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This two-part comprehensive survey is devoted to a computing framework most commonly known under the

names Hyperdimensional Computing and Vector Symbolic Architectures (HDC/VSA). Both names refer to a

family of computational models that use high-dimensional distributed representations and rely on the alge-

braic properties of their key operations to incorporate the advantages of structured symbolic representations

and distributed vector representations. Notable models in the HDC/VSA family are Tensor Product Repre-

sentations, Holographic Reduced Representations, Multiply-Add-Permute, Binary Spatter Codes, and Sparse

Binary Distributed Representations but there are other models too. HDC/VSA is a highly interdisciplinary

field with connections to computer science, electrical engineering, artificial intelligence, mathematics, and

cognitive science. This fact makes it challenging to create a thorough overview of the field. However, due

to a surge of new researchers joining the field in recent years, the necessity for a comprehensive survey of

the field has become extremely important. Therefore, amongst other aspects of the field, this Part I surveys

important aspects such as: known computational models of HDC/VSA and transformations of various input

data types to high-dimensional distributed representations. Part II of this survey [84] is devoted to applica-

tions, cognitive computing and architectures, as well as directions for future work. The survey is written to

be useful for both newcomers and practitioners.

CCS Concepts: • Theory of computation→ Random projections and metric embeddings; Data struc-

tures design and analysis; Bloom filters and hashing; • Computing methodologies→ Artificial intelli-

gence; Knowledge representation and reasoning;

It is worth noting that some of the literature referenced in this survey might be difficult to find, however, most of the

literature can be traced using the publication list available online at: https://www.hd-computing.com/publications.
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1 INTRODUCTION

The two main approaches to Artificial Intelligence (AI) are symbolic and connectionist. The
symbolic approach represents information via symbols and their relations. Symbolic AI (the alter-
native term is Good Old-Fashioned AI, GOFAI) solves problems or infers new knowledge through
the processing of these symbols. In the alternative connectionist approach, information is pro-
cessed in a network of simple computational units often called neurons, so another name for the
connectionist approach is artificial neural networks. This article presents a survey of a research
field that originated at the intersection of GOFAI and connectionism, which is known under the
names Hyperdimensional Computing, HDC (term introduced in [66]) and Vector Symbolic

Architectures, VSA (term introduced in [34]).
In order to be consistent and to avoid possible confusion amongst the researchers outside the

field, we will use the joint name HDC/VSA when referring to the field. It is also worth point-
ing out that probably the most influential and well-known (at least in the machine learning do-
main) HDC/VSA model is Holographic Reduced Representations (HRR) [139] and, therefore,
this term is also used when referring to the field. For the reason of consistency, however, we
use HDC/VSA as a general term while referring to HRR when discussing this particular model.
HDC/VSA is the umbrella term for a family of computational models that rely on mathematical
properties of high-dimensional vector spaces and use high-dimensional distributed representa-
tions called hypervectors (HVs1) for structured (“symbolic”) representation of data while main-
taining the advantages of connectionist distributed vector representations. This opens a promising
way to build AI systems [104].

For a long time HDC/VSA did not gain much attention from the AI community. Recently, the
situation has, however, begun to change and right now HDC/VSA is picking up momentum. We
attribute this to a combination of several factors such as dissemination efforts from the members
of the research community,2, 3 several successful engineering applications in the machine learning
domain (e.g., [162, 167]) and cognitive architectures [21, 154]. The main driving force behind the
current interest is the global trend of searching for computing paradigms alternative to the conven-
tional (von Neumann) one, such as neuromorphic and nanoscalable computing, where HDC/VSA
is expected to play an important role (see [78] and references therein for perspective).

The major problem for researchers new to the field is that the previous work on HDC/VSA is
spread across many venues and disciplines and cannot be tracked easily. Thus, understanding the
state-of-the-art of the field is not trivial. Therefore, in this article, we survey HDC/VSA with the
aim of providing the broad coverage of the field, which is currently missing. While the survey

1Another term to refer to HVs, which is commonly used in the cognitive science literature, is “semantic pointers” [9].
2HDC/VSA Web portal. [Online.] Available: https://www.hd-computing.com.
3VSAONLINE. Webinar series. [Online.] Available: https://sites.google.com/ltu.se/vsaonline.
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Table 1. A Qualitative Assessment of Existing HDC/VSA Literature with Elements of Survey
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[137] ± ± ± ✗ ✓ ✗ ± ✗ ±
[66] ± ± ± ✗ ✓ ✗ ± ✗ ✗

[161] ✗ ✗ ± ± ✓ ✗ ± ✗ ✗

[162] ✗ ✗ ✗ ✗ ✓ ± ± ✗ ✗

[122] ✗ ✗ ± ✗ ✓ ± ± ✗ ✗

[36] ✗ ✗ ✗ ✗ ✓ ✗ ± ✗ ✗

[169] ✗ ✗ ± ± ✓ ✗ ± ✗ ✗

[78] ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ±
[43] ✗ ✗ ✗ ✗ ✓ ✗ ± ✗ ✗

This survey, Part I
Section #

2.1.1 2.1.2 2.3 2.4 3.1 3.2 3.3 3.4 3.5

is written to be accessible to a wider audience, it should not be considered as “the easiest entry
point”. For anyone who has not yet been exposed to HDC/VSA, before reading this survey, we
highly recommend starting with three tutorial-like introductory articles [66, 68, 122]. The former
two provide a solid introduction and motivation behind the field while the latter focuses on intro-
ducing HDC/VSA within the context of a particular application domain of robotics. Someone who
is looking for a very concise high-level introduction to the field without too many technical details
might consult [67]. Finally, there is a book [139] that provides a comprehensive treatment of fun-
damentals of two particular HDC/VSA models (see Sections 2.3.3 and 2.3.5). While [139] focused
on the two specific models, many of the aspects presented there apply to HDC/VSA in general.

To our knowledge, there have been no previous attempts to make a comprehensive survey of
HDC/VSA but there are articles that overview particular topics of HDC/VSA. Table 1 contrasts the
coverage of this survey with those previous articles (listed chronologically). We use ± to indicate
that an article partially addressed a particular topic, but either new results have been reported
since then or not all related work was covered.

Part I of this survey has the following structure. In Section 2, we introduce the motivation be-
hind HDC/VSA, their basic notions, and summarize currently known HDC/VSA models. Section 3
presents transformation of various data types to HVs. Discussion and conclusions follow in Sec-
tions 4 and 5, respectively.

Part II of this survey [84] will cover existing applications and the use of HDC/VSA in cognitive
architectures.

Finally, due to the space limitations, there are topics that remain outside the scope of this survey.
These topics include connections between HDC/VSA and other research fields as well as hardware
implementations of HDC/VSA. We plan to cover these issues in a separate work.

2 HYPERDIMENSIONAL COMPUTING AKA VECTOR SYMBOLIC ARCHITECTURES

In this section, we describe the motivation that led to the development of early HDC/VSA models
(Section 2.1), list their components (Section 2.2), overview existing HDC/VSA models (Section 2.3),
and discuss the information capacity of HVs (Section 2.4).

ACM Computing Surveys, Vol. 55, No. 6, Article 130. Publication date: December 2022.
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2.1 Motivation and Basic Notions

The ideas relevant for HDC/VSA already appeared in the late 1980s and early 1990s [59, 99, 117, 132,
150, 174]. In this section, we first review the types of representations together with their advantages
and disadvantages. Then we introduce some of the challenges posed to distributed representations,
which turned out to be motivating factors for inspiring the development of HDC/VSA.

2.1.1 Types of Representation.

Symbolic representations. Symbolic representations [42, 124] are natural for humans and widely
used in computers. In symbolic representations, each item or object is represented by a symbol.
Here, by objects we refer to items of various nature and complexity, such as features, relations,
physical objects, scenes, their classes, and so on. More complex symbolic representations can be
composed from the simpler ones.

Symbolic representations naturally possess a combinatorial structure that allows producing in-
definitely many propositions/symbolic expressions (see Section 2.1.2 below). This is achieved by
composition using rules or programs as demonstrated by, e.g., Turing Machines. This process is,
of course, limited by memory size that can, however, be expanded without changing the compu-
tational structure of a system. A vivid example of a symbolic representation/system is a natural
language, where a plethora of words is composed from a small alphabet of letters. In turn, a finite
number of words is used to compose an infinite number of sentences and so on.

Symbolic representations have all-or-none explicit similarity: the same symbols have maximal
similarity, whereas different symbols have zero similarity and are, therefore, called dissimilar. To
process symbolic structures, one needs to follow edges and/or match vertices of underlying graphs
to, e.g., reveal the whole structure or calculate the similarity between composite symbolic struc-
tures. Therefore, symbolic models usually have problems with scaling because similarity search
and reasoning in such models require complex and sequential operations, which quickly become
intractable.

In the context of brain-like computations, the downside of the conventional implementation of
symbolic computations is that they require reliable hardware [189], since any error in computa-
tion might result in a fatal fault. In general, it is also unclear how symbolic representations and
computations with them could be implemented in a biological tissue, especially when taking into
account its unreliable nature.

Connectionist representations: localist and distributed. In this article, connectionism is used as an
umbrella term for approaches related to neural networks and brain-like computations. Two main
types of connectionist representations are distinguished: localist and distributed [184, 186].

Localist representations are akin to symbolic representations in that for each object there exists
a single corresponding element in the implementation of the representation. Examples of localist
representations are a single neuron (node) or a single vector component.

There is some evidence that localist representations might be used in the brain (so-called “grand-
mother cells”) [143]. In order to link localist representations, connections between elements can
be created, corresponding to pointers in symbolic representations. However, constructing compo-
sitional structures that include combinations of already represented objects requires the allocation
of (a potentially infinite number of) new additional elements and connections, which is neurobio-
logically questionable. For example, representing “abc”, “abd”, “acd”, and so on requires introducing
new elements for them, as well as connections to “a”, “b”, “c”, “d” and so on. Also, localist represen-
tations share symbolic representations’ drawbacks of lacking enough semantic basis, that may be
considered as a lack of immediate explicit similarity between the representations. In other words,
different neurons representing different objects are dissimilar and estimating object similarity re-
quires additional processes.

ACM Computing Surveys, Vol. 55, No. 6, Article 130. Publication date: December 2022.



Survey on Hyperdimensional Computing aka Vector Symbolic Architectures, Part I 130:5

Distributed representations4 were inspired by the idea of a “holographic” representation as an
alternative to the localist representation [48, 140, 184, 186]. They are attributed to a connectionist
approach based on modeling the representation of information in the brain as “distributed” over
many neurons. In distributed representations, the state of a set of neurons (of finite size) is modeled
as a vector where each vector component represents a state of the particular neuron.

Distributed representations are defined as a form of vector representations, where each object
is represented by a subset of vector components, and each vector component can belong to repre-
sentations of many objects. This concerns (fully distributed) representations of objects of various
complexity, from elementary features or atomic objects to complex scenes/objects that are repre-
sented by (hierarchical) compositional structures.

