding MT signals unreliable for the fine
stereopsis task, switch their inputs to se-
lect some better source of disparity infor-
mation. Candidates include ventral
stream areas V4 or IT, where relative dis-
parity signals have been reported (Orban,
2008) and which contain far more neurons
than MT (Figure 1). When challenged
afresh with the coarse depth task, these
same decision centers may now find that

their new sources of information can solve
the coarse task as well as the old ones.
MT is no longer critical.

Perhaps in other monkeys MT would
never have a role in stereopsis at all.
ChowdhuryandDeAngelis’monkeyswere
trained simultaneously or previously to
discriminate motion, which engages MT.
Faced with a qualitatively similar random
dot stimulus, it might make sense for the
cortex to try to solve the new problem of
stereopsis with existing decoding strate-
gies. But if the animals were initially trained
on a different task—say, a texture discrim-
ination—MT might never be engaged at
all. It would also be interesting to see the
outcome if monkeys were trained on depth
tasks that were less different and could
be interleaved in the same sessions, for
example noise-limited depth judgments
using similar absolute or relative disparity

Figure 1. A Scaled Representation of the Cortical Visual Areas of the Macaque
Each colored rectangle represents a visual area, for the most part following the names and definitions used by Felleman and Van Essen (1991). The gray bands
connecting the areas represent the connections between them. Areas above the equator of the figure (reds, browns) belong to the dorsal stream. Areas below the
equator (blues, greens) belong to the ventral stream. Following Lennie (1998), each area is drawn with a size proportional to its cortical surface area, and the lines
connecting the areas each have a thickness proportional to the estimated number of fibers in the connection. The estimate is derived by assuming that each area
has a number of output fibers proportional to its surface area and that these fibers are divided among the target areas in proportion to their surface areas. The
connection strengths represented are therefore not derived from quantitative anatomy and furthermore represent only feedforward pathways, though most or all
of the pathways shown are bidirectional. The original version of this figure was prepared in 1998 by John Maunsell.
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Super-resolution in the Google Pixel camera

Handheld Multi-Frame Super-Resolution

BARTLOMIEJWRONSKI, IGNACIOGARCIA-DORADO,MANFREDERNST, DAMIENKELLY,MICHAEL
KRAININ, CHIA-KAI LIANG, MARC LEVOY, and PEYMAN MILANFAR, Google Research

Fig. 1. We present a multi-frame super-resolution algorithm that supplants the need for demosaicing in a camera pipeline by merging a burst of raw images.
We show a comparison to a method that merges frames containing the same-color channels together first, and is then followed by demosaicing (top). By
contrast, our method (bo�om) creates the full RGB directly from a burst of raw images. This burst was captured with a hand-held mobile phone and processed
on device. Note in the third (red) inset that the demosaiced result exhibits aliasing (Moiré), while our result takes advantage of this aliasing, which changes on
every frame in the burst, to produce a merged result in which the aliasing is gone but the cloth texture becomes visible.

Compared to DSLR cameras, smartphone cameras have smaller sensors,
which limits their spatial resolution; smaller apertures, which limits their
light gathering ability; and smaller pixels, which reduces their signal-to-
noise ratio. The use of color �lter arrays (CFAs) requires demosaicing, which
further degrades resolution. In this paper, we supplant the use of traditional
demosaicing in single-frame and burst photography pipelines with a multi-
frame super-resolution algorithm that creates a complete RGB image directly
from a burst of CFA raw images. We harness natural hand tremor, typical in
handheld photography, to acquire a burst of raw frames with small o�sets.
These frames are then aligned and merged to form a single image with red,
green, and blue values at every pixel site. This approach, which includes no
explicit demosaicing step, serves to both increase image resolution and boost
signal to noise ratio. Our algorithm is robust to challenging scene conditions:
local motion, occlusion, or scene changes. It runs at 100 milliseconds per
12-megapixel RAW input burst frame on mass-produced mobile phones.
Speci�cally, the algorithm is the basis of the Super-Res Zoom feature, as well
as the default merge method in Night Sight mode (whether zooming or not)
on Google’s �agship phone.

Authors’ address: Bartlomiej Wronski, bwronski@google.com; Ignacio Garcia-
Dorado, ignaciod@google.com; Manfred Ernst, ernstm@google.com; Damien Kelly,
damienkelly@google.com; Michael Krainin, mkrainin@google.com; Chia-Kai Liang,
ckliang@google.com; Marc Levoy, levoy@google.com; Peyman Milanfar, milanfar@
google.com Google Research, 1600 Amphitheatre Parkway, Mountain View, CA, 94043.

