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Abstract. We present a new way to make Ising machines, i.e., using net-
works of coupled self-sustaining nonlinear oscillators. Our scheme is theo-
retically rooted in a novel result that establishes that the phase dynamics
of coupled oscillator systems, under the influence of subharmonic injec-
tion locking, are governed by a Lyapunov function that is closely related
to the Ising Hamiltonian of the coupling graph. As a result, the dynam-
ics of such oscillator networks evolve naturally to local minima of the
Lyapunov function. Two simple additional steps (i.e., adding noise, and
turning subharmonic locking on and off smoothly) enable the network to
find excellent solutions of Ising problems. We demonstrate our method
on Ising versions of the MAX-CUT and graph colouring problems, show-
ing that it improves on previously published results on several problems
in the G benchmark set. Our scheme, which is amenable to realisation
using many kinds of oscillators from different physical domains, is partic-
ularly well suited for CMOS IC implementation, offering significant prac-
tical advantages over previous techniques for making Ising machines. We
present working hardware prototypes using CMOS electronic oscillators.

1 Introduction

The Ising model [1,2] takes any weighted graph and uses it to define a scalar
function called the Ising Hamiltonian. Each vertex in the graph is associated
with a spin, i.e., a binary variable taking values ±1. The Ising problem is to find
an assignment of spins that minimises the Ising Hamiltonian (which depends
on the spins and on the graph’s weights). Solving the Ising problem in general
has been shown to be very difficult [3], but devices that can solve it quickly
using specialised hardware have been proposed in recent years [4–9]. Such Ising
machines have attracted much interest because many classically difficult com-
binatorial optimisation problems (including all 21 of Karp’s well-known list of
NP-complete problems [10]) can be mapped to Ising problems [11]. Hence, as
Moore’s Law nears its limits, Ising machines offer promise as a novel alternative
paradigm for solving difficult computational problems efficiently.

We present a new and attractive means for realising Ising machines, i.e., using
networks of coupled, self-sustaining nonlinear oscillators. We first establish a key
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theoretical result that relates the (continuous) phase dynamics of an oscillator
network with the (discrete/combinatorial) Ising Hamiltonian of the graph rep-
resenting the oscillator couplings [12]. We then build on this result to develop
practical oscillator-based Ising machines and demonstrate their effectiveness by
solving MAX-CUT and graph colouring combinatorial optimisation problems
[13,14]. We also present working hardware prototypes of our oscillator-based
Ising machines.

We first show that the phase dynamics of any network of coupled, self-
sustaining, amplitude-stable oscillators can be abstracted using the Generalised
Adler model [15,16], a generalisation of the well-known Kuramoto model [17–19].
The model’s phase dynamics are governed by an associated Lyapunov function,
i.e., a scalar function of the oscillators’ phases that is always non-increasing and
settles to stable local minima as phase dynamics evolve. If each oscillator’s phase
settles to either 0 or π (radians) and these values are associated with spins of
±1, we show that this Lyapunov function is essentially identical to the Ising
Hamiltonian of the oscillator network’s connectivity graph. In general, however,
oscillator phases do not settle to the discrete values 0/π, but span a contin-
uum of values instead. In order to binarise oscillator phases (i.e., get them to
settle to values near 0/π), we inject each oscillator with a second harmonic sig-
nal (dubbed SYNC) that induces subharmonic injection locking (SHIL), which
makes the phase of each oscillator settle to a value near either 0 or π [15,20–22].
We devise a new Lyapunov function that governs the network’s dynamics with
SHIL, then show its equivalence to the Ising Hamiltonian at phase values of 0/π.

Thus we show that when SHIL binarisation is applied, coupled oscillator
network dynamics settle naturally to local minima of a continuised version of the
associated Ising Hamiltonian. To evolve the system out of local minima towards
the global minimum, we show that a simple scheme, in which the binarising
second-harmonic SYNC signal’s amplitude is ramped up and down together with
judicious amounts of noise added, works well. We present simulation results on
a standard MAX-CUT benchmark set of 54 large problems, demonstrating not
only that it finds the best-known results in many cases, but finds better results
than seem to have been previously published for 17 of the 54 problems.
We also demonstrate our method on the graph-colouring problem and present
small (up to 32 CMOS oscillators) prototypes built on breadboard that function
perfectly, testifying to the ease with which practical hardware implementations
can be built.

Our scheme is different from previous Ising machine approaches, which are
of 3 types (see Sect. 2): (1) a fibre-optic laser-based scheme known as the Coher-
ent Ising Machine [4–6], (2) the D-WAVE quantum Ising machine [7,8] and (3)
CMOS hardware accelerated simulated annealing chips for solving Ising problems
[9,23–25]. Unlike CIM and D-WAVE, which are large, expensive and ill-suited
to low-cost mass production, our approach is a purely classical scheme that does
not rely on quantum phenomena or novel nano-devices. Indeed, it can be imple-
mented using conventional CMOS electronics, which has many advantages: scal-
ability/miniaturisability (i.e., very large numbers of spins in a physically small
system), well-established design processes and tools that essentially guarantee



234 T. Wang and J. Roychowdhury

first-time working hardware, very low power operation, seamless integration with
control and I/O logic, easy programmability via standard interfaces like USB,
and low cost mass production. CMOS implementations of our scheme also allow
complete flexibility in introducing controlled noise and programming SYNC
ramping schedules. Furthermore, implementing oscillator coupling by physical
connectivity makes our scheme inherently parallel, unlike CIM, where coupling
is implemented via FPGA-based digital computation and is inherently serial.
The advantages of CMOS also apply, of course, to hardware simulated anneal-
ing engines [9,23–25], but our scheme has additional attractive features. One
key advantage relates to variability, a significant problem in nanoscale CMOS.
For oscillator networks, device- and circuit-level variability impacts the system
by causing a spread in the natural frequencies of the oscillators. Unlike other
schemes, where performance deteriorates due to variability [9], we can essen-
tially eliminate variability by means of simple VCO-based calibration to bring
all the oscillators to the same frequency.1 Another key potential advantage stems
from the continuous/analog nature of our scheme (as opposed to purely digi-
tal simulated annealing schemes). Computational experiments indicate that the
time our scheme takes to find good solutions of the Ising problem grows only
very slowly with respect to the number of spins. This is a significant potential
advantage over simulated annealing schemes [23] as hardware sizes scale up to
large numbers of spins. Note that we can use virtually any type of nonlinear
oscillator (not just CMOS) to implement our scheme, including optical, MEMS,
biochemical, spin-based, etc., oscillators; however, CMOS seems the easiest and
most advantageous implementation route given the current state of technology.