In distributed representations, the state of individual components of the representation cannot
be interpreted without knowing the states of other components. In other words, in distributed rep-
resentations the semantics of individual components of the representation are usually undefined,
in distinction to localist representations.

In order to be useful in practice for engineering applications and cognitive modeling, distributed
representations of similar objects should be similar (according to some similarity measure of the
corresponding vector representations; see Section 2.2.2), thus addressing the semantic basis issue
of symbolic and localist representations.

Distributed representations should have the following attractive properties:

— High representational capacity. For example, if one object is represented byM binary compo-
nents of aD-dimensional vector, then the number of representable objects equals the number

of combinations
(

D
M

)
, in contrast to D/M for localist representations;

— Explicit representation of similarity. Similar objects have similar representations that can be
immediately compared by efficiently computable vector similarity measures (e.g., dot prod-
uct, or Minkowski distance);

— A rich semantic basis due to the immediate use of representations based on features and the
possibility of representing the similarity of the features themselves in their vector represen-
tations;

— The possibility of using well-developed methods for processing vectors;
— For many types of distributed representations—the ability to recover the original represen-

tations of objects;
— Ability to work in the presence of noise, malfunction, and uncertainty, in addition to neuro-

biological plausibility;
— Direct access to the representation of an object. Being a vector, a distributed representation

of a compositional structure can be processed directly. This does not require tracing point-
ers as in symbolic representations or following connections between elements as in localist
representations;

— Unified format. Every object, whether atomic or composite, is represented by a vector and,
hence, the implementation operates at the level of vectors without being explicitly aware of
the complexity of what is represented.

In our opinion, the last two properties listed above are closely connected to the challenges posed
to distributed representations in the late 1980s and early 1990s that we briefly discuss in the next
section.

4Note that here we discuss not only distributed representations in the form of HVs formed with HDC/VSA but also dis-

tributed representations in general, including the ones used in early connectionist approaches. We refer to the latter as

conventional connectionist representations.

ACM Computing Surveys, Vol. 55, No. 6, Article 130. Publication date: December 2022.
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2.1.2 Challenges for Conventional Connectionist Representations. Let us consider several chal-
lenges faced by early distributed representations known as “superposition catastrophe”, e.g., [153,
188]. And, at a higher level, by demand for “systematicity” [22], and much later, for fast composi-
tionality [53]. These challenges led to the necessity to make distributed representations “structure-
sensitive” by introducing the “binding” operation (Section 2.2.3).

“Superposition catastrophe”. It was believed that connectionist representations cannot represent
hierarchical compositional structures because of the superposition catastrophe, which manifes-
tates itself in losing the information concerning object arrangements in structures, see [146, 153,
188] for discussion and references.

In the simplest case, let us activate binary localist representation elements corresponding to “a”
and “b”, then to “b” and “c”. If we want to represent both “a” and “b”, and “b” and “c” simultaneously,
we activate all three representations: “a”, “b”, “c”. Now, however, the information that “a” was with
“b”, and “b” was with “c” is lost. For example, the same “a”, “b”, “c” activation could be obtained by
“a” and “c”, and single “b”. The same situation occurs if “a”, “b”, “c” are represented by distributed
patterns.

Fodor and Pylyshyn criticisms of connectionism. In [22], criticism of connectionism was con-
cerned with the parallel distributed processing approach covered in [48]. Fodor and Pylyshyn
claimed that connectionism lacks Productivity, Systematicity, Compositionality, and Inferential
Coherence that are inherent to systems operating with symbolic representations. Their defini-
tions of these intuitively appealing issues are rather vague and interrelated, and their criticism is
constrained to the early particular connectionist model that the authors chose for their critique.
Therefore, we restate these challenges as formulated in [139]:

— Composition, decomposition, and manipulation: How are elements composed to form a
structure, and how are elements extracted from a structure? Can the structures be manipu-
lated using distributed representations?

— Productivity: A few simple rules for composing elements can give rise to a huge variety
of possible structures. Should a system be able to represent structures unlike any it has
previously encountered, if they are composed of the same elements and relations?

— Systematicity: Does the distributed representation allow processes to be sensitive to the
structure of the objects? To what degree are the processes independent of the identity of
elements in compositional structures?

Challenges to connectionism posed by Jackendoff. Four challenges to connectionism have been
posed by Jackendoff [53], see also [34] for their HDC/VSA treatment. In principle, they are relevant
to cognition but in particular they are related to language. The problem, in general, is how to
neurally instantiate the rapid construction and transformation of the compositional structures.

— Challenge 1. The binding problem: the observation that linguistic representations must use
compositional representations, taking into account order and occurring combinations. For
example, the same words in different order and combination are going to produce different
sentences.

— Challenge 2. The problem of two: how are multiple instances of the same object instantiated?
For example, how are the “little star” and the “big star” instantiated so that they are both
stars, yet distinguishable?

— Challenge 3. The problem of variables: concerns typed variables. One should be able to rep-
resent templates or relations with variables (e.g., names of relations) and values (e.g., argu-
ments of relations).

ACM Computing Surveys, Vol. 55, No. 6, Article 130. Publication date: December 2022.
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— Challenge 4. Binding in working and in long-term memories: representations of the same bind-
ing should be identical in various types of memory. In other words, the challenge concerns
the transparency of the boundary between a working memory and a long-term memory. It
has been argued that linguistic tasks require the same structures to be instantiated in the
working memory and the long-term memory and that the two instantiations should be func-
tionally equivalent.

2.1.3 Binding to Address Challenges of Conventional Connectionist Representations. The chal-
lenges presented above made it clear that an adequate representation of compositional structures
requires preserving information about their grouping and order. For example, in symbolic repre-
sentations, brackets and symbolic order can be used to achieve this. For the same purpose, some
mechanism of binding (à la “grouping brackets”) was needed in distributed representations.

We view the binding operation as a means to form such a representation of an object that con-
tains information about the context in which it was encountered. So, any implementation of the
binding operation is expected to involve some modification of the representation of the original
object. The context can essentially be anything, such as other homogeneous objects (e.g., data
objects of the same type) or heterogeneous objects (e.g., data objects’ positions, and roles). The
binding operation, together with other operations, should provide a mechanism for constructing
representations of compositional objects that reflect their similarity in a way that is useful for the
problem being solved. For example, different combinations of the same objects should be repre-
sented differently. Also, it is often required to support a recovery (of the representation) of the
original composite object.

One of the approaches to binding in distributed representations is based on the temporal syn-
chronization of constituent activations [50, 111, 172, 188]. Although this mechanism may be useful
on a single level of composition, its capabilities to represent compositional structures with multiple
levels of hierarchy are questionable as it requires many time steps and complex “orchestration” to
represent compositional structures. Another major problem is that such a temporal representation
cannot be immediately stored in a long-term memory.

An alternative approach to binding, which eliminates these issues, is the so-called conjunctive
coding approach used in HDC/VSA. Its predecessors were “extra units” considered by [46] to repre-
sent various combinations of active units of distributed patterns as well as outer products [117, 174],
which, however, increased the dimensionality of representations (see details in Section 2.3.2). In
HDC/VSA, the binding operation does not change the dimensionality of distributed representa-
tions. Moreover, it does not require any training.

To form “rich” compositional representations in HDC/VSA, both binding and superposition op-
erations are used. Therefore, implementations of these operations need to maintain their properties
when used together. In particular, the binding operation should not be associative with respect to
the superposition operation in order to overcome the superposition catastrophe (Section 2.1.2).

Importantly, the schemes for forming distributed representations of compositional structures
that exploit the binding and superposition operations produce distributed representations that
are similar for similar objects (i.e., they take into account the similarity of object elements, their
grouping, and order at various levels of hierarchy).

In summary, the main motivation for developing HDC/VSA was to combine the advantages of
early distributed representations and those of symbolic representations, while avoiding their draw-
backs, in pursuit for more efficient information processing and, ultimately, for better AI systems.
One of the goals was to address the above challenges faced by conventional connectionist represen-
tations. The properties of HDC/VSA models introduced below allow addressing these challenges
to a varying degree.

ACM Computing Surveys, Vol. 55, No. 6, Article 130. Publication date: December 2022.
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Fig. 1. Concentration of measure phenomenon between bipolar random HVs. Lines correspond to probability

density functions of cosine similarities for different dimensionalities. Normal distributions were fitted to pair-

wise similarities for 2,000 random HVs.

2.2 Structure-sensitive Distributed Representations

2.2.1 Atomic Representations. When designing an HDC/VSA-based system it is common to de-
fine a set of the most basic objects/items/entities/concepts/symbols/scalars for the given problem
and assign them HVs, which are referred to as atomic HVs. The process of assigning atomic HVs
is often referred to as mapping, projection, embedding, formation, or transformation. To be con-
sistent, we will use the term transformation.

For a given problem, we need to choose atomic representations of objects such that the similarity
between the representations of objects corresponds to the properties we care about.5 HVs of other
(compositional) objects are formed by the atomic HVs (see Section 2.2.4). As follows from their
name, atomic HVs are high-dimensional vectors. Values of HV components could be binary, real,
or complex numbers and this list is not exhaustive, as we will see in Section 2.3.

In the early days of HDC/VSA, most of the works were focused on symbolic problems. In the case
of working with symbols one could easily imagine many problems where a reasonable assumption
would be that symbols are not related at all. So their atomic HVs are generated at random and are
considered dissimilar, i.e., their expected similarity value is considered to be “zero”. On the other
hand, there are many problems where assigning atomic HVs fully randomly does not lead to any
useful behavior of the designed system, see Section 3.2.

As mentioned above, in HDC/VSA random independent HVs generated from some distribution
are used for representing objects that are considered independent and dissimilar. For example,
randomly generated binary HVs with components from the set {0, 1}, with the probability of a
1-component being p1 = 1/2 for dense binary representations [66] or for sparse binary represen-
tations [146] with p1 = 1/100 or with a fixed number of M << D randomly activated compo-
nents. Such random HVs are analogous to “symbols” in symbolic representations. However, the
introduction of new symbols in symbolic representations or nodes in localist representations re-
quires changing the dimensionality of representations, whereas in HDC/VSA they are simply in-
troduced as new HVs of fixed dimensionality. So HDC/VSA can accommodate N symbols with

5It is assumed that the problem to be solved has a static similarity structure. There may be problems that require a dynamic

similarity structure, but these have not, so far, been the subjects of extensive study.
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D-dimensional HVs such that N >> D. This happens because in high-dimensional spaces ran-
domly chosen HVs are quasi-orthogonal to each other. The number of exactly orthogonal dimen-
sions in a vector space is equal to its dimensionality D, but the number of quasi-orthogonal di-
rections is exponential to the dimensionality. Exact orthogonality means that the angle between
vectors is exactly 90 degrees, whereas quasi-orthogonality means that the angle between vectors
is within some small interval around 90 degrees. As the dimensionality increases, the number
of such quasi-orthogonal vectors increases exponentially even for a very tiny interval around
90 degrees. So, as the dimensionality increases, the number of quasi-orthogonal vectors increases
rapidly while the mathematical properties of the quasi-orthogonal vectors become closer to those
of exactly orthogonal vectors. This mathematical phenomenon is known as concentration of mea-
sure [103]. The peculiar property of this phenomenon is that quasi-orthogonality converges to
exact orthogonality with increased dimensionality of HVs. This is sometimes referred to as the
“blessing of dimensionality” [37]. Figure 1 provides a visual illustration of the case of bipolar HVs.

