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1) Intro:  Theories on information-driven exploration

2) Exploration based on predicted information gain (PIG)

3) PIG exploration in unbounded state spaces
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WHY DO WE EXPLORE?
PERSPECTIVE OF OPTIMAL DESIGN – ACTIVE LEARNING

- Theory for learning in the brain (from little data)

- Basis for building machines that can autonomously learn

- Balance: “modeling the predictable” versus “discovering the novel”  



TIME LINE OF EARLY THEORETICAL WORK
Kirstine Smith 1918: Optimal experimental design
On the standard deviations of adjusted and interpolated values of an observed 
polynomial function and its constants and the guidance they give towards a proper 
choice of the distribution of observations (Biometrika 1918)

D. V. Lindley 1956: Bayesian definition of information gain
On a measure of information provided by an experiment (Annals of Math. Stat. 
1956)

E. Pfaffelhuber 1972: Definition of missing information
Learning and information theory (Intern, J. Neurosci. 1972)

MacKay 1992: 
Information-based objective functions for active data selection (Neural Comp. 1992)

Oaksford & Chater 1994: 
Expected information gain in selection tasks



THE BAYESIAN VIEW

Parameterized probabilistic model of observation:

Information gain by individual observation (Lindley 56):

with prior          and posterior              of parameter 

.

I(x) = p(θ | x)log p(θ | x)dθ −∫ p(θ )log p(θ )dθ∫
p(θ | x)p(θ )

p(x) = p(x |θ )p(θ )dθ∫



I = ExI(x)

= dx∫ p(x) p(θ | x)log p(θ | x)dθ −∫ p(θ )log p(θ )dθ∫
= KL[p(x,θ ) || p(x)p(θ )]
= ExKL[p(θ | x) || p(θ )]
= EθKL[p(x |θ ) || p(x)]

Average information gain (Lindley 56):

(Shannon channel capacity)

.

Note that: 

I = H (θ | x)−H (θ ) = ExKL[p(θ | x) || p(θ )]



I = EsN+1
KL[ p̂N+1(θ ) || p̂N (θ )]= EsN+1

(HN −HN+1)

Information gain for active data selection (MacKay 92):

Sampling observation history:

Estimated posterior distribution:

(Bayesian) information gain:

Past BIG was renamed Bayesian surprise (Baldi & Itti, 2004) 

hN = {ai, si}, i =1,...,N

p̂N (θ ) = p(θ | hN )



MISSING INFORMATION

Estimate of ground truth probability:

Missing information of current estimate (Pfaffelhuber 72):

Information gain: 

.

Past IG “curiosity” based policies in agents (Storck et al. 1995)
Predictive IG = PIG (Little & Sommer 2011, 2013)

IM ( p̂) = KL[p(x) || p̂(x)]

p̂(x) ≈ p(x)

I = IM ( p̂N )− IM ( p̂N+1)

Little & Sommer, Frontiers in Neural Circuits 2013 (ArXiv 2011)



MODEL OF THE ENVIRONMENT

Controllable Markov Chain

Learning task:

Estimate:

{A,S, p(s ' | a, s)}

p̂(s ' | a, s) = Θ̂a,s,s ' ≈ p(s ' | a, s) =Θa,s,s '



a=1

a=2

a=3

Dense Worlds Mazes 1-2-3 Worlds

ex. a=1

THREE TEST ENVIRONMENTS
LEARNING ACROSS A RANGE OF STRUCTURES

f (Θa,s,. ) = Dir(α) =
1

Z(α)
(Θa,s,s ' )

αs '−1

s '
∏



LEARNING-DRIVEN EXPLORATION
TWO SEPARATE CHALLENGES

1.Inference: Given a set of data, what is the best 
estimate     of 

2. Exploration: Given    , how should an agent 
choose actions to best improve the estimate 



Missing information for entire CMC:

Theorem for inference step: 
Bayesian inference minimizes missing information:

1. INFERENCE

IM = αasKL[Θa,s,s ' || Θ̂a,s,s ' ]
a,s
∑

Θ̂ = EΘ|h[Θ]= argminΦ EΘ|h[IM (Φ)]



Control Strategies:
Random Action - an undirected baseline learner 
Unembodied - an upper bound on learning

Missing Information

LEARNING DURING EXPLORATION
MISSING INFORMATION IS UNEVENLY DISTRIBUTED



COMPARING CONTROLS
THE EMBODIMENT CONSTRAINTS ON LEARNING



2. OBJECTIVE FOR EXPLORATION

PREDICTED INFORMATION GAIN
1. Use current model to predict next sensory input:

2. Add fictive new observation s’ to current model: 

3. Compute predicted information gain:

PIG(a, s) = Es ',Θ|h[KL[Θ || Θ̂]−KL[Θ || Θ̂
a,s#→# s ' ]]