In the remainder of this paper, we first provide a brief summary of the
Ising problem and existing Ising machine schemes in Sect. 2. We then present
our oscillator-based Ising machine scheme (dubbed OIM, for Oscillator Ising
Machine) in Sect. 3, explaining the theory that enables it to work. Then in Sect. 4,
we present both computational and hardware examples showing the effectiveness
of our scheme for solving several combinatorial optimisation problems.

2 The Ising Problem and Existing Ising Machine
Approaches

The Ising model is named after the German physicist Ernest Ising. It was first
studied in the 1920s as a mathematical model for explaining domain formation
in ferromagnets [1]. It comprises a group of discrete variables {si}, aka spins,
each taking a binary value ±1, such that an associated “energy function”, known
as the Ising Hamiltonian, is minimised:

min H � −
∑

1≤i<j≤n

Jijsisj −
n∑

i=1

hisi, such that si ∈ {−1, + 1}, (1)

where n is the number of spins; {Jij} and {hi} are real coefficients.
1 Moreover, as we show in Sect. 3.4, our scheme is inherently resistant to variability

even without such calibration.
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The Ising model is often simplified by dropping the {hi} terms. Under this
simplification, the Ising Hamiltonian becomes

H = −
∑

i,j, i<j

Jijsisj . (2)

What makes the Ising model particularly interesting is that many hard optimi-
sation problems can be shown to be equivalent to it [26]. In fact, all of Karp’s
21 NP-complete problems can be mapped to it by assigning appropriate val-
ues to the coefficients [11]. Physical systems that can directly minimise the Ising
Hamiltonian, namely Ising machines, thus become very attractive for potentially
outperforming conventional algorithms run on CPUs for these problems.

Several schemes have been proposed recently for realising Ising machines in
hardware. One well-known example is from D-Wave Systems [7,8]. Their quan-
tum Ising machines use superconducting loops as spins and connect them using
Josephson junction devices [27]. As the machines require a temperature below
80 mK (−273.07 ◦C) to operate [7], they all have a large footprint to accom-
modate the necessary cooling system. While many question their advantages
over simulated annealing run on classical computers [28], proponents believe
that through a mechanism known as quantum tunnelling, they can offer large
speedups on problems with certain energy landscapes [29].

Other proposals use novel non-quantum devices as Ising spins instead, so that
the machines can function at room temperature. Most notable among them is a
scheme based on lasers and kilometre long optical fibres [4–6]. The Ising spins are
represented using time-multiplexed optical parametric oscillators (OPOs), which
are laser pulses travelling on the same fibre. The coupling between these pulses
is implemented digitally by measurement and feedback using an FPGA. While
these machines can potentially be more compact than D-Wave’s machines, it is
unclear how they can be miniaturised and integrated due to the use of long fibres.
Recent studies have also proposed the use of several novel nanodevices as Ising
spins, including MEMS (Micro-Electro-Mechanical Systems) resonators [30] and
nanomagnets from Spintronics [31]. Physical realisation of these machines still
awaits future development of these emerging device technologies.

Another broad direction is to build Ising model emulators using digital cir-
cuits. A recent implementation [9] uses CMOS SRAM cells as spins, and couples
them using digital logic gates. The authors point out, however, that “the effi-
cacy in achieving a global energy minimum is limited” [9] due to variability. The
speed-up and accuracy reported by [9] are instead based on deterministic on-
chip computation paired with an external random number generator—a digital
hardware implementation of the simulated annealing algorithm. More recently,
similar digital accelerators have also been tried on FPGAs [32]. These implemen-
tations are not directly comparable to the other Ising machine implementations
discussed above, which attempt to use interesting intrinsic physics to minimise
the Ising Hamiltonian for achieving large speedups.
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3 Oscillator-Based Ising Machines

In this section, we show that a network of coupled self-sustaining oscillators can
function as an Ising machine. To do so, we first study the response of a single
oscillator under injection locking in Sect. 3.1. Specifically, we examine the way
the oscillator’s phase locks to that of the external input. While regular injection
locking typically aligns the oscillator’s phase with the input, as illustrated in
Fig. 1(a) and (b), its variant—subharmonic injection locking (SHIL)—can make
the oscillator develop multiple stable phase-locked states (Fig. 1(c) and (d)). As
we show in Sect. 3.1, these phenomena can be predicted accurately using the
Gen-Adler model [16].

Fig. 1. Illustration of the basic mechanism of oscillator-based Ising machines: (a) oscil-
lator shifts its natural frequency from f0 to f1 under external perturbation; (b) oscilla-
tor’s phase becomes stably locked to the perturbation; (c) when the perturbation is at
2f1, the oscillator locks to its subharmonic at f1; (d) bistable phase locks under subhar-
monic injection locking; (e) coupled subharmonically injection-locked oscillators settle
with binary phases representing an optimal spin configuration for an Ising problem.

The Gen-Adler equation of a single oscillator, when extended to the phase
dynamics of coupled oscillator networks, becomes equivalent to a variant of the
Kuramoto model. In Sect. 3.2, we show that the model’s dynamics are governed
by a global Lyapunov function, a scalar “energy like” quantity that is natu-
rally minimised by the coupled oscillator network. Then in Sect. 3.3, we intro-
duce SHIL into the system to binarise the phases of oscillators. As illustrated
in Fig. 1(e), SHIL induces each oscillator to settle to one of two stable phase-
locked states. Due to the coupling between them, a network of such binarised
oscillators will prefer certain phase configurations over others. We confirm this
intuition in Sect. 3.3 by deriving a new Lyapunov function that such a system
(i.e., with SHIL) minimises. By examining this function’s equivalence to the
Ising Hamiltonian, we show that such a coupled oscillator network under SHIL
indeed physically implements an Ising machine. Finally, in Sect. 3.4, we consider
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the effect of variability on the system’s operation. We show that a spread in
the natural frequencies of the oscillators contributes a linear term in the global
Lyapunov function, and does affect Ising machine performance by much if the
variability is not extreme.

3.1 Injection Locking in Oscillators

When an oscillator with a natural frequency ω0 is perturbed by a small periodic
input at a similar frequency ω1, its phase response can be predicted well using
the Generalised Adler’s model (Gen-Adler) [16]. Gen-Adler has the following
form:

d

dt
φ(t) = ω0 − ω1 + ω0 · c(φ(t) − φin), (3)

where φ(t) and φin are the phases of the oscillator and the perturbation. c(.)
is a 2π-periodic function derived based on an intrinsic quantity of the oscillator
known as the Phase Response Curve (PRC) [33] or the Perturbation Projec-
tion Vector (PPV) [34]. A detailed derivation of Gen-Adler from the low-level
differential equations of an oscillator is provided in a preprint of this paper [35].