If the similarity between objects is important, then HVs are generated in such a way that their
similarity characterizes the desired similarity between objects. The similarity between HVs is mea-
sured by standard vector similarity (or distance) measures.

2.2.2 Similarity Measures.

Similarity measure for dense representations. For dense HVs with real or integer components the
most commonly used measures are the Euclidean distance:

distEuc (a, b) =

√∑
i

(ai − bi )2 = | |a − b| |2; (1)

the dot (inner, scalar) product:

simdot (a, b) =
∑

i

ai bi = a�b; (2)

and the cosine similarity:

simcos (a, b) =
a�b

| |a| |2 | |b| |2
. (3)

Note that these measures are closely related. In fact, when vectors a and b are normalized to
have unit norm, there is exact correspondence: simdot (a, b) = simcos (a, b) = 1 − distEuc (a, b)2/2
(as follows from | |a − b| |22 = | |a| |22 + | |b| |22 − 2a�b). For dense HVs with binary components, the
normalized Hamming distance is the most common choice:

distHam (a, b) =
1

D
distEuc (a, b)2 =

1

D
|a ⊕ b|, (4)

where ⊕ denotes a component-wise XOR operation. If the binary values of a and b are mapped to
bipolar values by replacing 0-components to −1s, the Hamming distance is connected to the dot
product as simdot (2a − 1, 2b − 1) = D (1 − 2distHam (a, b)).

Similarity measures for sparse representations. simdot and simcos are frequently used as similarity
measures in the case of sparse HVs, i.e., when the number of non-zero components in HV is small.

Sometimes, Jaccard similarity is also used for this purpose:

simJac (a, b) =
|a ∧ b|
|a ∨ b| , (5)

where ∧ and ∨ denote component-wise AND and OR operations, respectively.
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2.2.3 Operations. Superposition and binding operations that do not change the HV dimen-
sionality are of particular interest because they allow one to apply the same operations to their
resultant HVs. But note that some applications might require changing the dimensionality of repre-
sentations. Obviously, in biological systems one would be very surprised if dimensionalities were
exactly equal. Assuming that the dimensionality is unchanged is a mathematical convenience for,
e.g., using component-wise vector operations—rather than a requirement.

Superposition. The superposition is the most basic operation used to form an HV that represents
several HVs. In analogy to simultaneous activation of neural patterns represented by HVs, this is
usually modeled as a disjunction of binary HVs or addition of real-valued HVs. See more examples
of particular implementations in Section 2.3. In HDC/VSA, this operation is known under several
names: bundling, superposition, and addition. Due to its intuitive meaning, below, we will use the
term superposition. The simplest unconstrained superposition (denoted as s) is simply:

s = a + b + c. (6)

In order to be used at later stages, the resultant HV is often required to preserve certain proper-
ties of atomic HVs. Therefore, some kind of normalization is often used to preserve, for instance,
the norm, e.g., Euclidean:

s =
a + b + c

| |a + b + c| |2
; (7)

or the type of components as in atomic HVs, e.g., integers in a limited range:

s = f (a + b + c), (8)

where f () is a function limiting the range of values of s. For example, in the case of dense bi-
nary/bipolar HVs, the binarization of components via majority rule/sign function is used. In the
case of sparse binary HVs, their superposition increases the density of the resultant HV. There are
operations to “thin” the resultant HV and preserve the sparsity (see Section 2.3.8). Below, we will
also use brackets 〈·〉 when some sort of normalization is applied.

After superposition, the resultant HV is similar to its input HVs. Moreover, the superposition of
HVs remains similar to each individual HV but the similarity decreases as more HVs are superim-
posed together. This could be seen as an unstructured and additive kind of similarity preservation.
A fundamental property of the superposition is that it is associative, meaning that the sum is inde-
pendent of the order of its components. However, [166] proposed a non-associative implementa-
tion of the superposition operation, which allows building a filter in the temporal (sequential) as
well as in the elements’ domains. Note that the properties above are desiderata for the superposi-
tion and, thus, any operation that has these properties shall be seen as an implementation of the
superposition operation.

Binding. As mentioned above, the superposition operation alone leads to the superposition catas-
trophe (due to its associative property), i.e., during the recursive application of the superposi-
tion, the information about combinations of the initial objects (e.g., grouping) is lost since, e.g.,
(a + b) + (c + d) = (a + c) + (b + d) = · · · = a + b + c + d.

This issue needs to be addressed in order to represent compositional structures (see Section 2.1.3).
A binding operation (denoted as ◦ when no particular implementation is specified) is used in
HDC/VSA as a solution. It is convenient to consider two types of binding: via multiplication-like
operation and via permutation operation. These two types are selected because they are utilized by
most applications. Let us first briefly discuss them before we consider concrete implementations
of the binding operation by different HDC/VSA models in Section 2.3.
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Multiplicative binding. Multiplication-like operations are used in different HDC/VSA models for
implementing the binding operation when two or more HVs should be bound together. Concrete
implementations of this type of binding are rather diverse and depend on a particular HDC/VSA
model. Examples of multiplication-like binding operations include: conjunction for sparse binary
HVs, component-wise multiplication for real-valued HVs, outer product for tensor product rep-

resentations (TPR), and even matrix-vector multiplication when a role is represented by a matrix
while a filler is represented by an HV. Please refer to Section 2.3 for concrete implementations for
a particular HDC/VSA model. Figure 1 in [169] also presents the taxonomy of the most commonly
used multiplicative bindings.

The HV obtained after binding together several input HVs depends on all of them. Similar input
HVs produce similar bound HVs. However, the way the similarity is preserved after the binding is
(generally) different from that of the superposition operation [138, 146]. We discuss this aspect in
detail a few paragraphs further down.

In many situations, there is a need for an operation to reverse the result of the binding operation.
This operation is called unbinding or release (denoted as 
). It allows the recovery of a bound
HV [38, 191], e.g.,:

a = b 
 (a ◦ b). (9)

Here, the binding of only two HVs is used for demonstration purposes. In general, many HVs
can be bound to each other. As mentioned above, even matrix-vector multiplication can be used
to implement binding. Note that when the unbinding operation is applied to a superposition of
HVs, the result will not be exactly equal to the original bound HV. It will also contain crosstalk
noise; therefore, the unbinding operation is commonly followed by a clean-up procedure (see Sec-
tion 2.2.5) to obtain the original bound HV. In some models, the binding operation is self-inverse,
which means that the unbinding operation is the same as the binding operation. We specify how
the unbinding operations are realized in different models in Section 2.3.

Binding by permutation. Another type of HV binding is by permutation, which might correspond
to, e.g., some position or some other role of an object. We denote the application of a permutation
to an HV as ρ (a)6; if the same permutation is applied i times as ρi (a) and the corresponding inverse
is then ρ−i (a). Note that the permuted HV is dissimilar to the original one. However, the use of
partial permutations [12, 92] allows preserving some similarity (see Section 3.4.1). For permutation
binding, the unbinding is achieved by inverse permutation.

The permutation can be implemented via a “permutation vector” that associates each compo-
nent’s index with its index after permutation or by a matrix multiplication with the corresponding
permutation matrix having a single 1-component in each row and column. Implementation of
the permutation via the multiplication by the permutation matrix highlights some connection to
the multiplicative binding implemented by matrix-vector multiplication as in [31]. Though the
structure of permutation matrices is very different from the dense random matrices used in [31]
(see also Section 2.3.4). However, a typical implementation of the multiplicative binding will take
two HVs as an input, while the permutation operation takes as input an HV as well as permuta-
tion’s identity. This difference in the type of input arguments explains why sometimes permuta-
tions are treated as the third type of basic HDC/VSA operations (in addition to superposition and
binding).

6It is worth mentioning that ρ ( ·) denotes some arbitrary constant permutation. There may be multiple different per-

mutations used in some applications, in which case they would need to be distinguished by, e.g., different symbols or

sub-scripting. However, it is very common for only one permutation to be used, so the need to distinguish different per-

mutations does not arise.
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Often in practice a special case of permutation—cyclic shift—is used as it is very simple to im-
plement. The use of cyclic (as well as non-cyclic) shift for positional binding in HDC/VSA was
originally proposed in [91] for representing 2D structures (images) and 1D structures (sequences).
Permutations were also used for representing the order in [146]. In [33], the permutation operation
was introduced as essential for representing compositional structures when the binding operation
is self-inverse. In a similar spirit, a permutation was used in [55, 135] to avoid the commutativity
of a multiplicative binding by circular convolution. In general, a permutation can be used to do so
for all commutative operations in all HDC/VSA models (see, e.g., Section 3.6.7 in [134]).

Later [66, 168] introduced a primitive for representing a sequence in a compositional HV using
multiple applications of the same fixed permutation to represent a position in the sequence. This
primitive was popularized via applications to texts [56, 168].

Similarity preservation by operations. For the superposition operation, the “contribution” of any
input HV on the resultant HV is the same independently of other input HVs. In binding, the “con-
tribution” of any input HV on the result depends on all other input HVs.

Also, the superposition and binding operations preserve similarity in a different manner. There
is unstructured similarity, which is the similarity of the resultant HV to the HVs used as input
to the operation. The superposition operation preserves the similarity of the resultant HV to each
of the superimposed HVs, that is, it preserves the unstructured similarity. For example, d = a+b is
similar to a and b. In fact, given some assumptions on the nature of the HVs being superimposed,
it is possible to analytically analyze the information capacity of HVs (see Section 2.4 for details).

Most realizations of the binding operation do not preserve unstructured similarity. They do,
however, preserve structured similarity, that is, the similarity of the bound HVs to each other.
Let us consider two i.i.d. random HVs: a and b; d = a ◦ b is similar to d′ = a′ ◦ b′ if a is similar
to a′ and b is similar to b′. Thus, most realizations of the binding operation preserve structured
similarity in a multiplicative fashion. When a and b are independent, as well as a′ and b′, then the
similarity of d to d′ is equal to the product of the similarities of a to a′ and b to b′. For instance,
if a = a′, the similarity of d to d′ will be equal to the similarity of b to b′. If a is not similar to
a′, d will have no similarity with d′ irrespective of the similarity between b and b′ due to the
multiplicative fashion of similarity preservation. The structured similarity is also preserved when
using permutations since ρ (a) is similar to ρ (a′) if a is similar to a′. This type of similarity is
different from the unstructured similarity of the superimposed HVs: d = a + b will still be similar
to e = a + c even if b is dissimilar to c. Finally, it is worth noting that, in practice, it might be
necessary to preserve both structured and unstructured similarities (e.g., for tasks involving a
similarity search) when binding two objects. In that case, the HVs should be formed in such a way
that both similarity types are taken into account. A simple example of such a representation is
a + b + a ◦ b that still preserves some similarity to, e.g., a + c + a ◦ c.

