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WHY DO WE EXPLORE?
REINFORCEMENT LEARNING PERSPECTIVE
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WHY DO WE EXPLORE?
PERSPECTIVE OF OPTIMAL DESIGN — ACTIVE LEARNING

optimal experimental design

& EXPERIMENT
—

model selection and
parameter estimation

- Theory for learning in the brain (from little data)
- Basis for building machines that can autonomously learn

- Balance:“modeling the predictable” versus “discovering the novel”



TIME LINE OF EARLY THEORETICAL WORK

Kirstine Smith 1918: Optimal experimental design

On the standard deviations of adjusted and interpolated values of an observed
polynomial function and its constants and the guidance they give towards a proper
choice of the distribution of observations (Biometrika 1918)

D.V. Lindley 1956: Bayesian definition of information gain

On a measure of information provided by an experiment (Annals of Math. Stat.
1956)

E. Pfaffelhuber 1972: Definition of missing information

Learning and information theory (Intern, . Neurosci. 1972)

MacKay 1992:

Information-based objective functions for active data selection (Neural Comp. 1992)

Oaksford & Chater 1994:

Expected information gain in selection tasks



THE BAYESIAN VIEW

Parameterized probabilistic model of observation:

p(x)= [ p(x10)p(6)de
Information gain by individual observation (Lindley 56):
I(x)= [ p(61x)log p(01x)d6 - [ p(6)log p(6)do

with priorp(@) and posteriorp(@ | X) of parameter



Average information gain (Lindley 56):

I=EI(x)
= [dxp(x) [ p(61x)log p(61x)d6 - [ p(6)log p(6)de
— KL[p(x,H) | p(x)p(H)] (Shannon channel capacity)

=E KL[p@1x)Il p(6)
= E,KL[ p(x10)1l p(x).

Note that;

I=H(Ix)-H(®)=E KL pO1x)ll p6)]



Information gain for active data selection (MacKay 92):
Sampling observation history: hN = {ai,Si},i =1,...N
Estimated posterior distribution: ﬁN (0)=pO] hN)

(Bayesian) information gain:

I = ESNHKL[ﬁNH(H) ” ﬁN (6)] = ESN+1 (HN a HN+1)

Past BIG was renamed Bayesian surprise (Baldi & Itti, 2004)



MISSING INFORMATION

Little & Sommer, Frontiers in Neural Circuits 2013 (ArXiv 2011)

Estimate of ground truth probability:

p(x) = p(x)

Missing information of current estimate (Pfaffelhuber 72):

1,,(p) = KL p(x) Il p(x)]

Information gain:

I = IM(ﬁN)_IM(ﬁNH)

Past |G “curiosity” based policies in agents (Storck et al. 1995)
Predictive |G = PIG (Little & Sommer 201 1,201 3)



MODEL OF THE ENVIRONMENT

Controllable Markov Chain
{A,S,p(s'la,s)}

Learning task:

Estimate: p(s'la,s) = (:)a,s’s, ~p(s'la,s) =0,



THREE TEST ENVIRONMENTS
LEARNING ACROSS A RANGE OF STRUCTURES
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LEARNING-DRIVEN EXPLORATION
TWO SEPARATE CHALLENGES

7./nferenc§: Given a set of data, what is the best
estimate © of ©

2. Exploration: Given ©, how should an agent
choose actions to best improve the estimate



1. INFERENCE

Missing information for entire CMC:

Va\

I, =Ya,KLOe, 10

a,s,s']

Theorem for inference step:
Bayesian inference minimizes missing information:

A

O=FE,[O]=argming, E,,[], (P)]



LEARNING DURING EXPLORATION
MISSING INFORMATION IS UNEVENLY DISTRIBUTED

Missing Information

' 4
' N

Control Strategies:
Random Action - an undirected baseline learner
Unembodied - an upper bound on learning



COMPARING CONTROLS
THE EMBODIMENT CONSTRAINTS ON LEARNING
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2. OBJECTIVE FOR EXPLORATION

PREDICTED INFORMATION GAIN
1. Use current model to predict next sensory input: &

a,s,s'

2. Add fictive new observation s’ to current model: (:)“’Sés'

3. Compute predicted information gain:

PIG(a,s)=E, o, [KL[® |©]- KL[® |©"* 1]
-¥0,, KL 10]