The Gen-Adler equation governs the dynamics of the oscillator’s phase under
periodic inputs; its equilibrium states can be used to accurately predict the
injection-locked states of the oscillator. The equilibrium Gen-Adler equation can
be derived by rearranging (3):

ω1 − ω0

ω0
= c(φ∗ − φin). (4)

where φ∗ is the solution of phase in equilibrium.
The Left Hand Side (LHS) of (4) is a constant representing the frequency

detuning of the oscillator from the input; the Right Hand Side (RHS) is a periodic
function of φ∗; its magnitude depends on both the PPV of the oscillator and the
strength of the input [16]. By plotting both terms and looking for intersections,
one can easily predict whether injection locking will occur, and if it does, what
the locked phase of the oscillator φ∗ will be. Figure 2(a) plots a few examples of
LHS/RHS, showing their shapes and magnitudes under different conditions.

As mentioned in Sect. 1, SHIL can occur when the external input is about
twice as fast as the oscillator. When the input is at frequency 2ω1, it can be
shown that the corresponding c(.) becomes a π-periodic function [15,36]; a typi-
cal example is given in Fig. 2(b), where c(.) takes the shape of − sin(2φ). In this
case, two of the four LHS-RHS intersections represent stable phase-locked states;
it can be shown that they are separated by a phase difference of 180◦ [15]. Gen-
Adler is a powerful technique for predicting and understanding injection locking
in oscillators and constitutes an important foundation for the analyses that fol-
low.
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Fig. 2. Illustration of the LHS and RHS of the equilibrium Gen-Adler equation. (a)
Under normal injection locking, the intersection of LHS and RHS predicts the only
solution of φ under different scenarios. (b) Perturbation at 2ω1 changes the shape of
c(.) in Gen-Adler; the intersections now predict the locations of two stable phase-locked
states.

3.2 Global Lyapunov Function

For an oscillator in a coupled oscillator network, its external perturbations
come from the other oscillators connected to it. Its Gen-Adler equation can be
written as

d

dt
φi(t) = ωi − ω∗ + ωi ·

n∑

j=1, j �=i

cij(φi(t) − φj(t)), (5)

where {φi} represents the phases of n oscillators; ωi is the frequency of the
oscillator whereas ω∗ is the central frequency of the network. cij(.) is a 2π-
periodic function for the coupling between oscillator i and oscillator j.

To simplify exposition, we now assume that the cij functions are sinusoidal,
although in [35], we show that this does not have to be the case for the anal-
ysis to hold true.2 We further assume zero spread in the natural frequencies of
oscillators, i.e., ωi ≡ ω∗, and discuss the effect of frequency variability later in
Sect. 3.4. With these simplifications, (5) can be written as

d

dt
φi(t) = −K ·

n∑

j=1, j �=i

Jij · sin(φi(t) − φj(t)). (6)

Here, we are using the coefficients {Jij}3 from the Ising model (1) to set the
connectivity of the network, i.e., the coupling strength between oscillators i
and j is proportional to Jij . The parameter K modulates the overall coupling
strength of the network.

There is a global Lyapunov function associated with (6) [37]:

E(�φ(t)) = −K ·
∑

i,j, i �=j

Jij · cos(φi(t) − φj(t)), (7)

2 More generally, cijs can be any 2π-periodic odd functions, which are better suited
to practical oscillators.

3 In the Ising Hamiltonian (1), Jij is only defined when i < j; here we assume that
Jij = Jji for all i, j.
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where �φ(t) = [φ1(t), · · · , φn(t)]T . Being a global Lyapunov function, it is an
objective function the coupled oscillator system always tends to minimise as it
evolves over time [38].

If we look at the values of this continuous function E(�φ(t)) at some discrete
points, we notice that it shares some similarities with the Ising Hamiltonian. At
points where every φi is equal to either 0 or π,4 if we map φi = 0 to si = +1
and φi = π to si = −1, we have

E(�φ(t)) = −K·
∑

i,j, i�=j

Jij ·cos(φi(t)−φj(t)) = −K·
∑

i,j, i�=j

Jijsisj = −2K·
∑

i,j, i<j

Jijsisj . (8)

If we choose K = 1/2, the global Lyapunov function in (7) exactly matches the
Ising Hamiltonian in (2) at these discrete points. But this does not mean that
coupled oscillators are naturally minimising the Ising Hamiltonian, as there is
no guarantee at all that the phases {φi(t)} are settling to these discrete points.
In fact, networks with more than two oscillators almost always synchronise with
analog phases, i.e., {φi(t)} commonly settle to continuous values spread out
in the phase domain as opposed to converging towards 0 and π. As an exam-
ple, Fig. 3(a) shows the phase responses of 20 oscillators connected in a ran-
dom graph. As phases do not settle to the discrete points discussed above, the
Lyapunov function they minimise becomes irrelevant to the Ising Hamiltonian,
rendering the system ineffective for solving Ising problems. While one may think
that the analog phases can still serve as solutions when rounded to the nearest
discrete points, experiments in Sect. 4.2 show that the quality of these solutions
is very poor compared with our scheme of Ising machines proposed in this paper.

Fig. 3. Phases of 20 oscillators with random {Jij} generated by rudy -rnd graph 20

50 10001: (a) without SYNC; (b) with Ks = 1.