= Θ̂a,s,s '
s '
∑ KL[Θ̂a,s#→# s ' || Θ̂]

Θ̂a,s,s '

Θ̂a,s"→" s '



PREDICTED INFORMATION GAIN (PIG)
ACCURATE ESTIMATION OF LEARNING VALUE



GREEDY MAXIMIZATION OF PIG
IMPROVES LEARNING IN 1-2-3 WORLDS



OPTIMIZATION WITH LONGER TIME HORIZON

Forward search for optimal policy has exponential complexity

Use value iteration (Bellman 1957)

Q0 (a, s) = PIG(a, s)

Qτ−1(a, s) = PIG(a, s)+η Θ̂ass 'Vτ (s ')
s '∈S
∑

Vτ (s ') =maxa Qτ (a, s)



VALUE ITERATED MAXIMIZATION OF PIG
CLOSING THE EMBODIMENT GAP



PREVIOUS EXPLORATION STRATEGIES
PIG(VI) OUTPERFORMS ALTERNATIVES IN STRUCTURED WORLDS

Previous Strategies:
Least Taken Action (LTA) - Si, Herrmann, and Pawelzik 2007
Counter Based (CB) - Thrun 1992
Q-Learning on Past Change (PC(Q)) - Storck, Hochreiter, Schmidhuber 1995

Sur.(Q)



GENERAL UTILITY OF EFFICIENT LEARNING
INDEPENDENT GOAL-DIRECTED TASKS



PIG IN UNBOUNDED STATE SPACE

Chinese Restaurant Process – CRP-PIG

Empiricial Bayes Version – EB-CRP-PIG

with                     Euler’s Mascheroni constant    

Mobin, Arnemann, Sommer, NIPS 2014

pi (Ct ) =
ci
t +θ

, i =1,...,Kt

pψ (Ct ) =
θ
t +θ

θ(t) ≈ Kt

ln(t)+γ + 1
2t
−
1
12t2

γ ≈ 0.577



PIG IN UNBOUNDED STATE SPACE

Reduction in Missing Information in bounded maze

Mobin, Arnemann, Sommer, NIPS 2014

Random action: A negative control, representing the minimally directed action policy that
any directed action policy should beat.
Least Taken Action (LTA): A well known explorative strategy that simply takes the action it
has taken least often in the current state [16].
Counter-Based Exploration (CB): Another explorative strategy from the literature that at-
tempts to induce a uniform sampling across states [21].
DP-PIG: The strategy of [12] which applies the same objective function as described here,
but is given the size of the state space and is therefore at an advantage. This agent uses a
Dirichlet process (DP) with ↵ set to 0.20, which was found empirically to be optimal for the
maze environment.
Unembodied: An agent which can choose any action from any state at each time step (hence
unembodied) and can therefore attain the highest PIG possible at every sampling step. This
strategy represents a positive control.

Figure 2: Bounded Maze environment. Two transition
distributions, ⇥sa·, are depicted, one for (s=13, a=‘left’)
and one for (s=9, a=‘up’). Dark versus light gray ar-
rows represent high versus low probabilities. For (s=13,
a=‘left’), the agent moves with highest probability left
into a transporter (blue line), leading it to the absorbing
state 29 (blue concentric rings). With smaller probabili-
ties the agent moves up, down or is reflected back to its
current state by the wall to the right. The second transi-
tion distribution is displayed similarly.

Figure 3 depicts the missing information (11) in the bounded maze for the various learning strate-
gies over 3000 sampling steps averaged over 200 runs. All PIG-based embodied strategies exhibit
a faster decrease of missing information with sampling, however, still significantly slower than the
unembodied control. In this finite environment the DP-PIG agent with the correct Dirichlet prior
(experimentally optimized ↵-parameter) has an advantage over the CRP based agents and reduced
the missing information more quickly. However, the new strategies for unbounded state space still
outperform the competitor agents from the literature by far. Interestingly, EB-CRP-PIG with con-
tinuously adjusted ✓ can reduce missing information significantly faster than CRP-PIG with fixed,
experimentally optimized ✓ = 0.25.

Figure 3: Missing Information vs. Time for EB-CRP-PIG and several other strategies in the bounded
maze environment.

To directly assess how efficient learning translates to the ability to harvest reward, we consider the 5-
state “Chain” problem [19], shown in Figure 4, a popular benchmark problem. In this environment,
agents have two actions available, a and b, which cause transitions between the five states. At each
time step the agent “slips” and performs the opposite action with probability pslip = 0.2. The agent
receives a reward of 2 for taking action b in any state and a reward of 0 for taking action a in
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PIG IN UNBOUNDED STATE SPACE
Mobin, Arnemann, Sommer, NIPS 2014

Figure 4: Chain Environment.

every state but the last, in which it receives a reward of 10. The optimal policy is to always choose
action a to reach the highest reward at the end of the chain, it is used as a positive control for this
experiment. We follow the protocol in previous publications and report the cumulative reward in
1000 steps, averaged over 500 runs. Our agent EB-CRP-PIG-R executes the EB-CRP-PIG strategy
for S steps, then computes the best reward policy given its internal model and executes it for the
remaining 1000-S steps. We found S=120 to be roughly optimal for our agent and display the
results of the experiment in Table 1, taking the results of the competitor algorithms directly from
the corresponding papers. The competitor algorithms define their own balance between exploitation
and exploration, leading to different results.

