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ABSTRACT

We revisit the challenging problem of training Gaussian-Bernoulli restricted
Boltzmann machines (GRBMs), introducing two innovations. We propose a novel
Gibbs-Langevin sampling algorithm that outperforms existing methods like Gibbs
sampling. We propose a modified contrastive divergence (CD) algorithm so that
one can generate images with GRBMs starting from noise. This enables direct
comparison of GRBMs with deep generative models, improving evaluation pro-
tocols in the RBM literature. Moreover, we show that modified CD and gradient
clipping are enough to robustly train GRBMs with large learning rates, thus re-
moving the necessity of various tricks in the literature. Experiments on Gaussian
Mixtures, MNIST, FashionMNIST, and CelebA show GRBMs can generate good
samples, despite their single-hidden-layer architecture. Our code is released at:
https://github.com/lrjconan/GRBM

1 INTRODUCTION

Restricted Boltzmann machines (RBMs) (Smolensky, 1986; Freund & Haussler, 1991; Hinton,
2002) are energy-based generative models with stochastic binary units. A variant of Boltzmann
machines (Ackley et al., 1985), they have a bipartite graphical structure that enables efficient proba-
bilistic inference, and they can be stacked to form deep belief networks (DBNs) (Hinton & Salakhut-
dinov, 2006; Bengio et al., 2006; Hinton et al., 2006). Gaussian-Bernoulli RBMs (GRBMs) (Welling
et al., 2004; Hinton & Salakhutdinov, 2006) extend RBMs to model continuous data by replacing
the binary visible units of the RBM with Gaussian random variables.

GRBMs remain challenging to learn, however, despite many proposed modifications to the model
or training algorithm. For instance, Lee et al. (2007) add a regularization term to encourage sparsely
activated binary hidden units. Krizhevsky et al. (2009) attribute the difficulties in learning to high-
frequency noise present in natural images. Factorized high-order terms were introduced in (Ranzato
& Hinton, 2010; Ranzato et al., 2010) to allow GRBMs to explicitly learn the covariance structure
among pixels. Nair & Hinton (2010) suggest that binary hidden units are problematic, and proposed
model variants with real-valued hidden units. Cho et al. (2011a; 2013) advocate the use of parallel
tempering sampling (Earl & Deem, 2005), adaptive learning rate, and enhanced gradient (Cho et al.,
2011b) to improve GRBM learning. Melchior et al. (2017) conclude that difficulties in GRBM
training are due to training algorithms rather than the model itself; they advocate the use of gradient
clipping, specialized weight initialization, and contrastive divergence (CD) (Hinton, 2002) rather
than persistent CD (Tieleman, 2008). Upadhya & Sastry (2021) propose a stochastic difference of
convex functions programming (S-DCP) algorithm to replace CD in training GRBMs.

An important motivation for seeking to improve GRBM learning is so that a GRBM can be used to
convert real-valued data to stochastic binary data. This would make it easy for researchers to explore
novel ways of implementing stochastic binary Boltzmann machines to model real-valued data. To
that end, we propose improved GRBM learning methods for image data. Specifically,

• We propose a hybrid Gibbs-Langevin sampling algorithm that outperforms predominant
use of Gibbs sampling. To the best of our knowledge this is the first use of Langevin
sampling for GRBM training (with or without Metropolis adjustment).

⇤Work done partially as a visiting faculty researcher at Google Brain.
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τ ·x = − ∇xE(x) + 2Tτ n ⇒ x ∼ P(x)

The neural sampling hypothesis:  exploit intrinsic variability 
to sample from probability distributions. 

Langevin dynamics:

• Build analog electronics to implement   . 

• Add noise .

τ ·x = − ∇xE(x)

n ∼ 𝒩(0, I)

• Noisy (low power) electronics can be exploited to do probabilistic 
inference.


• Deterministic, high-precision circuits are wasted on most 
problems of AI which involve reasoning under uncertainty.

⇒

P(x)

E(x)

x

x

P(x) =
1
Z

e−E(x)/T



Implementation Details We found that training with modified CD alone occasionally diverges,
necessitating careful tuning of the learning rate. However, adding gradient clipping (e.g., clip gradi-
ent norm to 10) enables stable training with all aforementioned sampling methods. We therefore set
learning rate to 0.01 for all experiments. Such a large learning rate almost never works in the litera-
ture. Melchior et al. (2017) used gradient clipping and similarly large learning rates, but they had to
set the learning rate for the variances 100 times smaller than that for the weights and biases during
CD training. But thanks to the modified CD and gradient clipping, we found this special treatment
of variances is unnecessary. We do not use momentum, weight decay, PCD, or other tricks.

