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ABSTRACT

We revisit the challenging problem of training Gaussian-Bernoulli restricted
Boltzmann machines (GRBMs), introducing two innovations. We propose a novel
Gibbs-Langevin sampling algorithm that outperforms existing methods like Gibbs
sampling. We propose a modified contrastive divergence (CD) algorithm so that
one can generate images with GRBMs starting from noise. This enables direct
comparison of GRBMs with deep generative models, improving evaluation pro-
tocols in the RBM literature. Moreover, we show that modified CD and gradient
clipping are enough to robustly train GRBMs with large learning rates, thus re-
moving the necessity of various tricks in the literature. Experiments on Gaussian
Mixtures, MNIST, FashionMNIST, and CelebA show GRBMs can generate good
samples, despite their single-hidden-layer architecture. Our code is released at:
https://github.com/lrjconan/GRBM



The neural sampling hypothesis: exploit intrinsic variability
to sample from probability distributions.
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Langevin dynamics:
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e Build analog electronics to implement X = — V_E(X).

e Add noisen ~ (0,1).

+ Noisy (low power) electronics can be exploited to do probabilistic

: inference.

« Deterministic, high-precision circuits are wasted on most
problems of Al which involve reasoning under uncertainty.



Figure 2: Intermediate samples from Gibbs-
Langevin sampling.

Methods FID

VAE 16.13
2sVAE (Dai1 & Wipf, 2019) 12.60
PixelCNN++ (Salimans et al.) 11.38
WGAN (Arjovsky et al., 2017) | 10.28
NVAE (Vahdat & Kautz, 2020) | 7.93

GRBMs

Gibbs 47.53
Langevin wo. Adjust 43.80
Langevin w. Adjust 41.24
Gibbs-Langevin wo. Adjust 17.49
Gibbs-Langevin w. Adjust 19.27

Table 1: Results on MNIST dataset.
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Figure 3: (a) Learning curve of (natural) log variances, (b) learned filters, and (c) samples on MNIST.
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Figure 4: Samples from GRBMs on (a) FashionMNIST, (b) CelebA-32, and (c) CelebA 2K-64.
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