2.2.4 Representations of Compositional Structures. As introduced in Section 2.1.1, composi-
tional structures are formed from objects where the objects can be either atomic or compositional.
Atomic objects are the most basic (irreducible) elements of a compositional structure. More com-
plex compositional objects are composed from atomic ones as well as from simpler compositional
objects. Such a construction may be considered as a part-whole hierarchy, where lower-level parts
are recursively composed to form higher-level wholes (see, e.g., an example of a graph in Sec-
tion 3.5.2).

In HDC/VSA, compositional structures are transformed into their HVs using HVs of their ele-
ments and the superposition and binding operations introduced above. As mentioned in 2.1.3, it is
a common requirement that similar compositional structures be represented by similar HVs. An-
other requirement that was studied intensively in the early days of HDC/VSA (see Section 3.1.1
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of Part II of the survey [84] and, e.g., [123, 134, 174]) is the ability to transform representations of
compositional structures without requiring the recovery of the structures (as would be the case for
the symbolic approach). Recovering the original representation from its compositional HV, which
we describe in the next section, might be an additional requirement. In Section 3 below, we will
review a number of approaches to the formation of atomic and compositional HVs.

2.2.5 Recovery and Clean-up. Given a compositional HV, it is often desirable to find the partic-
ular input HVs from which it was constructed. We will refer to the procedure implementing this as
recovery. This procedure is also known as decoding, reconstruction, restoration, decomposition,
parsing, and retrieval.

For recovery, it is necessary to know the set of the input HVs from (some of) which the HV was
formed. This set is usually called the dictionary, codebook, clean-up memory, or item memory.7 In
its simplest form, the item memory is just a matrix storing HVs explicitly, but it can be implemented
as, e.g., a content-addressable associative memory [180]. Note that the stored HVs do not have
to be atomic, they could also be compositional representations. For example, recent work [178]
studied how to store compositional HVs in content-addressable associative memories à la Hopfield
network. Moreover, recent works suggested [18, 79, 170] that it is not always necessary to store the
item memory explicitly, as it can be easily rematerialized. Also, the recovery requires knowledge
about the structure of the compositional HV, that is, information about the operations used to form
a given HV (see an example below).

Most of the HDC/VSA models produce compositional HVs not similar to the input HVs due to the
properties of their binding operations. So, to recover the HVs involved in the compositional HV, the
use of the unbinding operation (Section 2.2.3 above) will typically be required. If the superposition
operation was used when forming the compositional HV, after unbinding the obtained HVs will
be noisy versions of the input HVs to be recovered (noiseless version can be obtained in the case
when only binding operations were used to form a compositional HV). Therefore, a “clean-up”
procedure is used as part of the recovery. In its most general form, the clean-up procedure can be
viewed as projecting a query HV onto the subspace spanned by the item memory and returning,
e.g., the weighted superposition (see examples in [24, 74]). In practice, however, the most common
way of using the clean-up procedure is by finding the HV in the item memory that is most similar
to the noisy query HV. The item memory performs the nearest neighbor search (i.e., returns an HV
corresponding to the winner-take-all activation) that can be implemented by, e.g., comparing the
query HV to each of the item memory’s HVs or by some kind of search in an associative memory
implementing the item memory. For HVs representing limited size compositional structures, there
are guarantees for the exact recovery [183].

Let us consider a simple example. The compositional HV was obtained as follows: s = a◦b+c◦d.
For recovery from s, we know that it was formed as the superposition of pair-wise bindings. In the
simplest setup, we also know that the input HVs include a, b, c, d. The task is to find which HVs
were in those pairs. Then, to find out which HV was bound with, e.g., a we unbind it with s as a
 s

resulting in b + a 
 (c ◦ d) = b + noise ≈ b. Then, we use the clean-up procedure that returns b

as the closest match (using the corresponding similarity measure). That way we know that a was
bound with b. In this setup, we immediately know that c was bound with d. We can check this in
the same manner, by first calculating, e.g., d
 s, and then cleaning it up. Note that noise is defined
as whatever is quasi-orthogonal to the signals of interest, and this definition is operationalized by
populating the item memory with the signals of interest. In other words, if the noise term in the

7In the context of HDC/VSA, the term clean-up was introduced in [132] while the term item memory was proposed in [64].
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Table 2. Summary of HDC/VSA Models

HDC/VSA Ref. Space of atomic HVs Binding Unbinding Superposition Similarity

TPR [174] unit HVs outer product tensor-vector inner product
component-wise

addition
simdot

HRR [135] unit HVs circular convolution circular correlation
component-wise

addition
simdot

SMR [73]
square matrices
with unit norm

matrix
multiplication

matrix multiplication
with matrix transpose

component-wise
addition

simcos

FHRR [139] complex unitary HVs
component-wise

multiplication
component-wise multiplication

with complex conjugate
component-wise

addition
simcos

SBDR [146] sparse binary HVs context-dependent thinning
repeated context-

dependent thinning
component-wise

disjunction
simdot

BSC [63] dense binary HVs component-wise XOR component-wise XOR majority rule distHam

MAP [33] dense bipolar HVs
component-wise

multiplication
component-wise

multiplication
component-wise

addition
simcos

MCR [175] dense integer HVs
component-wise
modular addition

component-wise
modular subtraction

component-wise
discretized vector sum

modified
Manhattan

CGR [196] dense integer HVs
component-wise
modular addition

component-wise
modular subtraction

component-wise
discretized vector sum

simcos

MBAT [31] dense bipolar HVs
vector-matrix
multiplication

multiplication with
inverse matrix

component-wise
addition

simdot

SBC [102] sparse binary HVs
block-wise

circular convolution
block-wise circular convolution

with approximate inverse
component-wise

addition
simdot

GAHRR [4] unit HVs geometric product
geometric product

with inverse
component-wise

addition
unitary
product

Each model has its own atomic HVs and operations on them for binding and superposition, and a similarity measure.

above example (a 
 (c ◦ d)) was an HV in the item memory, then the system would not treat it as
noise.

In a more complicated setup, it is not known that the input HVs were a, b, c, d, but the HVs in
the item memory are known. So, we take those HVs, one by one, and repeat the operations above.
A possible final step in the recovery procedure is to recalculate the compositional HV from the
reconstructed HVs. The recalculated compositional HV should match the original compositional
HV. Note that the recovery procedure becomes much more complex in the case wherem HVs are
bound instead of just pairs. It is easy to recover one of the HVs used in the binding, if the other
m − 1 HVs are known. They can simply be unbound from the compositional HV.

When the other HVs used in the binding are not known, the simplest way to find the HVs used
for binding is to compute the similarity with all possible bindings of HVs from the item memory.
The complexity of this search grows exponentially withm. However, there is a recent work [24, 74]
that proposed a mechanism called resonator network to address this problem.

2.3 The HDC/VSA Models

In this section, various HDC/VSA models are overviewed. For each model we provide a format of
employed HVs and the implementation of the basic operations introduced in Section 2.2.3 above.
Table 2 provides the summary of the models (see also Table 1 in [169]).8

2.3.1 A Guide on the Navigation Through the HDC/VSA Models. Before exposing a reader to the
details of each HDC/VSA model, it is important to make a comment on the nature of their diversity
and enable an intuition behind selecting the best model for the practical usage.

8Note that the binding via the permutation operation is not specified in the table. That is because it can be used in any of

the models even if it was not originally proposed to be a part of it. Here, we limit ourselves to specifying only the details of

different models but see, e.g., [169] for some comparisons of seven different models from Table 2 (the work did not cover

the GAHRR, MCR, and TPR models) and some of their variations (2 for HRR, 3 for MAP, and 2 for SBDR). Note also that

in the table we specify the similarity measure used in the source references. However, as indicated in Section 2.2.2, there

is a number of alternatives. Thus, the mentioned similarity measure by no means should be considered as a prescription.

Instead, in practice, any similarity measure that can be applied to the particular model can be used.
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The current diversity of the HDC/VSA models is a result of the evolutionary development of
the main vector symbolic paradigm by independent research groups and individual researchers.
Initially, the diversity comes from different initial assumptions, variations in the neurobiological
inspiration and the particular mathematical background of the originators. Therefore, from a his-
torical perspective, the question of selecting a candidate for the best model is ill-posed. Recent
work [169] started to perform a systematic experimental comparison between models. We em-
phasize the importance of further investigations in this direction in order to facilitate conscious
choice of one or another model for a given problem and to raise HDC/VSA to the level of matured
engineering discipline.

However, the usage of different models could already be prioritized at this moment using the
target computing hardware perspective. The recent developments of unconventional computing
hardware aim at improving the energy efficiency over the conventional von Neumann architecture
in AI applications. Another driving factor is reliability. As conventional hardware for the von Neu-
mann architecture gets smaller, it eventually becomes unreliable, so there is a need for computing
frameworks that are robust to unreliable hardware and HDC/VSA is a promising candidate. The
availability of such a robust computing framework also opens the door to other types of hardware
implementation that are inherently unreliable and would not be suitable for a von Neumann ar-
chitecture. Various unconventional hardware platforms (see Section 4.3) deliver great promises in
moving the borders of energy efficiency and operational speed beyond the current standards.

Independently on the type of the computing hardware, any HDC/VSA model can be seen as an
abstraction of the algorithmic layer and can thus be used for designing computational primitives,
which can then be mapped to various hardware platforms using different models [78]. In the next
subsections, we present the details of the currently known HDC/VSA models.

2.3.2 Tensor Product Representations. The TPR model is one of the earliest models within
HDC/VSA. The TPR model was originally proposed by Smolensky in [174]. However, it is worth
noting that similar ideas were also presented in [117, 118] around the same time but received
much less attention from the research community. Atomic HVs are vectors selected uniformly at
random from the Euclidean unit sphere S (D−1) . The binding operation is an outer product of HVs.
So, the dimensionality of bound HVs grows exponentially with their number (e.g., two bound HVs
have the dimension D2, three bound vectors have the dimension D3, and so on). The vectors need
not be of the same dimension. This points to another important note that the TPR model may or
may not be categorized as an HDC/VSA model depending on whether the fixed dimensionality of
representations is considered a compulsory attribute of an HDC/VSA model or not. Historically,
HDC/VSA models have required the operator result HVs to be the same dimensionality as the
argument HVs. This was for engineering feasibility and mathematical convenience. It is useful to
think of HDC/VSA as TPR with the result projected into a lower dimensional space in a way that
retains some useful properties of TPR. One way is to think of TPR as a predecessor of HDC/VSA.