Permission to make digital or hard copies of part or all of this work for personal or
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for pro�t or commercial advantage and that copies bear this notice and the full citation
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1 INTRODUCTION
Smartphone camera technology has advanced to the point that tak-
ing pictures with a smartphone has become the most popular form
of photography [CIPA 2018; Flickr 2017]. Smartphone photography
o�ers high portability and convenience, but many challenges still
exist in the hardware and software design of a smartphone cam-
era that must be overcome to enable it to compete with dedicated
cameras.
Foremost among these challenges is limited spatial resolution.

The resolution produced by digital image sensors is limited not only
by the physical pixel count (e.g., 12-megapixel camera), but also by
the presence of color �lter arrays (CFA)1 like the Bayer CFA [Bayer
1976]. Given that human vision is more sensitive to green, a quad
of pixels in the sensor usually follows the Bayer pattern RGGB;
i.e., 50% green, 25% red, and 25% blue. The �nal full-color image is
generated from the spatially undersampled color channels through
an interpolation process called demosaicing [Li et al. 2008].

1Also known as a color �lter mosaic (CFM).

ACM Trans. Graph., Vol. 38, No. 4, Article 28. Publication date: July 2019.
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1st frame (base frame) 2nd frame 3rd frame 4th frame All frames aligned to
base frame

Fig. 4. Subpixel displacements from handheld motion: Illustration of a burst of four frames with linear hand motion. Each frame is o�set from the
previous frame by half a pixel along the x-axis and a quarter pixel along the y-axis due to the hand motion. A�er alignment to the base frame, the pixel
centers (black dots) uniformly cover the resampling grid (grey lines) at an increased density. In practice, the distribution is more random than in this simplified
example.
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Fig. 5. Distribution of estimated subpixel displacements: Histogram
of x and y subpixel displacements as computed by the alignment algorithm
(Section 3.2). While the alignment process is biased towards whole-pixel
values, we observe su�icient coverage of subpixel values to motivate super-
resolution. Note that displacements in x and y are not correlated.

5.1 Kernel Reconstruction
The core of our algorithm is built on the idea of treating pixels of
multiple raw Bayer frames as irregularly o�set, aliased and noisy
measurements of three di�erent underlying continuous signals,
one for each color channel of the Bayer mosaic. Though the color
channels are often correlated, in the case of saturated colors (for
example red, green or blue only) they are not. Given su�cient spatial
coverage, separate per-channel reconstruction allows us to recover
the original high resolution signal even in those cases.

To produce the �nal output image we processes all frames sequen-
tially – for every output image pixel, we evaluate local contributions
to the red, green and blue color channels from di�erent input frames.
Every input raw image pixel has a di�erent color channel, and it con-
tributes only to a speci�c output color channel. Local contributions
are weighted; therefore, we accumulate weighted contributions and
weights. At the end of the pipeline, those contributions are normal-
ized. For each color channel, this can be formulated as:

C(x ,�) =
Õ
n
Õ
i cn,i ·wn,i · R̂nÕ
n
Õ
i wn,i · R̂n

, (1)

Fig. 6. Sparse data reconstruction with anisotropic kernels: Exagger-
ated example of very sharp (i.e., narrow, kdetail = 0.05px ) kernels on a
real captured burst. For demonstration purposes, we represent samples cor-
responding to whole RGB input pictures instead of separate color channels.
Kernel adaptation allows us to apply di�erently shaped kernels on edges
(orange), flat (blue) or detailed areas (green). The orange kernel is aligned
with the edge, the blue one covers a large area as the region is flat, and the
green one is small to enhance the resolution in the presence of details.

where (x ,�) are the pixel coordinates, the sum Õ
n is over all con-

tributing frames,
Õ
i is a sum over samples within a local neighbor-

hood (in our case 3⇥3), cn,i denotes the value of the Bayer pixel at
given frame n and sample i ,wn,i is the local sample weight and R̂n
is the local robustness (Section 5.2). In the case of the base frame, R̂
is equal to 1 as it does not get aligned, and we have full con�dence
in its local sample values.
To compute the local pixel weights, we use local radial basis

function kernels, similarly to the non-parametric kernel regression
framework of Takeda et al. [2006; 2007]. Unlike Takeda et al., we
don’t determine kernel basis function parameters at sparse sample
positions. Instead, we evaluate them at the �nal resampling grid
positions. Furthermore, we always look at the nine closest sam-
ples in a 3 ⇥ 3 neighborhood and use the same kernel function for
all those samples. This allows for e�cient parallel evaluation on a
GPU. Using this "gather" approach every output pixel is indepen-
dently processed only once per frame. This is similar to work of