4 More generally, we can use {2kπ | k ∈ Z} and {2kπ + π | k ∈ Z} to represent the
two states for each oscillator’s phase.
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3.3 Network of Coupled Oscillators Under SHIL and Its Global
Lyapunov Function

In our scheme, a common SYNC signal at 2ω∗ is injected to every oscillator in the
network. Through the mechanism of SHIL, the oscillator phases are binarised.
The example shown in Fig. 3(b) confirms that this is indeed the case: under
SHIL, the phases of 20 oscillators connected in the same random graph now
settle very close to discrete points. To write the model for such a system, we
recall from Sect. 3.1 that a 2ω∗ perturbation introduces a π-periodic coupling
term (e.g., sin(2φ)) in the phase dynamics. Therefore, we directly write the
model as follows and show its derivation in [35].

d

dt
φi(t) = −K ·

n∑

j=1, j �=i

Jij · sin(φi(t) − φj(t)) − Ks · sin(2φi(t)), (9)

where Ks represents the strength of coupling from SYNC.
Remarkably, there is a global Lyapunov function for this new type of coupled

oscillator system. It can be written as

E(�φ(t)) = −K ·
∑

i,j, i �=j

Jij · cos(φi(t) − φj(t)) − Ks ·
n∑

i=1

cos (2φi(t)) . (10)

Now, we show that E in (10) is indeed a global Lyapunov function. To do so, we
first differentiate E with respect to �φ. We observe that the first component of E
is the sum of (n2 − n) number of cos() terms. Among them, for any given index
k, variable φk appears a total of 2 · (n− 1) times. It appears (n− 1) times as the
subtrahend inside cos(): these (n − 1) terms are Jkl · cos(φk(t) − φl(t)), where
l = 1, · · · , n and l �= k. For the other (n − 1) times, it appears as the minuend
inside cos(): in Jlk · cos(φl(t) − φk(t)), where l = 1, · · · , n, l �= k. So when we
differentiate E with respect to φk, we have

∂E(�φ(t))

∂φk(t)
= − K ·

n∑

l=1, l �=k

Jkl

∂

∂φk(t)
[cos(φk(t) − φl(t))] − K ·

n∑

l=1, l �=k

Jlk

∂

∂φk(t)
[cos(φl(t) − φk(t))]

− Ks · ∂

∂φk(t)
cos(2φk(t)) (11)

=K ·
n∑

l=1, l �=k

Jkl sin(φk(t) − φl(t)) − K ·
n∑

l=1, l �=k

Jlk sin(φl(t) − φk(t)) + Ks · 2 · sin(2φk(t))

(12)

=K ·
n∑

l=1, l �=k

Jkl · 2 · sin(φk(t) − φl(t)) + Ks · 2 · sin(2φk(t)) (13)

(using sin(x) = − sin(−x) and Jlk = Jkl)

= − 2 · dφk(t)

dt
. (14)
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Therefore,

∂E(�φ(t))
∂t

=
n∑

k=1

[
∂E(�φ(t))
∂φk(t)

· dφk(t)
dt

]
(15)

= −2 ·
n∑

k=1

(
dφk(t)

dt

)2

≤ 0. (16)

Thus, we have proved that (10) is indeed a global Lyapunov function the
coupled oscillators under SHIL naturally minimise over time. A similar but more
detailed proof for the general case where we do not assume sinusoidal coupling
functions is given in [35].

At the discrete points (phase values of 0/π), because cos(2φi) ≡ 1, (10)
reduces to

E(�φ(t)) ≈ −K ·
∑

i,j, i �=j

Jij · cos(φi(t) − φj(t)) − n · Ks, (17)

where n · Ks is a constant. By choosing K = 1/2, we can then make (17)
equivalent to the Ising Hamiltonian in (2) with a constant offset.

Note that the introduction of SYNC does not change the relative E levels
between the discrete points, but modifies them by the same amount. However,
with SYNC, all phases can be forced to eventually take values near either 0 or
π—the system now tries to reach a binary state that minimises the Ising Hamil-
tonian, thus functioning as an Ising machine. We emphasise that this is not
equivalent to running the system without SHIL and then rounding the analog
phase solutions to discrete values as a post-processing step. Instead, the intro-
duction of SHIL modifies the energy landscape of E, changes the dynamics of the
coupled oscillator system, and as we show in Sect. 4, results in greatly improved
minimisation of the Ising Hamiltonian.

Our approach here is analogous to several existing schemes to map a system’s
Lyapunov function to a minimisation objective, including the Hopfield-Tank
neural network proposed for the travelling salesman problem [39], and the more
recent work on designing differential equations for satisfiability (SAT) problems
[40,41]. Based on the equivalence established above of the Ising Hamiltonian and
the Lyapunov function (10) of coupled oscillators, our OIM can be used on a
wide class of problems with an Ising formulation [11], including the problems
addressed in these other schemes.

It is worth noting, also, that the Lyapunov function in (10) will, in general,
have many local minima and there is no guarantee the oscillator-based Ising
machine will settle at or near any global optimal state. However, as we show in
[35], when judicious amounts of noise are introduced via a noise level param-
eter Kn, it becomes more likely to settle to lower minima. Indeed, the several
parameters in the Ising machine—K, Ks and Kn—all play an important role
in its operation and should be given suitable values. Furthermore, K, Ks, Kn

can also be time varying, creating various “annealing schedules”. As we show in
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Sect. 4, this feature gives us considerable flexibility in operating oscillator-based
Ising machines for good performance.

3.4 Coupled Oscillator Networks with Frequency Variations

A major obstacle to the practical implementation of large-scale Ising machines
is variability. While few analyses exist for assessing the effects of variability for
previous Ising machine technologies (Sect. 2), the effect of variability on our
oscillator-based Ising machine scheme is easy to analyse, predicting that perfor-
mance degrades gracefully.

One very attractive feature of oscillators is that variability, regardless of
the nature and number of elemental physical sources, eventually manifests itself
essentially in only one parameter, namely the oscillator’s natural frequency. As
a result, the effect of variability in an oscillator network is that there is a spread
in the natural frequencies of the oscillators. Taking this into consideration, our
model can be revised as

d

dt
φi(t) = ωi−ω∗−ωi ·K ·

n∑

j=1, j �=i

Jij ·sin(φi(t)−φj(t))−ωi ·Ks ·sin(2φi(t)). (18)

As it turns out, there is also a global Lyapunov function associated with this
system.

E(�φ(t)) = −K·
∑

i,j, i �=j

Jij ·cos(φi(t)−φj(t))−Ks·
n∑

i=1

cos (2φi(t))−2
n∑

i=1

ωi − ω∗

ωi
φi.

(19)
This can be proven as follows.

∂E(�φ(t))

∂φk(t)
=K ·

n∑

l=1, l�=k

Jkl · 2 · sin(φk(t)− φl(t)) + Ks · 2 · sin(2φk(t))− 2
ωk − ω∗

ωk
(20)

=− 2

ωk
· dφk(t)

dt
. (21)

Therefore,
dE(�φ(t))

dt
= −

n∑

k=1

2
ωk

(
dφk(t)

dt

)2

≤ 0. (22)

Note that (19) differs from (10) only by a weighted sum of φi—it represents
essentially the same energy landscape but tilted linearly with the optimisation
variables. While it can still change the locations and values of the solutions, its
effects are easy to analyse given a specific combinatorial optimisation problem.
Also, as the coupling coefficient K gets larger, the effect of variability can be
reduced. Small amounts of variability merely perturb the locations of minima
a little, i.e., the overall performance of the Ising machine remains essentially
unaffected. Very large amounts of variability can, of course, eliminate minima
that would exist if there were no variability. However, another great advantage
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of using oscillators is that even in the presence of large variability, the oscillator
frequencies can be calibrated (e.g., using a voltage-controlled oscillator (VCO)
scheme) prior to each run of the machine. As a result, the spread in frequencies
can be essentially eliminated in a practical and easy-to-implement way.