The superposition is implemented by (tensor) addition. Since the dimensionality grows, a re-
cursive application of the binding operation is challenging. The resultant tensor also depends on
the order in which the HVs are presented. Binding similar HVs will result in similar tensors. The
unbinding is realized by taking the tensor product representation of a compositional structure and
extracting from it the HV of interest. For linearly independent HVs, the exact unbinding is done
as the tensor multiplication by the unbinding HV(s). Unbinding HVs are obtained as the rows
of inverse of the matrix with atomic HVs in columns. Approximate unbinding is done using an
atomic HV instead of the unbinding HV. If the atomic HVs are orthonormal, this results in the
exact unbinding.

Though the similarity measure was not specified, we assume it to be simcos or distEuc.

ACM Computing Surveys, Vol. 55, No. 6, Article 130. Publication date: December 2022.



130:16 D. Kleyko et al.

2.3.3 Holographic Reduced Representations. The HRR model was developed by Plate in the
early 1990s [132, 134, 135].

The HRR model was inspired by Smolensky’s TPR model [174], Hinton’s “reduced descrip-
tions” [47], and many other works, e.g., [10, 19, 108, 120, 171] to mention a few. Note that due
to the usage of HRR in Semantic Pointer Architecture Unified Network [20], sometimes the HRR
model is also referred to as the Semantic Pointer Architecture. The most detailed source of
information on HRR is Plate’s book [139].

In HRR, the atomic HVs for representing dissimilar objects are real-valued and their compo-
nents are independently generated from the normal distribution with mean 0 and variance 1/D.
For large D, the Euclidean norm is close to 1.9 The binding operation is defined on two HVs (a
and b) and implemented via the circular convolution, which projects the outer product back onto
D-dimensional space:

zj =

D−1∑
k=0

bkaj−k mod D , (10)

where zj is the jth component of the resultant HV z = a ◦ b.
The circular convolution multiplies norms, and it approximately preserves the unit norms of

input HVs. The bound HV is not similar to the input HVs. However, the bound HVs of similar
input HVs are similar. The unbinding is done by the circular correlation of the bound HV with
one of the input HVs. The result is noisy, so a clean-up procedure (see Section 2.2.5) is required.
There is also a recent proposal in [38] for an alternative realization of the binding operation called
Vector-derived Transformation Binding. It is claimed to better suit implementations in spik-
ing neurons and was demonstrated to recover HVs of sequences (transformed with the approach
from [165]) better than the circular convolution. Another proposal related to HRR is Square

Matrix Representations (SMR) [73], which use random square matrices with unit norm and
matrix multiplication as the binding operation (see Table 2 for summary). Finally, in [49] a general
formulation of “quadratic binding” that subsumes, e.g., outer product-based binding and circular
convolution-based binding was proposed. It can, for example, be used to adjust the dimensionality
of the bound HV to be within D and D2.

The superposition operation is component-wise addition. Often, the normalization is used after
the addition to preserve the unit Euclidean norm of compositional HVs. In HRR, both superposition
and binding operations are commutative. The similarity measure is simdot or simcos.

2.3.4 Matrix Binding of Additive Terms. In the Matrix Binding of Additive Terms (MBAT)
model [31] by Gallant and Okaywe, it was proposed to implement the binding operation by matrix-
vector multiplication. Such an option was also briefly mentioned in [139]. Generally, it can change
the dimensionality of the resultant HV, if needed.

Atomic HVs are dense and their components are randomly selected independently from {−1,+1}.
HVs with real-valued components are also possible. The matrices are random, e.g., with elements
also from {−1,+1}. Matrix-vector multiplication results can be binarized by thresholding.

The properties of this binding are similar to those of most other models (HRR, Multiply-Add-
Permute, and Binary Spatter Codes). In particular, similar input HVs will result in similar bound
HVs. The bound HVs are not similar to the input HVs (which is especially evident here, since even
the HV’s dimensionality could change). The similarity measure is either distEuc or simdot. The
superposition is a component-wise addition, which can be normalized. The unbinding could be

9It might be practical to use more constraints when forming atomic HVs, such as using HVs whose entries of fast Fourier

transform have unit magnitude (see, e.g., [32, 88]).
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done using the (pseudo) inverse of the role matrix (or the inverse for square matrices, guaranteed
for orthogonal matrices, as in [185]).

In order to check if a particular HV is present in the sum of HVs that were bound by matrix
multiplication, that HV should be multiplied by the matrix and the similarity of the resultant HV
should be calculated and compared to a similarity threshold.

2.3.5 Fourier Holographic Reduced Representations. The Fourier Holographic Reduced Rep-

resentations (FHRR) model [134, 139] was introduced by Plate as a model inspired by HRR where
the HVs’ components are complex numbers. The atomic HVs are complex-valued random vectors
where each vector component can be considered as a phase angle (phasor) randomly selected
independently from the uniform distribution over (0, 2π ]. Usually, the unit magnitude of each
component is used (unitary HVs). The similarity measure is the mean of sum of cosines of angle
differences. The binding operation is a component-wise complex multiplication, which is often
referred to as Hadamard product. The unbinding is implemented via the binding with an HV con-
jugate (component-wise angle subtraction modulo 2π ). The clean-up procedure is used similarly
to HRR.

The superposition is a component-wise complex addition, which can be followed by the magni-
tude normalization such that all components have the unit magnitude.

2.3.6 Binary Spatter Codes. The Binary Spatter Codes (BSC) model10 was developed in a
series of papers by Kanerva in the mid 1990s [60–63]. As noted in [137], the BSC model could be
seen as a special case of the FHRR model where angles are restricted to 0 and π . In BSC, atomic
HVs are dense binary HVs with components from {0, 1}. The superposition is a component-wise
addition, thresholded (binarized) to obtain an approximately equal density of ones and zeros in
the resultant HV. This operation is usually referred to as the majority rule or majority sum. It
selects zero or one for each component depending on whether the number of zeros or ones in
the summands is higher and ties are broken, e.g., at random. In order to have a deterministic
implementation of the majority rule, it is common to assign a fixed random HV, which is included
in the superposition when the number of summands is even. Another alternative is to use a
deterministic variant of tie breaking as proposed in [41].

The binding is a component-wise exclusive OR (XOR), which is equivalent to taking the diagonal
of the XOR outer product of the arguments. That is, it is another example of projecting the outer
product onto D dimensions. The bound HV is not similar to the input HVs but bound HVs of
two similar input HVs are similar. The unbinding operation is also XOR, meaning that BSC has a
binding operation with a self-inverse binding property, which may be an important property for
choosing an appropriate model for a specific application. The connection to the FHRR model also
indicates that only phase angles with binary discrete phase values can support the self-inverse
binding property. But will not support fractional exponentiation (see Section 3.2.1) because they
do not have sufficient resolution of the phase angles. The clean-up procedure is used similar to the
models above. The similarity measure is often distHam.

2.3.7 Multiply-Add-Permute. The Multiply-Add-Permute (MAP) model was proposed by
Gayler [33]. It has several variants (see [169]); the bipolar one is isomorphic to the BSC model.
In the MAP model, atomic HVs are dense bipolar HVs with components from {−1, 1}. This is used
more often than the originally proposed version with the real-valued components from [−1, 1].

The binding is component-wise multiplication, which is equivalent to taking the diagonal of the
outer product of the arguments. The bound HV is not similar to the input HVs. However, bound

10This acronym was not used in the original publications but we use it here to be consistent with the later literature.
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HVs of two similar input HVs are similar. The unbinding is also component-wise multiplication
and requires knowledge of the bound HV and one of the input HVs for the case of two bound input
HVs.

The superposition is a component-wise addition. The result of the superposition can either be
left as is, normalized using the Euclidean norm, or binarized to {−1, 1}with the sign function where
ties for 0-components should be broken randomly (but deterministically for a particular input HV
set). The choice of normalization is use-case dependent. The similarity measure is either simdot or
simcos.

2.3.8 Sparse Binary Distributed Representations. The Sparse Binary Distributed Represen-

tations (SBDR) model [154], also known as Binary Sparse Distributed Codes [146, 153], proposed
by Kussul, Rachkovskij, et al. emerged as a part of Associative-Projective Neural Networks [99]
(see Section 3.2.2 in Part II of this survey [84]). There are two variants of the binding operation in
the SBDR model: Conjunction and Context-Dependent Thinning (CDT). The idea of both vari-
ants is that they produce a resultant HV where the 1-components are a subset of the 1-components
of the input HVs. This subset depends on all of the input HVs, so that (with the proper control of
the sparsity) a particular combination of the input HVs results in a unique resultant HV, thus bind-
ing the input HVs and preserving the information on the input HVs used to obtain the resultant
HV.

Conjunction-Disjunction. The Conjunction-Disjunction is one of the earliest HDC/VSA models.
It uses binary vectors for atomic HVs [150] (the model was also proposed independently in [65]).
Component-wise conjunction of HVs is used as the binding operation. Component-wise disjunc-
tion of HVs is used as the superposition operation. Both basic operations are defined for two or
more HVs. Both operations produce HVs similar to the HVs from which they were obtained (un-
structured similarity). That is, the bound HV is similar to the input HVs, unlike most of the other
known binding operations, except for CDT (see below).

The HVs resulting from both basic operations are similar if their input HVs are similar (struc-
tured similarity). The operations are commutative so the resultant HV does not depend on the
order in which the input HVs are presented. However, as noted in Section 2.2.3, this could easily
be changed with the use of some random permutations to represent the order of arguments.

The probability of 1-components in the resultant HV can be controlled by the probability of
1-components in the input HVs. Sparse HVs allow using efficient algorithms such as inverted in-
dexing or auto-associative memories for similarity search. Since conjunction reduces the density of
the resultant HV compared to the density of the input HVs, it could be considered as another form
of “reduced descriptions” from [47]. At the same time, the recursive application of such binding
leads to HVs with all components set to zero. However, the superposition by disjunction increases
the number of 1-components. These operations can therefore be used to compensate each other
(up to a certain degree; see the next section). A modified version of the Conjunction-Disjunction
model preserves the density of 1-components in the resultant HV as shown in the following sub-
subsection.

Context-Dependent Thinning. The CDT procedure proposed by Rachkovskij and Kussul [153]
can be considered either as a binding operation or as a combination of superposition and binding. It
was already used in the 1990s [98–100, 150] under the name “normalization” since it approximately
maintains the desired density of 1-components in the resultant HV. This density, however, also
determines the “degree” or “depth” of the binding as discussed in [153].

The CDT procedure is implemented as follows. First, m input binary HVs are superimposed by
component-wise disjunction as:

z = ∨m
i=1ai . (11)
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This leads to an increased number of 1-components in the resultant HV and the input HVs are
not bound yet. Second, in order to bind the input HVs, the resultant HV z from the first stage is
permuted and the permuted HV is conjuncted with the HV from the first stage. This binds the
input HVs and reduces the density of 1-components. Third, T such conjunctive bindings can be
obtained by using different random permutations or by recursive usage of a single permutation.
They are superimposed by disjunction to produce the resultant HV. These steps are described by
the following equation:

〈z〉 = ∨T
k=1 (z ∧ ρk (z)) = z ∧

(
∨T

k=1ρk (z)
)
, (12)

where ρk denotes the kth random permutation. The density of the resultant HV depends on the
number of permutation-disjunctions T . If many of them are used, we eventually get the HV from
the first stage, i.e., with no binding of the input HVs. The described version of the CDT procedure
is called “additive”. Several alternative versions of the CDT procedure were proposed in [153]. The
CDT procedure preserves the information about HVs that were bound together by their remain-
ing 1-components. The CDT procedure is commutative. It is defined for several input HVs. As
well as Conjunction-Disjunction, the CDT procedure preserves both unstructured and structured
similarity.