ACM Trans. Graph., Vol. 38, No. 4, Article 28. Publication date: July 2019.
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preference for specific directions of motion during the
task (Figure 2C, S3 and S4). Across subjects, absolute
trajectory length averaged across all individual trials
was similar. Relative to the underlying mosaic of
photoreceptors, the stimulus traversed a retinal dis-
tance equaling about 10.5 unique cones during each
750-ms presentation during natural viewing (an exam-
ple stimulus trajectory close to this average in shown in
Figure 2A). In 600 analyzed trials under the stabilized
condition, the residual stimulus motion that occurred
due to imperfections of the tracking and stabilization
techniques was small. Here, the stimulus traversed 0.4
cones on average across subjects. Expressed differently,
stimulus trajectory amplitudes under stabilization were
about 25 times less than in natural viewing (Figure 2C).
This analysis confirmed that the exact same set of cones
was stimulated during the stabilized condition, whereas
many more cones were stimulated during natural
viewing.

Given the nature of our orientation discrimination
acuity task (four main orientations of the Snellen E),
we wondered if the eye can adjust FEM relative to the
orientation of the optotype to maximize transient
information content (e.g. motion preferably perpen-
dicular to the bar orientation), and whether specific
motion traces offer advantages for the task compared
to others. In Figure 2D the same motion paths as in
Figure 2C are plotted, but now rotated relative to the
orientation of the optotype orientation during presen-
tation, and with indication of correct and incorrect
psychophysical responses. We observed no clear trends
in this analysis. In this short period of time the eye does
not seem to adjust its FEM behavior according to the
orientation of the letter, and certain directions of eye
motion do not appear to confer clear benefits.

Experiment 1: Discrimination benefits from FEM
at the resolution limit

Discrimination performance with retinal image
stabilization dropped on average by 23% across
subjects (Figure 3D; p , 0.05, two-tailed binomial z
test). Thus, fine spatial resolution was impaired in the
absence of retinal image motion due to FEM, or visual
acuity was enhanced by FEM. In fact, the visual
resolution achieved in our experimental setup was
higher than what simple spatial sampling models of the
cone mosaic would predict. For each subject, the
stimulus gap, or distance between adjacent bars of the
‘‘E,’’ was compared to the Nyquist limit (NC) of the
tested retinal location (Figure 1E). The stimulus gap
constitutes the primary image detail subjects use to
discriminate orientation (Rossi & Roorda, 2010b). For
each subject, the gap size was smaller than NC (gap

size/NC ¼ 0.61/0.90, 0.74/0.85, 0.63/0.80, 0.57/0.94
arcmin for S1 through S4, respectively).

Subjects performed similarly or better under the
incongruent than under the natural condition (Figure
3E; S1, p , 0.01; S2 and S3, p . 0.05; two-tailed
binomial z test, n¼;450). These findings demonstrate
that the visual system can benefit from retinal image
motion even when the activity is independent of FEM
at the time of stimulus presentation.

Experiment 2: Contrast reduction during
stabilization is not critical

To determine whether contrast was reduced under
stabilization and how performance may have been
affected, we devised a pair of experiments. The
perceived contrast of stabilized versus moving stimuli
was indeed reduced by about 20%, but performance
was similar (p . 0.05, two-tailed binomial z test, n ¼
;250) when subjects discriminated naturally moving
stimuli presented at full and reduced (80%) contrast
(Figure 4). These results suggest reduced contrast was

Figure 3. Stimulus motion improves acuity at the resolution
limit. (A) In natural viewing, the stimulus (‘‘E’’) is fixed in space
and the retinal cone mosaic (circles) moves due to fixational eye
motion (FEM, light blue arrow). (B) In stabilized viewing, the
stimulus moves with the retina (orange arrow), such that it
stays locked on the same cones during presentation. (C) In the
incongruent motion condition, the stimulus moves - while the
eye performs its habitual FEM - in a path according to a
previously recorded FEM trace. (D) Stimulus stabilization
reduced discrimination performance in all subjects by an
average of 23%. (E) Relative to the natural viewing condition,
subjects performed equally well or better when incongruent
motion was employed. Asterisk (*) denotes p value , 0.05.
Error bars are standard error of the mean.