4 Examples

In this section, we demonstrate the feasibility and efficacy of our oscillator-
based Ising machine scheme by applying it to several MAX-CUT examples and
a graph-colouring problem.

4.1 Small MAX-CUT Problems

Given an undirected graph, the MAX-CUT problem [13,42] asks us to find a
subset of vertices such that the total weights of the cut set between this subset
and the remaining vertices are maximised. As an example, Fig. 4 shows a size-
8 cubic graph, where each vertex is connected to three others—neighbours on
both sides and the opposing vertex. As shown in Fig. 4, dividing the 8 vertices
randomly yields a cut size of 5; grouping even and odd vertices, which one may
think is the best strategy, results in a cut size of 8; the maximum cut is actually
10, with one of the solutions shown in the illustration. Changing the edge weights
to non-unit values can change the maximum cut and also make the solution
look less regular, often making the problem more difficult to solve. While the
problem may not seem challenging at size 8, it quickly becomes intractable as
the size of the graph grows. In fact, MAX-CUT is one of Karp’s 21 NP-complete
problems [10].

Fig. 4. Illustration of different cut sizes in a 8-vertex cubic graph with unit edge
weights, and another one with random weights (rightmost).

The MAX-CUT problem has a direct mapping to the Ising model [10], by
choosing Jij to be the opposite of the weight of the edge between vertices i and
j, i.e., Jij = −wij . To explain this mapping scheme, we can divide the vertices
into two sets—V1 and V2. Accordingly, all the edges in the graph are separated
into three groups—those that connect vertices within V1, those within V2, and
the cut set containing edges across V1 and V2. The sums of the weights in these
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three sets are denoted by S1, S2 and Scut. Together, they constitute the total
edge weights of the graph, which is also the negation of the sum of all the Jijs:

S1 + S2 + Scut =
∑

i,j, i<j

wij = −
∑

i,j, i<j

Jij . (23)

We then map this division of vertices to the values of Ising spins, assigning +1
to a spin i if vertex vi ∈ V1, and −1 if the vertex is in V2. The Ising Hamiltonian
in (2) can then be calculated as

H =
∑

i,j, i<j

Jijsisj

=
∑

i<j, vi,vj∈V1

Jij(+1)(+1) +
∑

i<j, vi,vj∈V2

Jij(−1)(−1) +
∑

i<j, vi∈V1,vj∈V2

Jij(+1)(−1)

=
∑

i<j, vi,vj∈V1

Jij +
∑

i<j, vi,vj∈V2

Jij −
∑

i<j, vi∈V1,j∈V2

Jij

=− (S1 + S2 − Scut) =
∑

i,j, i<j

Jij − 2 · Scut. (24)

Therefore, when the Ising Hamiltonian is minimised, the cut size is maximised.
To show that an oscillator-based Ising machine can indeed be used to solve

MAX-CUT problems, we simulated the Kuramoto model in (9) while making
the Jijs represent the unit-weight cubic graph in Fig. 4. The magnitude of SYNC
is fixed at Ks = 3, while we ramp up the coupling strength K from 0 to
5. Results from the deterministic model (Kn = 0) and the stochastic model
(Kn = 0.1) are shown in Figs. 5 and 6 respectively. In the simulations, oscil-
lators started with random phases between 0 and π; after a while, they all
settled to one of the two phase-locked states separated by π. These two groups
of oscillators represent the two subsets of vertices in the solution. The results
for the 8 spins shown in Figs. 5 and 6 are {+1,−1,+1,−1,−1,+1,−1,+1}

Fig. 5. Phases of oscillators solving
a size-8 MAX-CUT problem without
noise.

Fig. 6. Phases of oscillators solving a
size-8 MAX-CUT problem with noise.
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and {−1,+1,+1,−1,+1,−1,−1,+1} respectively; both are globally optimal
solutions.

A minimal code for reproducing these results is show in [35]. Note that these
are simulations on stochastic differential equations with random initial condi-
tions. Every run will return different waveforms; there is no guarantee that the
global optimum will be reached on every run.

Fig. 7. Simulation results from ngspice on 8 coupled oscillators.

We have also directly simulated coupled oscillators at the SPICE level to
confirm the results obtained on phase macromodels. Such simulations are at a
lower level than phase macromodels and are less efficient. But they are closer
to physical reality and are useful for circuit design. In the simulations, 8 cross-
coupled LC oscillators are tuned to a frequency of 5 MHz. They are coupled
through resistors, with conductances proportional to the coupling coefficients;
in this case, we use Jij ·1/100 kΩ. Results from transient simulation using ngspice-
28 are shown in Fig. 7. The 8 oscillators’ phases settle into two groups {1, 4, 6,
7} and {2, 3, 5, 8}, representing one of the optimal solutions for the MAX-CUT
problem. They synchronise within 20µs after oscillation starts, which is about
100 cycles. We have tried this computational experiment with different random
initial conditions; like phase-macromodels, the SPICE-level simulations of these
coupled oscillators reliably return optimal solutions for this size-8 MAX-CUT
problem.

We have also implemented these 8 coupled LC oscillators on a breadboard;
a photo of it is shown in Fig. 8. The inductance of the LC oscillators is pro-
vided by fixed inductors of size 33µH. The capacitance is provided by trimmer
capacitors with a maximum value of 50 pF; we have tuned them to around 30 pF
such that the natural frequencies of all oscillators are about 5 MHz. The nonlin-
earity for sustaining the LC oscillation is implemented by cross-coupled CMOS
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Fig. 8. A simple oscillator-based Ising machine solving size-8 cubic graph MAX-CUT
problems: (a) breadboard implementation with 8 CMOS LC oscillators; (b) illustration
of the connections; (c) oscilloscope measurements showing waveforms of oscillator 1∼4.

inverters from TI SN74HC04N chips. SYNC is supplied through the GND pins
of these chips. The results have been observed using two four-channel oscillo-
scopes; a screenshot of one of them is shown in Fig. 8. Through experiments
with various sets of edge weights, we have validated that this is indeed a proof-
of-concept hardware implementation of oscillator-based Ising machines for size-8
cubic-graph MAX-CUT problems.