Predicted Information Gain (bits)
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PREDICTED INFORMATION GAIN (PIG)
ACCURATE ESTIMATION OF LEARNING VALUE
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GREEDY MAXIMIZATION OF PIG
IMPROVES LEARNING IN 1-2-3 WORLDS
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OPTIMIZATION WITH LONGER TIME HORIZON

Forward search for optimal policy has exponential complexity

Use value iteration (Bellman 1957)
Q,(a,s)=PIG(a,s)
0,.(a.5)=PIG(a,s)+1 ¥ 6,V (s")

s'eS

V (s')=max_ 0 _(a,s)



VALUE ITERATED MAXIMIZATION OF PIG

CLOSING THE EMBODIMENT GAP
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Missing Information (bits)

PREVIOUS EXPLORATION STRATEGIES

PIG(VI) OUTPERFORMS ALTERNATIVES IN STRUCTURED WORLDS
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Previous Strategies:
Least Taken Action (LTA) - Si, Herrmann, and Pawelzik 2007
- Thrun 1992

Q-Learning on Past Change (PC(Q)) - Storck, Hochreiter, Schmidhuber 1995
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GENERAL UTILITY OF EFFICIENT LEARNING
INDEPENDENT GOAL-DIRECTED TASKS
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PIG IN UNBOUNDED STATE SPACE
Mobin, Arnemann, Sommer, NIPS 2014

Chinese Restaurant Process — CRP-PIG

p(C)=—5_i=1,..K

!

t+0
0
(Ct) = - _
P t+06
Empiricial Bayes Version — EB-CRP-PIG
(1) ~ 2
In(z)+y+ LI
2t 12¢°

with y = 0.577 Euler's Mascheroni constant



PIG IN UNBOUNDED STATE SPACE
Mobin, Arnemann, Sommer, NIPS 2014
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PIG IN UNBOUNDED STATE SPACE

Mobin, Arnemann, Sommer, NIPS 2014
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PIG IN UNBOUNDED STATE SPACE
Exploration in unbounded environmen
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(a) EB-CRP-PIG (b) LTA

Figure 6: Unbounded Maze environment. Exploration is depicted for two different agents (a) EB-
CRP-PIG and (b) LTA, after 2000, 4000, and 6000 exploration steps respectively. Initially all states
are white (not depicted), which represent unexplored states. Transporters (blue lines) move the agent
to the closest gravity well (small blue concentric rings). The current position of the agent is indicated
by the purple arrow.



SUMMARY

1. Learning in action-perception loops is the old optimal design problem
2. State-space information gain (PIG) versus Bayesian information gain
3. Maximizing PIG minimizes missing information

4 Nongreedy optimization is critical in interesting environments

5. Extension of PIG to unbounded environments:
CRP+ Empirical Bayes works best
Surprise-based information seeking does not eliminate surprise
Balance between eliminating uncertainty and discovering more
states is model depending



Other objectives for exploration

1. Homekinesis (Der, 2000)

Caﬁtml__l__er

External

world




Other objectives for exploration

1. Free Energy Principle
(Friston, 2010)

-> Dark corner problem

Environment Agent
Sensations
External states Internal states

%=flxa,9+w

u = arg min F($, )

\ Action or control signals /

a = arg min F(5,u)

Free-energy bound on surprise

| F =-<In p(5,9|m)>, + <In (9| p)>,

Action minimizes prediction errors
F = D(q(d]4) || p(S) - <In p(3(a)|9.m)>,

a = arg max Accuracy

A\

Perception optimizes predictions
F=D(g(3|¢) || p(913)) - In p(8| m)

u = arg max Divergence




Other objectives for exploration

Learning Progress (Kaplan & Oudeyer, 2007)
= derivative of prediction error

Does not require information estimation and still avoids problems of
policies of directly minimizing prediction error



MEASURES OF UTILITY TOWARDS LEARNING
IN THEORETICAL PSYCHOLOGY

Predicted Information Gain (PIG) (Oaksford & Chater 1994)

Y " 64,5,4 Dxr(6%°7* || )

Predicted Mode Change (PMC) (Baron 2005, Nelson 2005)

!
a,s,s’ max o, g s max a,s,s*
S* | *
3’

S

Predicted L1 Change (PLC) (Klayman & Ha 1987)

(’:) A\a, s—s’
G,S,S’ a,s S* o CL,S,S*
SI