Journal of Vision (2017) 17(1):30, 1–11 Ratnam, Domdei, Harmening, & Roorda 6
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Retinal image motion helps pattern discrimination



Simple averaging by cortex is not sufficient



Bayesian model for inferring form and motion
(Anderson, Ratnam, Roorda & Olshausen, 2020)
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Joint estimation of pattern (S) and position (X) from 
retinal spike trains (R)

(Anderson, Ratnam, Roorda & Olshausen, 2020)
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Given current estimate of position ( ), update  Xt A

logP (Rj,t|Xt, S) = Rj,t log �j � �j dt
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Joint estimation of pattern (S) and position (X) from 
retinal spike trains (R)

(Anderson, Ratnam, Roorda & Olshausen, 2020)
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Motion helps estimation of pattern S



...especially under conditions of cone loss.
Journal of Vision (20??) ?, 1–? Anderson, Ratnam, Roorda, & Olshausen 5

Figure 3: Motion benefit during cone loss. (A) Tumbling E with a retinal cone lattice that has 30 percent of the cones dropped out randomly (cone
loss, eye trajectories, and RGC spikes are resampled each trial). The same stimulus size, the cone spacing, eye trajectories, and diffusion constant for
inference were used as in Fig. 2. (B) SNR as a function of time for a moving and a stationary retina with 95 percent confidence intervals (n = 21, p = 0.003

at t = 700ms). (C and D) An example reconstructed E in the motion and no motion cases.

Results86

A Moving Retina Averages Out Spatial Inhomogeneities87

Much like looking through a broken window, viewing the world through a stationary, inhomogeneous retina results in a belief88

about the world that is precise in some places and uncertain in others. The key idea of this work is that this detrimental, non-uniform89

uncertainty can be alleviated by moving the retina with real eye movements. Our main result is that the signal generated by a moving90

retina, when properly averaged by downstream neural circuitry that takes into account the eye’s motion, results in a higher quality91

representation of the stimulus as compared to the signal generated by a stationary retina (Fig. 2). As the receptive fields of the cones92

modeled as Gaussians have a full-width half max that is half the distance between the cones (Macleod, Williams, & Makous, 1992),93

the width of the E can fall between the cones. It is remarkable that both the mathematical model and human subjects can recover the94

stimulus given the gaps in sensitivity in the retinal cone lattice.95

Beyond the punctate sensitivity of the cones, there are other sources of inhomogeneities in the retina that can compromise the96

accurate recovery of the luminance of the retinal image including variable cone gain factors (Li et al., 2014), different spectral sensitiv-97

ities (Hofer, Carroll, Neitz, Neitz, & Williams, 2005) and disruptions in the cone mosaic caused by retinal degeneration (Duncan et al.,98

2007). Even in extreme cases where retinal degenerations have resulted in a fovea with 52 percent fewer cones than normal, patients99

still have normal visual acuity (Ratnam, Carroll, Porco, Duncan, & Roorda, 2013). Our model illustrates how these limitations can be100

compensated for by eye movements. While the experiments in Fig. 2 showed that the simulus was recoverable from a more or less101

regularly spaced lattice with gaps, the experiments of Fig. 3, show that motion improves the recovery of the stimulus when 30 percent102

of the cones in the simulated retina are dropped out. Furthermore, compounding the challenge of inferring spatial patterns defined by103

luminance, the visual system must also infer the spatial distribution of color in the retinal image as well (Sabesan, Schmidt, Tuten, &104

simulated
30% dropout
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Retinal ganglion cell spacing as a function of eccentricity

∆E ≈ .01(|E| + 1)
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Letter size vs. eccentricity
(Anstis, 1974)







A FOVEATED RETINA-LIKE SENSOR 

USING CCD TECHNOLOGY 
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ABSTRACT 

A CCD imager whose sampling structure is loosely modeled after the 
biological visual system is described. Its architecture and advantages over 
conventional cameras for pattern recognition are discussed. The sensor has 
embedded in its structure a logarithmic transformation that makes it size and 
rotation invariant. Simulations on real images using the actual sensor 
geometry have been performed to study the sensor performance for 2D 
pattern recognition and object tracking. 

