
Boltzmann machines



How the Boltzmann Machine was born: 

John Hopfield gave a talk, and I was sitting next to Geoff Hinton, 
and Hopfield was saying, “We could do optimisation here”, . . . and 
that was something we were interested in. I had just read an article 
by Scott Kirkpatrick on simulated annealing, and I said, “Geoff, we 
could heat it up, we could heat up the Hopfield network by adding a 
temperature”, so instead of always going downhill sometimes you 
pop up and with that, if you slowly cool it we can find the optimal 
solution. . . . It turns out something magical happens when you heat 
up a Hopfield network: it becomes capable of learning the weights 
to a multi-layer network; which is the first time that had been done.
T Sejnowski, 2023. 

From: James Stone, The Artificial Intelligence Papers: Original 
Research Papers With Tutorial Commentaries.  
https://jamesstone.sites.sheffield.ac.uk/books
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ABSTRACT - 
When a vision system creates an interpretation of some input datn, it 
assigns truth values or probabilities to intcrnal hypothcses about the 
world. We present a non-dctcrministic method for assigning truth 
values that avoids many of the problcms encountered by existing 
relaxation methods. Instead of rcprcscnting probabilitics with real- 
numbers, we usc a more dircct encoding in which thc probability 

\ 
associated with a hypotlmis is rcprcscntcd by the probability h a t  it is 
in one of two states, true or  false. Wc give a particular non- 
deterministic operator, based on statistical mechanics, for updating the 
truth values of hypothcses. The operator ensures that the probability 
of discovering a particular combination of hypothcscs is a simplc 
function of how good that combination is. Wc show that thcrc is a 
simple relationship bctween this operator and Bayesian inference, and 
we describe a learning rule which allows a parallel system to converge 
on a set ofweights that optimizes its perccptt~al inferences. 

l n t  roduction 
One way of interpreting images is to formulate hypotheses about parts 
or aspects of the imagc and then decide which of these hypotheses are 
likely to be correct. Thc probability that each hypothesis is correct is 
determined partly by its fit to the imagc and partly by its fit to other 
hypothcses (hat are taken to be correct, so the truth'value of an 
individual hypothesis cannot be decided in isolation. One method of 
searching for the most plausible combination of hypotheses is to use a 
rclaxation process in which a probability is associated with each 
hypothesis, and the probabilities arc then iteratively modified on the 
basis of the fit to the imagc and the known relationships bctwcen 
hypotheses. An attractive property of rclaxation methods is that they 
can be implemented in parallel hardwarc where one computational 
unit is used for each possible hypothcsis, and the interactions betwcen 
hypotheses are implemented by dircct hardwarc connections betwcen 
the units. 

Many variations of the basic relaxation idea have becn 
However, all the current methods suffer from one or more of the 
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following problems: 

1. They convcrge slowly. 

2. It is bard to analyse what computation is being performed by the 
relaxation process. For example, in some vcrsions of relaxation 
there is no explicit global measure which is being optimized. 

3. They are unable to integrate, in a principled way, two kinds of 
decision. Some systems use rclaxation to make discrete 
decisions (e.g. which kind of 3-D edge a line depicts) and the 
numbcrs that are modified during relaxation then represent 

Other systems choose the most likely values of 
continuous physical parameters (e.g. the local surface 
orientation) and the numbcrs that are modified then rcprcscnt 
current cstimatcs of these No system integrates 
both kinds of decisioil and still guarantees convergence to the 
optimal intcrprctation. 

4. Systems designed to make discrctc decisions do not always 
convcrge to a state in which all probabilities for discrete 
hypotheses are 1 or 0, so a subsequent stage is needed to choose 
a specific pcrccptual interpretation. 

S.There is no obvious way for most systems to learn the 
appropriate values for the weighting coefficients that dctermi,ne 
how the probabilities of related hypothcses affect each other. 