Fig. 9. A size-32 oscillator-based Ising machine: (a) photo of the implementation on
perfboards; (b) illustration of the connectivity; (c) a typical histogram of the energy
values achieved in 200 runs on a random size-32 Ising problem; the lowest energy level
is -88 and is achieved once in this case.

Using the same type of oscillators, we have built hardware Ising machines of
larger sizes. Figure 9 shows a size-32 example implementing a type of connectivity
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known as the Chimera graph, much like the quantum Ising machines manufac-
tured by D-Wave Systems. In this graph, oscillators are organised into groups
of 8, with denser connections within the groups and sparse ones in between.
The hardware is on perfboards, with components soldered on the boards so
that the setup is more permanent than those on breadboards. Connections are
implemented using rotary potentiometers. Next to each potentiometer we have
designed male pin connectors soldered on the board such that the polarity of
each connection can be controlled by shorting different pins using female jumper
caps. When encoding Ising problems, we have also colour-coded the jumper caps
to make debugging easier, as can be seen in the photo as red and green dots
next to the four arrays of white round potentiometers. To read the phases of
the oscillators, instead of using multichannel oscilloscopes, we have soldered TI
SN74HC86N Exclusive-OR (XOR) gate chips on board. The XOR operation of
an oscillator’s response and a reference signal converts the oscillating waveform
into a high or low voltage level, indicating if the oscillator’s phase is aligned with
or opposite to the reference phase. The voltage level can then be picked up by
a multichannel logic analyzer. The entire setup is powered by two Digilent Ana-
log Discovery 2 devices, which are portable USB devices that integrate power
supplies, logic analyzers and function generators. We have tried random Ising
problems by programming each connection with a random polarity using the
jumper caps. A typical histogram of the Ising Hamiltonians achieved is shown
in Fig. 9(c). Note that because Jijs have random polarities, a random solution
would have an average energy level of zero. In comparison, the results measured
from the hardware are always below 0, and sometimes achieve the global mini-
mum. While such a hand-soldered system is nontrivial to assemble and operate,
and its size of 32 cannot be characterised as large scale, it is a useful proof of
concept for implementing oscillator-based Ising machines using standard CMOS
technologies, and serves as a very solid basis for our future plans to scale the
implementations with custom PCBs and custom ICs.

4.2 MAX-CUT Benchmark Problems

In this section, we demonstrate the efficacy of oscillator-based Ising machines for
solving larger-scale MAX-CUT problems. Specifically, we have run simulations
on all the problems in a widely used set of MAX-CUT benchmarks known as
the G-set [43].5 Problem sizes range from 800 to 3000.6 In the experiments, we
operated the Ising machine for all the problems with a single annealing schedule,
i.e., we did not tune our Ising machine parameters individually for different
problems. Each problem was simulated with 200 random instances. In Table 1,
we list the results and runtime alongside those from several heuristic algorithms
developed for MAX-CUT—Scatter Search (SS) [44], CirCut [45], and Variable

5 The G-set problems are available for download as set1 at http://www.optsicom.es/
maxcut.

6 G1∼21 are of size 800; G22∼42 are of size 2000; G43∼47, G51∼54 are of size 1000;
G48∼50 are of size 3000.

http://www.optsicom.es/maxcut
http://www.optsicom.es/maxcut
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Neighbourhood Search with Path Relinking (VNSPR) [13].7 We also list the
performances of simulated annealing from a recent study [42], the only one we
were able to find that contains results for all the G-set problems.

From Table 1, we observe that our oscillator-based Ising machine is indeed
effective—it finds best-known cut values for 38 out of the 54 problems, 17 of
which are even better than those reported in the above literature. Moreover,
in the 200 random instances, the best cut is often reached more than once—
the average nmax for all benchmarks is 20 out of 200. If we relax the objective
and look at the number of instances where 99.9% of the cut value is reached,
represented by n0.999, the average is 56, more than a quarter of the total trials.
The results can in fact be improved further if we tailor the annealing schedule
for each problem. But to show the effectiveness and generality of our scheme, we
have chosen to use the same annealing schedule for all the problems.

In the annealing schedule we used, the coupling strength K increases linearly,
the noise level Kn steps up from 0 to 1, while SYNC’s amplitude Ks ramps up
and down multiple times. Such a schedule was chosen empirically and appears to
work well for most G-set problems. Figure 10 shows the behaviour of oscillator
phases and the instantaneous cut values under this schedule for solving bench-
mark problem G1 to its best-known cut size. Some MATLAB R©code to illustrate
the annealing schedule is shown in [35]. The code uses MATLAB R©’s SDE solver
and is thus much slower than an implementation in C++ we used to generate
the results in Table 1. We plan to release all our code as open-source software so
that others can verify and build on our work.

Fig. 10. Coupled oscillators solving MAX-CUT benchmark problem G1 [43] to its
best-known cut size 11624.

The fact that we were using a fixed schedule also indicates that the actual
hardware time for the Ising machine to solve all these benchmarks is the same,
regardless of problem size and connectivity. Note that in Fig. 10, the end time
20 means 20 oscillation cycles, but this end time is predicated on a coupling

7 Their results and runtime are available for download at http://www.optsicom.es/
maxcut in the “Computational Experiences” section.

http://www.optsicom.es/maxcut
http://www.optsicom.es/maxcut
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Table 1. Results of oscillator-based Ising machines run on MAX-CUT benchmarks in
the G-set, compared with several heuristic algorithms. Time reported in this table is
for a single run. nmax is the number of runs out of the 200 trials where the cut reaches
the maximum of 200; n0.999 is the number for it to reach 99.9% of the maximum.