Due to the fact that both variants of binding in SBDR preserve unstructured similarity, the
resultant HV is similar to the input HVs. This leads to 〈a, b〉 being similar to 〈a, c〉, which is not
the case for, e.g., a ◦ b and a ◦ c in most other implementations of multiplicative binding. Here, the
preservation of the unstructured similarity allows recovering the input HVs from the resultant HV
by using the similarity search in the item memory containing all possible input HVs. This does not
require any unbinding operation. However, it should be noted that an analog of unbinding could
be constructed for SBDR using repeated binding. This was not investigated in details (except for
some preliminary results in [98, 144]).

Finally, it is important to take note of the character of the structured similarity preservation by
the CDT procedure. It depends on the thinning depth T . For a large T , the result is close to the
superposition of the input HVs, and so the character of the structured similarity is close to additive.
The smaller T is, the closer the character of the structured similarity is to the multiplicative one.

2.3.9 Sparse Block Codes. The main motivation behind the Sparse Block Codes (SBC) model,
proposed by Laiho et al. [28, 102], is to use sparse binary HVs as in SBDR but with a binding
operation where the bound HV is not similar to the input HVs (in contrast to SBDR).

Similar to SBDR, atomic HVs in the SBC model are sparse and binary with components from
{0, 1}. HVs, however, are imposed with an additional structure. An HV is partitioned into blocks
of equal size (so that the HV’s dimensionality is a multiple of the block size). In each block, there
is only one non-zero component, i.e., the activity in each block is maximally sparse as in Potts
associative memory, see, e.g., [39].

In SBC, the binding operation is defined for two HVs and implemented via circular convolution,
which is applied block-wise. The unbinding is done by the block-wise circular correlation of the
bound HV with one of the input HVs. Note that with maximally sparse blocks, the binding opera-
tion is equivalent to the modulo sum of the corresponding indices [102], which demonstrates that
each block is effectively a phase angle that is discretized to the block size. When the block is not
maximally sparse, it functions more like a superposition of phase angles.

The superposition operation is a component-wise addition. If the compositional HV is going
to be used for binding, it might be binarized by leaving only one of the components with the
largest magnitude within each block active. If there are several components with the same largest
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magnitude then a deterministic choice (e.g., the component with the largest position number could
be chosen) can be made. The similarity measure is simdot or simcos.

2.3.10 Modular Composite Representations. The Modular Composite Representations

(MCR) model [175] proposed by Snaider and Franklin shares some similarities with FHRR, BSC,
and SBS. Components of atomic HVs are integers drawn uniformly from some limited range (de-
noted as r ), which is a parameter of the MCR model. Note that this model is also connected to
the FHRR model since the components of HVs can be seen as phase angles that are discretized to
r values.

The binding operation is defined as component-wise modular addition (the module value de-
pends on the range limit), which generalizes XOR used for binding in BSC. Binding properties
are similar to most of other models. The unbinding operation is the component-wise modular
subtraction.

The similarity measure is a variation of the Manhattan distance [175]:

D∑
i=1

min(modr (ai − bi ), mod r (bi − ai )). (13)

The superposition operation resembles that of FHRR. Integers are interpreted as discretized
phase angles on a unit circle. First, phase angles are superimposed for each component (i.e., vector
addition is performed). Second, the result of the superposition is normalized by setting the mag-
nitude to one and the phase to the nearest phase corresponding to an integer from the defined
range.

Finally, there is also a recent proposal of the Cyclic Group Representations (CGR) model
[196] that highly resembles the idea of the MCR model. As it also defines a model that operates
with integer-valued HVs but uses slightly different definitions for the similarity measure and the
superposition operation.

2.3.11 Geometric Analogue of Holographic Reduced Representations. As its name suggests, the
Geometric Analogue of Holographic Reduced Representations (GAHRR) model [4] (pro-
posed by Aerts, Czachor, and De Moor) was developed as a model alternative to HRR. An earlier
proposal was a geometric analogue to BSC [3]. The main idea is to reformulate HRR in terms
of geometric algebra. The binding operation is implemented via the geometric product (a gen-
eralization of the outer product). Because of not projecting the geometric product onto a lower
dimensional space, GAHRR is conceptually closest to the TPR model. The superposition operation
is component-wise addition.

So far, GAHRR is mainly an interesting theoretical effort, as its advantages over conceptually
simpler models are not particularly clear, but it might become more relevant in the future. Readers
interested in GAHRR are referred to the original publications. An introduction to the model is
given in [2, 4, 127, 131], examples of representing data structures with GAHRR are in [129] and
some experiments comparing GAHRR to other HDC/VSA models are presented in [128, 130].

2.4 Information Capacity of HVs

An interesting question, which is often brought up by newcomers to the field, is how much infor-
mation one could store in the superposition of HVs.11 This value is called the information capacity
of HVs. Usually, it is assumed that atomic HVs in superposition are random and dissimilar to each

11This question is almost always posed with respect to the superposition. It is interesting, however, to consider whether

the question makes sense when applied to multiplicative binding. It has recently been mentioned in the context of studying

resonator networks (see Section 2.2.5) [74].
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Fig. 2. The analytical and empirical accuracies of recovering sequences from HVs against the sequence

length for three HDC/VSA models, D = 256, N = 64. The reported empirical accuracies were averaged over

5 simulations with randomly initialized item memories.

other. In other words, one could think about such superposition as an HV representing, e.g., a
set of symbols. In general, the capacity depends on parameters such as the number of symbols
in the item memory (denoted as N ), the dimensionality of HVs (D), the type of the superposition
operation, and the number of HVs being superimposed (m).

Early results on the capacity were given in [134, 139]. Some ideas for the case of binary/bipolar
HVs in BSC, MAP, and MBAT were also presented in [31, 83]. The capacity of SBDR was analyzed
in [86]. The most general and comprehensive analysis of the capacity of different HDC/VSA models
(and also some classes of recurrent neural networks) was recently presented in [27]. The key idea
of the capacity theory [27] can be illustrated by the following scenario when an HV to be recovered
contains a valid HV from the item memory and crosstalk noise from some other elements of the
compositional HV (e.g., from role-filler bindings, see Section 3.1.3). Statistically, we can think of
the problem of recovering the correct atomic HV from the item memory as as a detection problem
with two normal distributions: hit and reject; where hit corresponds to the distribution of similarity
values (e.g., simdot) of the correct atomic HV while reject is the distribution of all other atomic HVs
(assuming all HVs are random). Each distribution is characterized by its corresponding mean and
standard deviation: μh & σh and μr & σr , respectively. Given the values of μh , σh , μr , and σr , we
can compute the expected accuracy (pcorr ) of retrieving the correct atomic HV according to:

pcorr =

∫ ∞

−∞

dx
√

2πσh

e
− (x−(μh−μr ))2

2σ 2
h (Φ(x , 0,σr ))N−1, (14)

where Φ(x ) is the cumulative Gaussian and N denotes the size of the item memory.
Figure 2 depicts the accuracy of retrieving sequence elements from its compositional HV (see

Section 3.3) for three HDC/VSA models: BSC, MAP, and FHRR. The accuracies are obtained either
empirically or with (14). As we can see, the capacity theory (14) predicts the expected accuracy
very accurately.

The capacity theory [27] has recently been extended to also predict the accuracy of HDC/VSA
models in classification tasks [87]. Reference [183] presented bounds for the perfect retrieval of
sets and sequences from their HVs. Recent works [112, 169] have reported empirical studies of the
capacity of HVs. Some of these results can be obtained analytically using the capacity theory. Ad-
ditionally, [27, 45, 75, 182] elaborated on methods for recovering information from compositional
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HVs beyond the standard nearest neighbor search in the item memory, reaching to the capacity
of up to 1.2 bits/component [45]. Additional improvements to increase the capacity up to 1.4 bits/
component were reported in [77]. This work also provided a taxonomy of existing methods for
recovering information from compositional HVs and reported an empirical comparison of these
methods.

The works above were focused on the case where a single HV was used to store information but
as it was demonstrated in [14] the decoding from HVs can be improved if the redundant storage
is used. As an example, the “multiset intersection” circuit in [35] effectively does this by summing
over multiple copies of the same data (derived from multiple data permutations) to average away
noise.

3 DATA TRANSFORMATION TO HVS

As mentioned above, the similarity of atomic symbolic and localist representations is all-or-none:
identical symbols are considered maximally similar, whereas different symbols are considered dis-
similar. On the other hand, the similarity of structures consisting of symbols (such as sequences,
graphs, etc.) is often calculated using computationally expensive procedures such as an edit dis-
tance. HVs are vector representations, and, therefore, rely on simple vector similarity measures
that can be calculated component-wise and provide the resultant similarity value immediately.
This also concerns similarity of compositional structures. Thus, for example, the similarity of re-
lational structures, taking into account the similarity of their elements, their grouping, and order,
can be estimated by measuring the similarity of their HVs, without the need for explicit decom-
position such as following edges or matching vertices of underlying graphs. Moreover, HDC/VSA
can overcome problems with symbolic and localist representations concerning the lack of seman-
tic basis (i.e., the lack of immediate similarity of objects; see Section 2.1.1). HDC/VSA overcomes
these problems by explicit similarity in their representations, because HVs do not have to repre-
sent similarity in all-or-none fashion. These promises, however, bring the problem of designing
concrete transformations that form HVs of various compositional structures such that the similar-
ity between their HVs will reflect the similarity of the underlying objects.

In this section, we consider how data of various types are transformed to HVs to create such
representations. The data types include symbols (Section 3.1.1), sets (Section 3.1.2), role-filler bind-
ings (Section 3.1.3), numeric scalars and vectors (Section 3.2), sequences (Section 3.3), 2D images
(Section 3.4), and graphs (Section 3.5).

3.1 Symbols and Sets

3.1.1 Symbols. As mentioned in Section 2.2.1, the simplest data type is a symbol. Usually, dif-
ferent symbols are considered dissimilar, therefore, using i.i.d. random HVs for different symbols
is a standard way of transforming symbols into HVs. Such HVs correspond to symbolic represen-
tations (Section 2.1.1) since they behave like symbols in the sense that the similarity between the
HV and its copy is maximal (i.e., the same symbol) while the similarity between two i.i.d. random
HVs is minimal (i.e., different symbols).

3.1.2 Sets. In localist representations, sets are often represented as binary “characteristic vec-
tors”, where each vector component corresponds to a particular symbol from the universe of all
possible symbols. Symbols present in a particular set are represented by one in the correspond-
ing vector component. In the case of multisets, the values of the components of the characteristic
vector are the counters of the corresponding symbols.