Method Reward

RAM-RMAX [5] 2810
BOSS [2] 3003
exploit [15] 3078
Bayesian DP [19] 3158 ± 31
EB-CRP-PIG-R 3182 ± 25
Optimal 3658 ± 14

Table 1: Cumulative reward for 1000 steps in the chain environment.

The EB-CRP-PIG-R agent is able to perform the best and significantly outperforms many of the
other strategies. This result is remarkable because the EB-CRP-PIG-R agent has no prior knowledge
of the state space size, unlike all the competitor models. We also note that our algorithm is extremely
efficient computationally, it must approximate the optimal policy only once and then simply execute
it. In comparison, the exploit strategy [15] must compute the approximation at each time step.
Further, we interpret our competitive edge over BOSS to reflect a more efficient exploration strategy.
Specifically, BOSS uses LTA for exploration and Figure 3 indicates that the learning performance
of LTA is far worse than the performance of the PIG-based models.

Figure 5: Missing Information vs. Time for EB-CRP-PIG and CRP-PIG in the unbounded maze
environment.

Finally, we consider an unbounded maze environment with |S | being infinite and with multiple
absorbing states. Figure 5 shows the decrease of missing information (11) for the two CRP based
strategies. Interestingly, like in the bounded maze the Empirical Bayes version reduces the missing
information more rapidly than a CRP which has a fixed, but experimentally optimized, parameter
value. What is important about this result is that EB-CRP-PIG is not only better but it requires no
prior parameter tuning since ✓ is adjusted intrinsicially. Figure 6 shows how an EB-CRP-PIG and
an LTA agent explore the environment over 6000 steps. The missing information for each state is

6
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PIG IN UNBOUNDED STATE SPACE
Exploration in unbounded environment

Figure 6: Unbounded Maze environment. Exploration is depicted for two different agents (a) EB-
CRP-PIG and (b) LTA, after 2000, 4000, and 6000 exploration steps respectively. Initially all states
are white (not depicted), which represent unexplored states. Transporters (blue lines) move the agent
to the closest gravity well (small blue concentric rings). The current position of the agent is indicated
by the purple arrow.

color coded, light yellow representing high missing information, and red representing low missing
information, less than 1 bit. Note that the EB-CRP-PIG agent explores a much bigger area than the
LTA agent.

The two agents are also tested in a reward task in the unbounded environment for assessing whether
the exploration of EB-CRP-PIG leads to efficient reward acquisition. Specifically, we assign a re-
ward to each state equal to the Euclidian distances from the starting state. Like for the Chain problem
before, we create two agents EB-CRP-PIG-R and LTA-R which each run for 1000 total steps, explor-
ing for S=750 steps (defined previously) and then calculating their best reward policy and executing
it for the remaining 250 steps. The agents are repositioned to the start state after S steps and the
best reward policy is calculated. The simulation results are shown in Table 2. Clearly, the increased
coverage of the EB-CRP-PIG agent also results in higher reward acquisition.

Method Reward

EB-CRP-PIG-R 1053
LTA-R 812

Table 2: Cumulative reward after 1000 steps in the unbounded maze environment.
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SUMMARY

1. Learning in action-perception loops is the old optimal design problem

2. State-space information gain (PIG) versus Bayesian information gain

3. Maximizing PIG minimizes missing information

4 Nongreedy optimization is critical in interesting environments   

5. Extension of PIG to unbounded environments:
CRP+ Empirical Bayes works best
Surprise-based information seeking does not eliminate surprise
Balance between eliminating uncertainty and discovering more 
states is model depending



Other objectives for exploration

1. Homekinesis (Der, 2000)  



Other objectives for exploration

1. Free Energy Principle
(Friston, 2010)

-> Dark corner problem  



Other objectives for exploration

Learning Progress (Kaplan & Oudeyer, 2007)

= derivative of prediction error

Does not require information estimation and still avoids problems of 
policies of directly minimizing prediction error



MEASURES OF UTILITY TOWARDS LEARNING

Predicted L1 Change (PLC) (Klayman & Ha 1987)

Predicted Information Gain (PIG) (Oaksford & Chater 1994)

Predicted Mode Change (PMC) (Baron 2005, Nelson 2005) 

IN THEORETICAL PSYCHOLOGY