Benchmark SS Time CirCut Time VNSPR Time SA Time OIM Time nmax n0.999

G1 11624 139 11624 352 11621 22732 11621 295 11624 52.6 43 123

G2 11620 167 11617 283 11615 22719 11612 327 11620 52.7 1 87

G3 11622 180 11622 330 11622 23890 11618 295 11622 52.4 10 117

G4 11646 194 11641 524 11600 24050 11644 294 11646 52.7 20 133

G5 11631 205 11627 1128 11598 23134 11628 300 11631 52.6 3 121

G6 2165 176 2178 947 2102 18215 2178 247 2178 52.8 4 46

G7 1982 176 2003 867 1906 17716 2006 205 2000 52.9 17 21

G8 1986 195 2003 931 1908 19334 2005 206 2004 52.8 2 26

G9 2040 158 2048 943 1998 15225 2054 206 2054 52.6 2 2

G10 1993 210 1994 881 1910 16269 1999 205 2000 52.9 21 58

G11 562 172 560 74 564 10084 564 189 564 6.7 6 6

G12 552 242 552 58 556 10852 554 189 556 6.3 25 25

G13 578 228 574 62 580 10749 580 195 582 6.4 3 3

G14 3060 187 3058 128 3055 16734 3063 252 3061 14.6 27 91

G15 3049 143 3049 155 3043 17184 3049 220 3049 16.1 41 145

G16 3045 162 3045 142 3043 16562 3050 219 3052 14.5 8 53

G17 3043 313 3037 366 3030 18555 3045 219 3046 14.6 5 52

G18 988 174 978 497 916 12578 990 235 990 14.7 3 3

G19 903 128 888 507 836 14546 904 196 906 14.5 13 13

G20 941 191 941 503 900 13326 941 195 941 14.7 160 160

G21 930 233 931 524 902 12885 927 195 931 14.6 10 10

G22 13346 1336 13346 493 13295 197654 13158 295 13356 58.7 3 93

G23 13317 1022 13317 457 13290 193707 13116 288 13333 58.6 8 54

G24 13303 1191 13314 521 13276 195749 13125 289 13329 59.0 6 23

G25 13320 1299 13326 1600 12298 212563 13119 316 13326 58.7 6 45

G26 13294 1415 13314 1569 12290 228969 13098 289 13313 58.9 4 81

G27 3318 1438 3306 1456 3296 35652 3341 214 3323 59.0 18 24

G28 3285 1314 3260 1543 3220 38655 3298 252 3285 61.2 1 5

G29 3389 1266 3376 1512 3303 33695 3394 214 3396 58.9 2 8

G30 3403 1196 3385 1463 3320 34458 3412 215 3402 59.0 12 16

G31 3288 1336 3285 1448 3202 36658 3309 214 3296 59.1 5 15

G32 1398 901 1390 221 1396 82345 1410 194 1402 17.5 5 5

G33 1362 926 1360 198 1376 76282 1376 194 1374 15.9 1 1

G34 1364 950 1368 237 1372 79406 1382 194 1374 15.9 24 24

G35 7668 1258 7670 440 7635 167221 7485 263 7675 37.1 5 29

G36 7660 1392 7660 400 7632 167203 7473 265 7663 37.6 3 58

G37 7664 1387 7666 382 7643 170786 7484 288 7679 37.8 1 15

G38 7681 1012 7646 1189 7602 178570 7479 264 7679 37.7 7 18

(continued)
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Table 1. (continued)

Benchmark SS Time CirCut Time VNSPR Time SA Time OIM Time nmax n0.999

G39 2393 1311 2395 852 2303 42584 2405 209 2404 37.2 1 1

G40 2374 1166 2387 901 2302 39549 2378 208 2389 38.1 7 7

G41 2386 1017 2398 942 2298 40025 2405 208 2401 37.8 20 71

G42 2457 1458 2469 875 2390 41255 2465 210 2469 37.3 4 4

G43 6656 406 6656 213 6659 35324 6658 245 6660 29.1 17 129

G44 6648 356 6643 192 6642 34519 6646 241 6648 29.2 21 129

G45 6642 354 6652 210 6646 34179 6652 241 6653 29.1 10 53

G46 6634 498 6645 639 6630 38854 6647 245 6649 29.1 9 13

G47 6649 359 6656 633 6640 36587 6652 242 6656 29.1 16 91

G48 6000 20 6000 119 6000 64713 6000 210 6000 23.2 194 194

G49 6000 35 6000 134 6000 64749 6000 210 6000 23.2 180 180

G50 5880 27 5880 231 5880 147132 5858 211 5874 25.6 10 94

G51 3846 513 3837 497 3808 89966 3841 234 3846 18.4 23 68

G52 3849 551 3833 507 3816 95985 3845 228 3848 18.4 10 49

G53 3846 424 3842 503 3802 92459 3845 230 3846 18.4 9 102

G54 3846 429 3842 524 3820 98458 3845 228 3850 18.5 3 40

strength of K ∼ 1. The actual value of K for each oscillator depends on the
PPV function as well as the amplitude of perturbation from other oscillators, as
we show in the derivation of Gen-Adler in [35]. As an example, for the LC oscil-
lators we use in Sect. 4.1 with 100k resistive coupling, K ≈ 0.02. This indicates
that it takes less than 100 cycles for the oscillators to synchronise in phase, which
is consistent with measurements. For such a coupled LC oscillator network, a
hardware time of 20 in Fig. 10 represents approximately 2000 cycles of oscilla-
tion; for 5 MHz oscillators that takes 0.4 ms. If we use GHz nano-oscillators, the
computation time can be well within a microsecond. In comparison, the runtime
of the several heuristic algorithms listed in Table 1, even with faster CPUs and
parallel implementations in the future, is unlikely to ever drop to this range.

As the hardware time is fixed, the runtime we report in Table 1 for our Ising
machines is the time for simulating the SDEs of coupled oscillators on CPUs for
one run. While we list runtime results for each algorithm in Table 1, note that
they come from different sources and are measured on different platforms. Results
for SS, CirCut and VNSPR were obtained from Dual Intel Xeon at 3.06 GHz with
3.2 GB of RAM; SA was run on Intel Xeon E3-1245v2 at 3.4 GHz with 32GB of
RAM [42]. To make the results generally comparable, we ran our simulations on
a modest personal desktop with Intel Xeon E5-1603v3 at 2.8 GHz with 16 GB of
RAM. Even so, it came as a nice surprise to us that even by simulating SDEs
we were able to solve the benchmarks efficiently. Another notable feature of our
method is that unlike other algorithms, SDE simulation does not know about the
Ising Hamiltonian or cut value—it never needs to evaluate the energy function
or relative energy changes, which are implicit in the dynamics of differential
equations, yet it proves effective and fast.
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We also ran more computational experiments on the G-set benchmarks in
order to study the mechanism of oscillator-based Ising machines. We created
several variants of the Ising machine used above by removing different compo-
nents in its operation. For each variant, we re-ran 200 random instances for each
of the 54 benchmarks, generating 10800 cut values. In Fig. 11, we compare the
quality of these cut values with results from the unaltered Ising machine by plot-
ting histograms of the distances of the cut values to their respective maxima.
In the first variant, we removed noise from the model by setting Kn ≡ 0. The
solutions become considerably worse, confirming that noise helps the coupled
oscillator system settle to lower energy states.