4.1 MODELING GAUSSIAN MIXTURE DENSITIES

We first evaluate density modelling by GRBMs when the data density is known, i.e., Gaussian
mixture models (GMMs) in our case. This is challenging for GRBMs as the marginal distribution
of visible units of GRBMs is essentially a constrained Gaussian mixture, i.e., the weights of mixture
components depend on one another (Melchior et al., 2017). As such, the mixture components in
GRBMs can not be freely placed in the visible domain so one actually needs more hidden units
than the log of the number of mixture components to fit GMMs well. We consider the 2D case for
simplicity and better visibility. We generate 1,000 samples from two types (isotropic and anisotropic
variances) of GMMs with 3 components as shown in Fig. 1, and learn GRBMs using our modified
CD with different sampling algorithms, from which we can draw samples. Here all samplers run for
100 steps during both CD training and testing (see Appendix B.1 for more detail). Density plots and
samples are shown in Fig. 1. Notice that Gibbs manages to recover the three modes in the isotropic
case but fails in the anisotropic case. Both Langevin and Gibbs-Langevin sampling collapse when
the adjustment is absent. We believe the cosine step size schedule contributes to the collapse as it
removes more stochasticity of Langevin dynamics with small step sizes, thus making sampling more
similar to gradient descent. But as we will see later, in image modelling, this may not be so severe;
there are more modes so that the sampling may collapse to different modes, and the diversity of
images remains acceptable. Finally, both Langevin and Gibbs-Langevin do recover all three modes
with the adjustment, which shows the adjustment helps the mixing in this synthetic case.

4.2 IMAGE GENERATION

We learn GRBMs to fit image datasets including MNIST, FashionMNIST, and CelebA. To the best
of our knowledge, this is the first time that GRBMs have been shown to (unconditionally) generate
good images. We provide the ablation study in Appendix B.2 and more results in Appendix B.3.

Figure 2: Intermediate samples from Gibbs-
Langevin sampling.

Methods FID

VAE 16.13
2sVAE (Dai & Wipf, 2019) 12.60
PixelCNN++ (Salimans et al.) 11.38
WGAN (Arjovsky et al., 2017) 10.28
NVAE (Vahdat & Kautz, 2020) 7.93

GRBMs

Gibbs 47.53
Langevin wo. Adjust 43.80
Langevin w. Adjust 41.24
Gibbs-Langevin wo. Adjust 17.49
Gibbs-Langevin w. Adjust 19.27

Table 1: Results on MNIST dataset.

MNIST We train GRBMs with hidden size 4096 and 100 sampling steps on MNIST. We compare
FID scores of GRBMs with other deep generative models in Table 1. From the table, we can see that
Gibbs-Langevin family works significantly better than the Langevin family. The Metropolis adjust-
ment improves Langevin slightly but degrades Gibbs-Langevin slightly, which is different from what
we observed on synthetic data. This is likely because the image distribution is so complicated (e.g.,
having significantly more modes) that the adjustment rejects proposed moves more frequently than
before. Some sophisticated strategy may be needed to increase the acceptance probability. Never-
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(a) (b) (c)

Figure 3: (a) Learning curve of (natural) log variances, (b) learned filters, and (c) samples on MNIST.

(a) (b) (c)
Figure 4: Samples from GRBMs on (a) FashionMNIST, (b) CelebA-32, and (c) CelebA-2K-64.

theless, GRBMs trained with Gibbs-Langevin without adjustment achieve FID scores comparable to
other deep generative models, which is impressive given the single-hidden-layer architecture. The
learning curve of (natural) log variance is shown in Fig. 3a. The learned variance converges to
around 1e�5 which is significantly smaller than those reported in the literature. The learned filters
are shown in Fig. 3b. Although some point-like filters still exist, stroke-like filters are common,
thus indicating GRBMs indeed learn meaningful features. We show samples drawn from the best
GRBM in Fig. 3c. The intermediate samples from Gibbs-Langevin are shown in Fig. 2. Since
Gibbs-Langevin without adjustment works the best, we use it for remaining experiments.

FashionMNIST We then train GRBMs on FahsionMNIST which is more challenging than
MNIST. We set hidden size to 10,000 and the sampling step to 100. Samples drawn from learned
GRBMs are shown in Fig. 4a. GRBMs successfully learn the shapes of clothes, shoes, bags, and
so on. However, they fail to capture fine textures. Since many images in this dataset look similar in
shape but differ in texture, the resulting samples look similar to each other.

CelebA Last, we consider the even more challenging CelebA dataset. In particular, we explore two
versions of this dataset: 1) CelebA-32 where we center-crop (140⇥140) and downsample images to
32⇥32; 2) CelebA-2K-64 where randomly select 2,000 images from the original CelebA and apply
the same center crop and downsampling to 64⇥64. We set hidden size to 10,000 and explore the
number of 100 and 200 sampling steps. Generated samples are shown in Fig. 4b and 4c. From the
figure, we can see that GRBMs can learn to generate reasonably good face images.

5 CONCLUSION

In this paper, we revisit learning Gaussian-Bernoulli restricted Boltzmann machines. We investigate
Langevin Monte Carlo and propose a novel Gibbs-Langevin sampling method. Furthermore, we
modify the contrastive divergence (CD) algorithm so that one can sample data from learned GRBMs
starting from noise. Modified CD along with gradient clipping enables robust training of GRBMs
with large learning rates. Finally, we show that GRBMs can unconditionally generate images with
good qualities, despite its single-hidden-layer architecture. In the future, it would be beneficial to
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We describe a stochastic, dynamical system capable of inference and
learning in a probabilistic latent variable model. The most challenging
problem in such models—sampling the posterior distribution over la-
tent variables—is proposed to be solved by harnessing natural sources of
stochasticity inherent in electronic and neural systems. We demonstrate
this idea for a sparse coding model by deriving a continuous-time equa-
tion for inferring its latent variables via Langevin dynamics. The model
parameters are learned by simultaneously evolving according to another
continuous-time equation, thus bypassing the need for digital accumula-
tors or a global clock. Moreover, we show that Langevin dynamics lead to
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