In HDC/VSA, a set of symbols is usually represented by an HV formed by the superposition of
the symbols’ HVs. The compositional HV preserves the similarity to the symbols’ HVs. Notice that
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Bloom filter [8]—a well-known data structure for approximate membership—is an HV where the
superposition operation is obtained by the component-wise disjunction of binary HVs of symbols
(as in SBDR) and, thus, can be seen as a special case of HDC/VSA [85].

Also note that, in principle, multiplicative bindings can be used to represent sets [80, 115],
however, the similarity properties will be completely different from the representation by the
superposition.

3.1.3 Role-filler Bindings. Role-filler bindings, which are also called slot-filler or key-value
pairs, are a very general way of representing structured data records. For example, in localist
representations the role (key) is the component’s ID, whereas the filler (value) is the component’s
value. In HDC/VSA, this is represented by the result of binding. Both multiplicative binding and
binding by permutation can be used. With multiplicative binding, both the role and the filler are
transformed to HVs, which are bound together. When using permutation, it is common that the
filler is represented by its HV, while the role is associated with either a unique permutation or a
number of times that some fixed permutation should be applied to the filler’s HV.

In the case of multiplicative binding, the associations do not have to be limited to two HVs and,
therefore, data structures involving more associations can be represented. For example, the repre-
sentation of “schemas” [121] might involve binding three HVs corresponding to {context, action,
and result}.12 It is worth mentioning that in symbolic role-filler bindings roles are usually atomic
symbols. In HDC/VSA, role HVs are not required to be representations of atomic objects. They may
represent compositional structures and may be constructed to have a desired similarity between
roles.

A set of role-filler bindings is represented by the superposition of their HVs. Note that the num-
ber of (role-filler) HVs superimposed is limited to preserve the information contained in them, e.g.,
if one wants to recover the HVs being superimposed (see Sections 2.2.5 and 2.4).

3.2 Numeric Scalars and Vectors

In practice, numeric scalars are the data type present in many tasks, especially as components of
vectors. Representing close numeric values with i.i.d. random HVs does not preserve the similarity
of the original data. Therefore, when transforming numeric data to HVs, the usual requirement is
that the HVs of nearby data points are similar and those of distant ones are dissimilar.

We distinguish three approaches to the transformation of numeric vectors to HVs [154]: com-
positional (Section 3.2.1), explicit receptive fields (Section 3.2.2), and random projections (RP)
(Section 3.2.3).

3.2.1 Compositional Approach.

Representation of scalars in the compositional approach. In order to represent close values of a
scalar by similar HVs, correlated HVs should be generated, so that the similarity decreases with the
increasing difference of scalar values. Usually, a scalar is first normalized into some pre-specified
range (e.g., [0, 1]). Next, it is quantized into finite grades (levels). Since HVs have a finite dimension
and are random, they can reliably (with non-negligible differences in similarity) represent only a
finite number of scalar grades. So only a limited number of grades are represented by correlated
HVs, usually up to several dozens.

Early schemes for representing scalars by HVs were proposed independently in [150, 173]. These
and other schemes [142, 158] can be considered as implementing some kind of “flow” from one
component set of an HV to another, with or without substitution. For example, “encoding by

12Note that the original proposal in [121] was based of the superposition of three role-filler bindings.
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concatenation” [158] uses two random HVs: one is assigned to the minimum grade in the range,
while the second one is used to represent the maximum grade. The HVs for intermediate grades
are formed using some form of interpolation, such as the concatenation of the parts of the HVs
where the lengths of these two parts are proportional to the distances from the current grade to
the minimum and maximum one. Note that in this scheme the representations of all values in the
range have some non-zero degree of similarity to each other (apart from the two extreme values). It
is possible to apply the same scheme to multiple concatenated ranges, so that the values separated
by more than the range size have zero similarity.

Similar types of interpolations were proposed in [13, 86, 191]. The scheme in [173] and the
“subtractive-additive” one [158] start from a random HV and recursively flip the values of some
components to obtain the HVs of the following grades. This scheme was popularized, e.g., in [86,
160], for representing values of features when applying HDC/VSA in classification tasks. Another
early scheme proposed for complex and real-valued HVs is called fractional power encoding (see
Section 5.6 in [134]). It is based on the fact that complex-valued HVs (random angles on a unit
circle) can be (component-wise) exponentiated to any value:

z(x ) = zβx , (15)

where z(x ) is an HV representing scalar x , z is a random HV called the base HV [25, 26], and β is
the bandwidth parameter controlling the width of the resultant similarity kernel. This approach
requires neither normalizing scalars in a pre-specified range nor quantizing them. The fractional
power encoding can be immediately applied to FHRR and to any other representation where the
phase angle resolution is sufficient. It is also used for HRR by making complex-valued HV using
fast Fourier transform, exponentiating, and then making inverse fast Fourier transform to return
to real-valued HVs (see [25, 26] for the details).

Representation of numeric vectors in the compositional approach. In the compositional approach
to numeric vector representation by HVs ( [150, 159, 177], we first form HVs for scalars (i.e., for
components of a numeric vector). Then, HVs corresponding to values of different components are
combined (often via superposition but the multiplicative binding is used too) to form the compo-
sitional HV of the numeric vector.

When constructing the compositional HV, it is important to make sure that scalar values of dif-
ferent components are represented by dissimilar HVs (even when two components have the same
value). Otherwise, the association between a component and its value is lost. If scalars in different
components are represented by dissimilar HVs, they can be superimposed or bound as is. Some-
times it is more practical (e.g., to reduce memory requirements) to keep a single set of correlated
HVs representing all considered values of scalars.13 The set is shared across all components. In this
case, prior to applying the superposition operation, one has to associate the scalar’s HV with its
component identity in the numeric vector. This can be done by representing role-filler bindings
(see Section 3.1.3) with some form of binding. This means that when using the role-filler binding
scheme, the HV of a scalar corresponds to the filler while its component identity in the numeric
vector corresponds to the role. As presented in Section 3.1.3, the association between role’s and
filler’s HV can be realized either via the multiplicative binding with a role’s HV or by permuting
a filler’s HV using the permutation assigned to the role.

Note that different schemes and models provide different types of similarity, for example, Man-
hattan distance (distMan) in [159, 183]. Note also that, unlike usual vectors, where the components

13This set of HVs is sometimes called “continuous item memory” since HVs are correlated.
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are orthogonal, role HVs of nearby components could be made to correlate (e.g., nearby filtration
banks are more correlated than banks located far away) [150].

3.2.2 Explicit Receptive Fields. The receptive field approach is often called coarse coding since
a numeric vector is coarsely represented by the receptive fields activated by the vector. There
are several well-known schemes utilizing explicit receptive fields, such as Cerebellar Model Ar-

ticulation Controller [6], Prager Codes [141], and Random Subspace Codes (RSC) [94, 101],
where receptive fields are various kinds of randomly placed and sized hyperrectangles, often in
only some of the input space dimensions. It is worth noting that these schemes form (sparse) binary
HVs. Similar approaches, however, can produce real-valued HVs, e.g., by using Radial Basis Func-
tions as receptive fields [5, 119]. Details and comparisons can be found in [156, 157]. In particular,
a similarity function between the input numeric vectors represented by RSCs was obtained.

3.2.3 Random Projections-based Approach. RP is another approach which allows forming an
HV of a numeric vector x by multiplying it by an RP matrix R:

z = Rx, (16)

and possibly performing some normalization, binarization, and/or sparsification (such as preserv-
ing k largest vector components).14 It is a well-known approach, which has been extensively stud-
ied in mathematics and computer science [52, 54, 126, 151, 187]. Originally, the RP approach was
used in the regime where the resultant vectors Rx of smaller dimensionality were produced (i.e.,
used for dimensionality reduction). This is useful for, e.g., fast estimation of distEuc of original
high-dimensional numeric vectors (as well as simdot and distangle). Well-known applications are in
similarity search [52, 72] and compressed sensing [16]. First, a random R with components from
the normal distribution was investigated [52, 54, 187], but then the same properties were proved
for RP matrices with components from {−1,+1} (bipolar matrices) and {−1, 0,+1} (ternary and
sparse ternary matrices) [1, 58, 106].

In the context of HDC/VSA, the RP approach using a sparse ternary matrix was first applied
in [69] (see also Section 2.2.1 of Part II of the survey [84] for details). In [113, 114] (see Section 2.2.1
of Part II of the survey [84]), it was proposed to binarize or ternarize (by thresholding) the result
of Rx, which produced sparse HVs. The analysis of a simcos estimation by sparse HVs was first re-
ported in 2006/2007 and then published in [147, 148, 155], whereby the RP with sparse ternary and
binary matrices was used. In [15], the RP with sparse binary matrices was used for expanding the
dimensionality of the original vector. Note that increasing the dimensionality of the original vector
has been widely used previously in machine learning classification tasks as it allows linearizing
non-linear class boundaries. In [7], thresholding of the HV produced by Rx was investigated and
applied in the context of fast (i.e., sublinear versus the number of objects in the base) similarity
search. It is common to use a single RP matrix to form an HV, but there are some approaches that
rely on the use of several RP matrices [163]: z =

∑n
i=1 λi Ri x, where λi determines the contribution

of the ith RP Ri x to the resultant HV and, thus, can be interpreted as a weighted superposition of
n separate representations.

An appealing feature of the RP approach is that it can be applied to input vectors of an arbitrary
dimensionality and number of component gradations, unlike the compositional or the receptive
fields approaches. Some theoretical analysis of using RP for forming HVs was performed in [183].

14Note that (16) represents the values of x via the magnitudes of the corresponding columns in R, so that z is the weighted

superposition of the columns in R. This approach to representing numeric vectors is different from the ideas in Section 3.2.1

above, where the difference in the direction of HVs is used to represent relative similarity between the corresponding scalars.

However, the representation of numeric vectors via weighted superposition is rarely used in HDC/VSA since the result of

(16) needs to be normalized, and, thus, the information about the absolute magnitudes of z is lost (see Section 2.2.3).
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3.3 Sequences

Below we present several standard approaches for representing sequences with HVs. These ap-
proaches include binding of elements’ HVs with their position HVs, bindings using permutations,
binding with the context HVs, and using HVs for n-grams. For an overview of these approaches
refer to, e.g., [176].

3.3.1 Binding of Elements’ HVs with their Position or Context HVs. One of the standard ways
of representing a sequence is to use a superposition of role-filler binding HVs where the filler is a
symbol’s HV and the role is its position’s HV [41, 98, 136]. In [98], the order was represented by the
weight of the subset of components selected from the initial HVs of sequence symbols (e.g., each
preceding symbol was represented by more 1-components of the binary HV than the succeeding
symbol). In [144], it was proposed to use thinning from the HVs of the previous sequence symbols
(context). It is, however, most common to use i.i.d. random HVs to represent positions. An approach
to avoid storing HVs for different positions is to use HDC/VSA models where the binding operation
is not self-inverse. In this case, the absolute position k in a sequence is represented by binding the
position HV to itself k times [133, 136]. Such a mechanism is called “trajectory association”. The
trajectory association can be convenient when the sequence representation is formed sequentially,
allowing the sequence HV to be formed in an incremental manner. However, the sequence HV does
not preserve the similarity to symbols’ HVs in nearby positions, since the position HVs are not
similar and so the role-filler binding HVs are also dissimilar. The MBAT model (Section 2.3.4) has
similar properties, where the position binding is performed by multiplying by a random position
matrix.