\ 

In this paper wc present a parallel search technique which overcomes 
these difficulties by using a different reprcscntation for probabilities. 
1\11 the currcnt methods use real llumbcrs to represent the 
probabilities associated with hypotheses. Our method uses a more 
dircct encoding in which probabilitics are represented by probabilities. 
If a hypothcsis has a probability of two thirds of being correct, the unit 
representing it will have a probability of two thirds of being found in 
the "true" state and a probability of one third of being in t21e "false" 
state. Wc first show that this dircct cncoding allows the probability of 
one hypothcsis to determine the probabilitics of other related 
hypothcses even though none of the hypothesis units ever has enough 
information to allow it, for example, to print out its associated 
probability. We then describe a search method. using this cncoding. 
that finds plausible combinations of hypothcses. Next we show that, 
using,our search tcchniquc, thcrc is a Bayesian interpretation of h e  
weights that determine the effects of one hypothcsis on another, and 
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The “Boltzmann machine”
(Hinton & Sejnowski, 1983)
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The “Boltzmann machine”
(Hinton & Sejnowski, 1983)
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The Boltzmann machine learning rule
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Boltzmann machine with hidden units
(Hinton & Sejnowski)
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The Boltzmann machine learning rule

Clamped:

Free:



Gibbs sampling

To sample from           : P (x)

x1 ∼ P (x1|x2, ..., xn)

x2 ∼ P (x2|x1, x3, ..., xn)

x3 ∼ P (x3|x1, x2, x4, ..., xn)

xn ∼ P (xn|x1, ..., xn−1)

.

.
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Dynamics

Thus:



Restricted Boltzmann machine (RBM)
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The setup for measuring the SHG is described
in the supporting online material (22). We expect
that the SHG strongly depends on the resonance
that is excited. Obviously, the incident polariza-
tion and the detuning of the laser wavelength
from the resonance are of particular interest. One
possibility for controlling the detuning is to
change the laser wavelength for a given sample,
which is difficult because of the extremely broad
tuning range required. Thus, we follow an
alternative route, lithographic tuning (in which
the incident laser wavelength of 1.5 mm, as well
as the detection system, remains fixed), and tune
the resonance positions by changing the SRR
size. In this manner, we can also guarantee that
the optical properties of the SRR constituent
materials are identical for all configurations. The
blue bars in Fig. 1 summarize the measured SHG
signals. For excitation of the LC resonance in Fig.
1A (horizontal incident polarization), we find
an SHG signal that is 500 times above the noise
level. As expected for SHG, this signal closely
scales with the square of the incident power
(Fig. 2A). The polarization of the SHG emission
is nearly vertical (Fig. 2B). The small angle with
respect to the vertical is due to deviations from
perfect mirror symmetry of the SRRs (see
electron micrographs in Fig. 1). Small detuning
of the LC resonance toward smaller wavelength
(i.e., to 1.3-mm wavelength) reduces the SHG
signal strength from 100% to 20%. For ex-
citation of the Mie resonance with vertical
incident polarization in Fig. 1D, we find a small
signal just above the noise level. For excitation
of the Mie resonance with horizontal incident
polarization in Fig. 1C, a small but significant
SHG emission is found, which is again po-

larized nearly vertically. For completeness, Fig.
1B shows the off-resonant case for the smaller
SRRs for vertical incident polarization.

Although these results are compatible with
the known selection rules of surface SHG from
usual nonlinear optics (23), these selection rules
do not explain the mechanism of SHG. Follow-
ing our above argumentation on the magnetic
component of the Lorentz force, we numerically
calculate first the linear electric and magnet-
ic field distributions (22); from these fields,
we compute the electron velocities and the
Lorentz-force field (fig. S1). In the spirit of a
metamaterial, the transverse component of the
Lorentz-force field can be spatially averaged
over the volume of the unit cell of size a by a
by t. This procedure delivers the driving force
for the transverse SHG polarization. As usual,
the SHG intensity is proportional to the square
modulus of the nonlinear electron displacement.
Thus, the SHG strength is expected to be
proportional to the square modulus of the
driving force, and the SHG polarization is
directed along the driving-force vector. Cor-
responding results are summarized in Fig. 3 in
the same arrangement as Fig. 1 to allow for a
direct comparison between experiment and
theory. The agreement is generally good, both
for linear optics and for SHG. In particular, we
find a much larger SHG signal for excitation of
those two resonances (Fig. 3, A and C), which
are related to a finite magnetic-dipole moment
(perpendicular to the SRR plane) as compared
with the purely electric Mie resonance (Figs.
1D and 3D), despite the fact that its oscillator
strength in the linear spectrum is comparable.
The SHG polarization in the theory is strictly
vertical for all resonances. Quantitative devia-
tions between the SHG signal strengths of ex-
periment and theory, respectively, are probably
due to the simplified SRR shape assumed in
our calculations and/or due to the simplicity of
our modeling. A systematic microscopic theory
of the nonlinear optical properties of metallic