A CCD imager consisting of 30 concentric circles and 64 sensors per 
circle, whose pixel size increases linearly with eccentricity has been 
fabricated. The central part has a constant resolution with 102 photocells. 
The CCD is made in a three phase buried channel technology with triple 
poly and double metal layers. Preliminary results of the testing are given 
showing the validity of the design. 
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Figure 8: Photograph of the fovea, conslstmg of 102 
photosensitive cells, and the first ten concentric 
circles. 

Driving Electronics 

One of the complications of this architecture is the relatively large amount of 
clocks and control signals to read out and synchronize the charge flow. Up to 18 
different clocks are required. When the sensor has to be used as part of a moving 
platform for tracking purposes, it is important to minimize the number of wires and 
external interconnections. Also the dimensions and weight of the clock drivers should 
be small. For this reason an integrated clocking system has been developed that 
generates all the required clocks. It has been fabricated in a 2 !lm CMOS process. The 
chip is fully custom designed in order to reduce the amount of real estate and power 
dissipation as much as possible. The total chip area is less than 3 mm2. A 
photograph of the chip is given in Fig. 9 [27]. This chip will be mounted together 
with the CCD imager on a lightweight substrate and incorporated into the motor 
control platform. The chip is fully functional. Measured outputs of the controller 
chip is shown in Fig. 10. 

A Foveated Image Sensor in Standard CMOS Technology 

Robert Wodnicki, Gordon W. Roberts, Martin D. Levine 
Department of Electrical Engineering, McGill University, 

Montrkal, Qukbec, CANADA, H3A 2A7 

Abstract 

We describe the design and  implementation of a CMOS 
foveated image sensor for use in mobile robotic and ma- 
chine vision applications. T h e  sensor is biologically moti- 
vated and performs a spatial image transformation from 
Cartesian to  log-polar coordinates. As opposed to  tradi- 
tional approaches, the  sensor benefits from a high degree 
of integration, minimal power consumption and  ease of 
manufacture due to  the use of a s tandard 1.2pm ASIC 
CMOS process. T h e  prototype imager operates at 28 
frames/sec when interfaced to  a PC. 
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Introduction 

Foveation is a biologically motivated image transforma- 
tion which has  a t t racted the interest of researchers in the 
fields of computer vision and robotics. I ts  principle ad- 
vantages are the  realization of a high degree of image 
compression as well as the property of scale and rotation 
invariance [2]. T o  date  various computational implemen- 
tations [3][6], as well as a fully custom CCD [a] image sen- 
sor have been proposed. While these approaches achieve 
adequate performance, they nevertheless suffer from the 
need for considerable support resources such as networks 
of DSP processors and digital frame-grabbers. These re- 
sources may be readily available in a laboratory environ- 
ment for use with a tethered robot ,  however truly au- 
tonomous mobile systems will require foveated sensors 
which are extremely compact and energy efficient. Re- 
cent advances in VLSI technology have made poissible the 
implementation of image sensors using standard CMOS 
ASIC’s [4]. Such image sensors benefit from the integra- 
tion of image sensing and image processing functions on 
the same die, yielding a vast reduction in power consump- 
tion and system mass. These savings make possible the 
realization of a completely self-contained foveated image 
sensor for use on mobile robots. We have designed, fab- 
ricated and tested such a device for use in a robot eye for 
an autonomous robot system [3]. In the present discus- 
sion we summarize key design issues and give iresults of 
the functioning sensor. 

Foveation 

The concept of foveation in machine vision stems from 
a detailed examination of the human visual pathway [ B ] .  
The human retina can be roughly divided into two dis- 
tinct regions. The  f ovea  is a small area of very high, 

J 
0 

Mapping template Periphery image 

Figure 1: T h e  foveated mapping 

constant photoreceptor density located near the center of 
the retinal plane. Outside the fovea, in the region known 
as the periphery, visual acuity decreases as a function of 
radial distance from the center of the retina, due to  spa- 
tial averaging of incident intensity performed over regions 
known as receptzve f ields.  