Fig. 11. Histograms of the cut values achieved by several variants of the Ising machine,
compared with the baseline results used in Table 1.

In the next variant, we removed SYNC by setting Ks ≡ 0. Without SYNC,
the system becomes a simple coupled oscillator system with phases that take
a continuum of values, as discussed in Sect. 3.2. The settled analog values of
the phases that were then thresholded to 0 or π to correspond to Ising spins.
As shown in Fig. 11, the results become significantly worse; indeed, none of the
best-known results were reached. This indicates that the SYNC signal and the
mechanism of SHIL we introduce to the coupled oscillator networks are indeed
essential for them to operate as Ising machines.

Our baseline Ising machine actually uses a smoothed square function
tanh(sin(.)) for the coupling, as opposed to the sin(.) used in the original
Kuramoto model, as shown in the code in [35]. This changes the cos(.) term
in the energy function (10) to a triangle function. Such a change appears to
give better results than the original, as shown in Fig. 11(c). The change requires
designing oscillators with special PPV shapes and waveforms such that their
cross-correlation is a square wave, which is not difficult in practice based on
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our derivation in [35]. As an example, rotary traveling wave oscillators naturally
have square PPVs. Ring oscillators can also be designed with various PPVs and
waveforms by sizing each stage individually. We cannot say definitively that the
square function we have used is optimal for Ising solution performance, but the
significant improvement over sinusoidal coupling functions indicates that a fruit-
ful direction for further exploration may be to look beyond the original Kuramoto
model for oscillator-based computing.

The last variant we report here added variability to the natural frequencies
of the oscillators, as in (18). We assigned Gaussian random variables to ωis with
ω∗ as the mean, and 0.01 (1%) and 0.05 (5%), respectively, as the standard
deviations for two separate runs. From Fig. 11(d), we observe that even with
such non-trivial spread in the natural frequencies of oscillators, the performance
is affected very little.

Fig. 12. Speed of energy minimisation for problems of different sizes.

Finally, we conducted a preliminary study of the scaling of the time taken
by the Ising machine to reach good solutions as problem sizes increase. As the
G-set benchmarks have only a few sizes (800, 1000, 2000 and 3000), we used the
program (named rudy) that generated them to create more problems of various
sizes. All generated problems used random graphs with 10% connectivity and ±1
coupling coefficients. We simulated all of them, each for 200 instances, with fixed
parameters K = 1, Ks = 0.1, Kn = 0.01, and show all their Ising Hamiltonians
over time in Fig. 12. Much to our surprise, the speed in which the values settle
appears almost constant, regardless of the problem size. While this does not
necessarily mean they all converge to the global optima within the same time,
this preliminary study is encouraging as it confirms the massively parallel nature
of the system. For larger Ising problems, our Ising machine only needs to scale
linearly in hardware size with the number of spins, but does not necessarily
require much more time to reach a solution.
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4.3 A Graph Colouring Example

As mentioned in Sect. 2, many problems other than MAX-CUT can be mapped
to the Ising model [11] and solved by an oscillator-based Ising machine. Here we
show an example of a graph colouring problem—assigning four colours to the 51
states (including a federal district) of America such that no two adjacent states
have the same colour.8

Each state is represented as a vertex in the graph. When two states are
adjacent, there is an edge in the graph that connects the corresponding vertices.
For every vertex i, we assign four spins—siR, siG, siB and siY to represent
its colouring scheme; when only one of them is +1, the vertex is successfully
coloured as either red, green, blue or yellow. Then we write an energy function
H associated with these 4 × 51 = 204 spins as follows:

H =

n∑

i

(2 + siR + siG + siB + siY )
2

+

n
E∑

(i,j)∈E

[(1 + siR)(1 + sjR) + (1 + siG)(1 + sjG) + (1 + siB)(1 + sjB) + (1 + siY )(1 + sjY )] ,

(25)

where n = 51 is the number of vertices, E represents the edge set, nE is the
number of edges and in this case equal to 220.9

The first term of H is a sum of squares never less than zero; it reaches zero
only when {siR, siG, siB , siY } contains three −1s and one +1 for every i, i.e.,
each state has a unique colour. The latter term is also a sum that is always
greater than or equal to zero, as each spin can only take a value in {−1, + 1};
it is zero when siX = sjX = +1 never occurs for any edge connecting i and
j, and for any colour X ∈ {R, G, B, Y }, i.e., adjacent states do not share
the same colour. Therefore, when H reaches its minimum value 0, the spin
configuration represents a valid colouring scheme—following the indices of the
+1 spins {i, X | siX = +1}, we can then assign colour X to state i.

Note that when expanding the sum of squares in (25), we can use the fact
s2iX ≡ 1 to eliminate the square terms. This means H contains only products
of two spins—modelled by Jijs, and self terms—modelled by hi. These Ising
coefficients can then be used to determine the couplings in an oscillator-based
Ising machine.

We simulated these 204 coupled oscillators and show the results in Fig. 13.
In the simulation, we kept K and Kn constant while ramping Ks up and down 5
times. We found the Ising machine to be effective with this schedule as it could
colour the map successfully in more than 50% of the random trials and returned
many different valid colouring schemes.

8 Ising machines can be used on general graph colouring problems, and this four-
colouring problem is chosen here for illustrative purposes. Four-colouring a planar
graph is actually not NP-hard and there exist polynomial-time algorithms for it [46].

9 Hawaii and Alaska are considered adjacent such that their colours will be different
in the map.
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Fig. 13. Coupled oscillators colouring the states in the US map: (a) phases of oscillators
evolve over time; (b) energy function (25) decreases during the process; (c) the resulting
US map colouring scheme.

5 Conclusion

In this paper, we have proposed a novel scheme for implementing Ising machines
using self-sustaining nonlinear oscillators. We have shown how coupled oscillators
naturally minimise an “energy” represented by their global Lyapunov function,
and how introducing the mechanism of subharmonic injection locking modifies
this function to encode the Ising Hamiltonian for minimisation. The validity and
feasibility of the scheme have been examined via multiple levels of simulation
and proof-of-concept hardware implementations. Simulations run on larger-scale
benchmark problems have also shown promising results in both speed and the
quality of solutions. We believe that our scheme constitutes an important and
practical means for the implementation of scalable Ising machines.

Acknowledgements. The authors would like to thank the reviewers for the useful
comments and in particular anonymous reviewer No. 2 for pointing us to Ercsey-
Ravasz/Toroczkai and Yin’s work on designing dynamical systems to solve NP-
complete problems.
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