metamaterials would be highly desirable but is
currently not available.
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Reducing the Dimensionality of
Data with Neural Networks
G. E. Hinton* and R. R. Salakhutdinov

High-dimensional data can be converted to low-dimensional codes by training a multilayer neural
network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent
can be used for fine-tuning the weights in such ‘‘autoencoder’’ networks, but this works well only if
the initial weights are close to a good solution. We describe an effective way of initializing the
weights that allows deep autoencoder networks to learn low-dimensional codes that work much
better than principal components analysis as a tool to reduce the dimensionality of data.

D
imensionality reduction facilitates the
classification, visualization, communi-
cation, and storage of high-dimensional

data. A simple and widely used method is
principal components analysis (PCA), which

finds the directions of greatest variance in the
data set and represents each data point by its
coordinates along each of these directions. We
describe a nonlinear generalization of PCA that
uses an adaptive, multilayer Bencoder[ network

Fig. 3. Theory, presented as the experiment (see
Fig. 1). The SHG source is the magnetic compo-
nent of the Lorentz force on metal electrons in
the SRRs.
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nent of the Lorentz force on metal electrons in
the SRRs.
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to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[ and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[ procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[ units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by

Department of Computer Science, University of Toronto, 6
King’s College Road, Toronto, Ontario M5S 3G4, Canada.

*To whom correspondence should be addressed; E-mail:
hinton@cs.toronto.edu

W

W

W +ε

W

W

W

W

W +ε

W +ε

W +ε

W

W +ε

W +ε

W +ε

+ε

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine-tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.

REPORTS

www.sciencemag.org SCIENCE VOL 313 28 JULY 2006 505



adjusting the weights and biases to lower the
energy of that image and to raise the energy of
similar, Bconfabulated[ images that the network
would prefer to the real data. Given a training
image, the binary state hj of each feature de-
tector j is set to 1 with probability s(bj þP

iviwij), where s(x) is the logistic function
1/E1 þ exp (–x)^, bj is the bias of j, vi is the
state of pixel i, and wij is the weight between i
and j. Once binary states have been chosen for
the hidden units, a Bconfabulation[ is produced
by setting each vi to 1 with probability s(bi þP

jhjwij), where bi is the bias of i. The states of

the hidden units are then updated once more so
that they represent features of the confabula-
tion. The change in a weight is given by

Dwij 0 e
!
bvihjÀdata j bvihjÀrecon

"
ð2Þ

where e is a learning rate, bvihjÀdata is the
fraction of times that the pixel i and feature
detector j are on together when the feature
detectors are being driven by data, and
bvihjÀrecon is the corresponding fraction for
confabulations. A simplified version of the

same learning rule is used for the biases. The
learning works well even though it is not
exactly following the gradient of the log
probability of the training data (6).

A single layer of binary features is not the
best way to model the structure in a set of im-
ages. After learning one layer of feature de-
tectors, we can treat their activities—when they
are being driven by the data—as data for
learning a second layer of features. The first
layer of feature detectors then become the
visible units for learning the next RBM. This
layer-by-layer learning can be repeated as many

Fig. 3. (A) The two-
dimensional codes for 500
digits of each class produced
by taking the first two prin-
cipal components of all
60,000 training images.
(B) The two-dimensional
codes found by a 784-
1000-500-250-2 autoen-
coder. For an alternative
visualization, see (8).

Fig. 4. (A) The fraction of
retrieved documents in the
same class as the query when
a query document from the
test set is used to retrieve other
test set documents, averaged
over all 402,207 possible que-
ries. (B) The codes produced
by two-dimensional LSA. (C)
The codes produced by a 2000-
500-250-125-2 autoencoder.
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