Based on psychophysical experiments, researchers have 
characterized the image transformation performed by the 
visual pathway in mathematical terms. This  nonlinear 
image transformation is known as the log-polar or foveated 
mapping. Fig. 1 illustrates how the mapping is per- 
formed. Image coordinates are mapped from the origi- 
nal image via a mapping template (a) to  separate images 
for the  fovea and the periphery (b). D a t a  in the original 
image corresponding to  the fovea undergoes a one-to-one 
mapping to  the fovea image. Data  corresponding to  the 
periphery undergoes a many-to-one mapping in which all 
image values within a receptive field (RF) are averaged to  
produce a single value in the periphery image. RF’s in the  
periphery are distributed along rays of angular displace- 
ment ,  AQ. All RF’s on ring i have radial displacement 
given by, 
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Figure 5: Photomicrograph of the CMOS foveated sensor 
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Figure 6:  Example of sensor performance. (a) original image with a cross marked A at the center of gaze. (b) sensor 
output .  The  detailed features of the  central part  of the  original image are preserved in the  fovea image, while i ts  
surroundings are mapped to  the periphery image with a log-polar function as indicated in Fig. 1. Horizontal lines 
in the periphery image are due t o  digital scanners in the external circuitry. 
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Human eye movements during viewing of an image

Yarbus (1967)
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Figure 1: A: Diagram of single kernel filter parameterized by a mean µi and variance �i B: First row

Examples from our variant of the cluttered MNIST dataset. Second row Examples with additional
random rescaling of the digit.

This factorization is shown in equation 3, where the kernel is defined as an isotropic gaussian. For82

each kernel filter, given a center µi and scalar variance �i, a two dimensional gaussian is defined over83

the input image as shown in Figure 1A.84

ki(m,n) = p(m;µi,x,�i)p(n;µi,y,�i) (3)

While this factored formulation reduces the space of possible transformations from input to output, it85

can still form many different mappings from an input U to output V . Figure 2B shows the possible86

windows which an input image can be mapped to an output V . The blue circles denote the central87

location of a particular kernel. Each kernel maps to one of the outputs Vi. The kernel filters in88

our model can be adjusted through two distinct mechanisms: control and training. control defines89

adjustments to the retinal sampling lattice as a whole and can include translation and rescaling of90

the entire lattice. Translational control can be considered analgous to the motor control signals91

which executes saccades of the eye in biology. In contrast, training defines structural adjustments to92

individual kernels which include its position in the lattice as well as its variance. These adjustments93

are only possible during training and are fixed afterwards. Training adjustments can be considered94

analagous to the layout of the retinal sampling lattice which is directed by evolutionary pressures in95

biology.96

3 Recurrent Neural Architecture for Attention97

We develop a recurrent model of overt attention inspired by Mnih et al. (2014). A sample input98

image U is reduced by a glimpse generator using equation 4 to create a output ‘glimpse’ Vt. We99

omit the sample index n to simplify notation. This glimpse Vt is processed by a fully-connected100

recurrent network frnn(). Equation 4-9 details the feedforward process of generating the kernel filter101

configurations which define the retinal sampling lattice for the next time point.102

3

Learning the glimpse window sampling array
(Cheung, Weiss & Olshausen, 2017)

Example MNIST scenes

• Network is trained to correctly 
classify the digit in the scene.

• To do this it must find a digit and 
move its glimpse window to that 
location.

Object identity Control

Recurrent network

Glimpse

Scene



Evolution of the sampling array during training



Translation only
(Dataset 1)

Translation only
(Dataset 2)

Translation & zoom
(Dataset 1)

Translation & zoom
(Dataset 2)

Learned sampling arrays for different conditions 



(Perry, Oehler & Cowey, 1984)
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cells is shown in Fig. Q(B). In this case the slopes of 
the regression lines of cell body size on the logarithm 
of cell density for the nasal (a = 43.4, h = -6.87) and 
the temporal cells (u = 53.6, h = 9.1) were not 
significantly different (r = 1.0, df‘ 54). Thus the 
differences in cell body size of PX cells in different 
parts of the retina is clearly related to the variation 
in ganglion cell density, although the differences in 
dendritic field size is not simply related to cell density 
alone. The correlation coefficient for the dendritic 
field size of both nasal and temporal Pa cells and the 
logarithm of the ganglion cell density was 0.97, i.e. 
most of the variance in dendritic field size can be 
attributed to differences in ganglion cell density. 

As a check on the accuracy of our ganglion cell 
counts we used them to estimate the total number of 
ganglion cells in the macaque retina which can, in 
turn, be compared with published estimation of the 
number of axons in the optic nerve. To do this we 
plotted onto a scaled drawing of one Nissl-stained 
whole-mounted retina (670mm’ in area) the iso- 
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we neglect the naso-temporal overlap, which is small 
in primates,h.h’ then approximately 60’1/ of the cells lie 
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Our intention was to show which cell types project 
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