In order to make symbols in nearby positions similar to each other, one can use correlated
position HVs [134, 176] such that, e.g., shifted sequences will still result in a high similarity between
their HVs. This approach was also proposed independently in [13, 191] (see Section 3.2). Similar
ideas for 2D images are discussed in Section 3.4.2.

Also, the HV of the next symbol can be bound to the HV of the previous one, or to several
(weighted) HVs of previous ones, i.e., implementing the “binding with the context” approach [144].

3.3.2 Representing Positions via Permutations. An alternative way of representing position in a
sequence is to use permutation [66, 91, 168]. Before combining the HVs of sequence symbols, the
order i of each symbol is represented by applying some specific permutation to its HV i times (e.g.,
ρ2 (c)). However, such a permutation-based representation does not preserve the similarity of the
same symbols in nearby positions, since the permutation does not preserve the similarity between
the permuted HV and the original one. To preserve the similarity of HVs when using permutations,
in [12, 92], it was proposed to use partial (correlated) permutations.

3.3.3 Compositional HVs of Sequences. Once symbols of a sequence are associated with their
positions, the last step is to combine the sequence symbols’ HVs into a single compositional HV
representing the whole sequence. There are two common ways to combine these HVs.

The first way is to use the superposition operation, similar to the case of sets in Section 3.1.2.
For example, for the sequence (a,b,c,d,e) the resultant HV (denoted as s) is:

s = ρ0 (a) + ρ1 (b) + ρ2 (c) + ρ3 (d) + ρ4 (e). (17)

Here, we exemplified the representation of positions via permutations but the composition will
be the same for other approaches. The advantage of the approach with the superposition operation
is that it is possible to estimate the similarity of two sequences by measuring the similarity of their
HVs.
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The second way of forming the compositional HV of a sequence involves binding of the per-
muted HVs, e.g., the sequence above is represented as (denoted as p):

p = ρ0 (a) ◦ ρ1 (b) ◦ ρ2 (c) ◦ ρ3 (d) ◦ ρ4 (e). (18)

The advantage of this sequence representation is that it allows forming quasi-orthogonal HVs
even for sequences that differ in only one position. Similar to the trajectory association, extending
a sequence can be done by permuting the current sequence’s HV and adding or multiplying it with
the next HV in the sequence, hence, incurring a fixed computational cost per symbol.

Note that compositional HVs of sequences can also be of a hybrid nature. For example, when rep-
resenting positions via permutations the similarity of the same symbols in nearby positions is not
preserved. One way to preserve similarity when some of the symbols in a sequence are permuted
was presented in [81], where compositional HVs of sequences included two parts: a representation
of a multiset of symbols constituting a sequence (a bag-of-symbols) and an ordered representation
of symbols. The first part is transformed into an HV as a multiset of symbols (Section 3.1.2) by
superimposing atomic HVs of all symbols present in a sequence. The second part is transformed
into an HV as a sequence using permutations of symbols’ HVs to encode their order (Section 3.3.2).
Both representations are superimposed together to obtain the compositional HV.

In [149, 152], it was proposed to form such representations of sequences that preserve similarity
of sequence elements in nearby positions as well as being equivariant with respect to sequence
shifts. The property of equivariance means that the HV of the shifted sequence can be obtained
not only by transforming this sequence into an HV, but just by some transformation of the HV of
the original sequence. To achieve these properties of representations, [149] formed symbols’ HVs
using the superposition of several appropriately permuted versions of the corresponding atomic
HV. The same idea was also used in [152] but with recursive applications of multiplicative binding
instead of permutations.

3.3.4 n-grams. n-grams are n consecutive symbols of a sequence. In the n-gram representation
of a sequence, alln-grams of the sequence are extracted, sometimes for differentn. Usually, a vector
containing n-gram statistics is formed such that its components correspond to different n-grams.
The value of the component is the frequency (counter) of the occurrence of the corresponding
n-gram.

There are various transformations ofn-grams into HVs. The possibility of representing multisets
with HVs (Section 3.1.2) allows forming HVs representing n-gram statistics as the superposition of
HVs of individual n-grams. So the representations of n-grams in HVs are usually different in the
following aspects:

— Distinguishing different n-grams, where “different” means even a single unique symbol (e.g.,
(abc) vs. (abd)) or the same symbols in different positions (e.g., (abc) vs. (acb));

— Forming similar HVs for similar n-grams.

To form dissimilar HVs for different n-grams, each n-gram can be assigned an i.i.d. random HV.
However, an n-gram HV is usually generated from the HVs of its symbols. So in order to save
space for the HV representations of n-grams, it is possible to represent them using compositional
HVs [56, 145] instead of generating an atomic HV for each n-gram. Thus, the approaches above
for representing sequences can be used. In [56, 76, 145], the permuted HVs of the n-gram symbols
were bound by multiplicative binding. Alternatively, in [55, 57], the multiplicative binding of pairs
of HVs was performed recursively, whereby the left HV corresponds to the already represented
part of the n-gram, and the right HV corresponds to the next element of the n-gram. The left and
right HVs are permuted by different random permutations.
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In contrast to the approaches above, in [51, 164] the permuted HVs of the n-gram symbols
were not bound multiplicatively, but were superimposed forming similar HVs for similar n-grams.
In [41], the superposition of HVs corresponding to symbols in their positions was also used. How-
ever, the position of a symbol in a bi-gram (possibly from non-adjacent symbols) was specified by
the multiplicative binding with the HVs of the left and right positions instead of permutations.

3.3.5 Stacks. A stack can be seen as a special case of a sequence where elements are either
inserted or removed in a last-in-first-out manner. At any given moment, only the top-most element
of the stack can be accessed and elements written to the stack before are inaccessible until all later
elements are removed. HDC/VSA-based representations of stacks were proposed in [134, 179, 193].
So, the HV of a stack is a special kind of sequence representation and the permutation of stack’s
HV plays the role of moving the elements in the stack.

3.4 2D Images

There are a number of proposals for representing objects with a two-dimensional structure, such
as 2D images, in HDC/VSA models. In this section, we cluster the existing proposals for representa-
tions into three groups15: permutation-based, role-filler binding-based, and neural network-based.

3.4.1 Permutation-based Representations. As discussed in Section 2.2.3, permutations are used
commonly as a way of implementing binding with the position information. In the context of 2D
images, permutations can be used by assigning one permutation for the x-axis and another one
for the y-axis.

The simplest way of implementing a permutation is to use a cyclic shift as in [91, 96]. In order
to implement two orthogonal shifts corresponding to the x- and y-axes, the HVs of features were
restructured as a 3D tensor with two dimensions corresponding to the retina size along the x- and
y-axes. Then the HV of a feature at some (x ,y) position was obtained by shifting the corresponding
3D tensor x times along the x-axis and y times along the y-axis.

In a similar way, when using permutations as shift generalizations, to bind an HV of a pixel’s
value (or of an image feature) with its position, x-axis permutation is applied x times and y-axis
permutation is applied y times [80, 115]. The image is represented as a compositional HV contain-
ing the superposition of all permuted HVs of pixels’ values. HVs representing pixels’ (features’)
values are formed using some approach for representing scalars. As permuted HVs are not similar
in any of the works above, the same pixel’s value even in nearby positions will be represented by
dissimilar HVs.

The issue of the absence of similarity in permutation-based representations was addressed in [92,
97] by using partial permutations. The number of permuted components of some pixel’s value
HV (or, more generally, of some feature’s HV) increases with the coordinate change (within some
radius), up to the full permutation. So, inside the radius the similarity decreases. Outside the radius,
the same process is repeated again. As a result, a pixel’s value HV at (x, y) is similar to the HVs
in nearby positions within the similarity radius. The features at positions were Random Local

Descriptors (RLD) detected at some points of interest. For instance, for binary images, the RLD
feature is detected if some (varied for different features) pixels inside a local receptive field take
zero and one values. Note that RLD may be considered as a version of receptive fields approach

15There are proposals that cannot be placed unambiguously in one of the clusters. For example, the proposal from [73]

directly used pixels values that were first flattened and normalized and then shuffled by some random permutation. The

resultant vector was bound to itself with circular convolution to obtain a “trace” HV. Thus, this proposal is neither purely

“permutation-based” nor “role-filler binding-based” as it relies on both. Nevertheless, the identified groups are instructive

as they are used as design primitives in many transformations of 2D images into HVs.
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(Section 3.2.2) and can form HVs representing images, as in the case of the LInear Receptive

Area (LIRA) features [93].

3.4.2 Role-filler Binding-based Representations. In a 2D image, it is natural to represent a pixel’s
position and its value as a role-filler binding, where the pixel’s position HV is the role and an HV
corresponding to the pixel’s value is the filler. Similar to the case of using permutations, the image
HV is formed as a compositional HV containing the superposition of all role-filler binding HVs.

When it comes to pixels position HVs, the simplest approach is to treat each position as if it
would be a unique symbol so that it can be assigned with a unique random HV. This approach
allows forming image HVs through the role-filler bindings. It was investigated in [83, 110] for real-
valued and dense binary HVs and in [82] for sparse binary HVs. The approach with unique HVs
for roles, however, neither imposes any relations between pixels’ position HVs nor does it allow
preserving the similarity of pixels’ position HVs in a local neighborhood, which, e.g., is useful for
robustness against small changes in the 2D image. To address the latter issue, in [95] a method
was described where the HVs of nearby x and y coordinates were represented as correlated HVs,
using approaches for representing scalars (Section 3.2). Then the pixel value in a position (x, y) was
represented by binding three HVs: one representing a pixel’s value at (x, y) and two representing
the x andy coordinates themselves (component-wise conjunction was used for the binding in [95]).
Thus, similar values in close proximity were represented by similar HVs.

MOving MBAT (MOMBAT) [30] was proposed to explicitly preserve the similarity of HVs for
nearby pixels. As in the MBAT model (Section 2.3.4), matrices were used as roles. In particular, the
matrix for x and y coordinates was formed as a weighted superposition of two random matrices.
Thus, for both x and y, nearby coordinates were represented by similar (correlated) matrices. Then,
each (x, y) pair was represented by a matrix obtained by binding (multiplying) those corresponding
matrices. A value of a pixel at (x, y) was represented by binding its HV with the matrix of (x, y).
Finally, the obtained HVs were superimposed. All the HVs participating in MOMBAT had real-
valued components. A similar approach with local similarity preservation for BSC and dense binary
HVs was considered in [11].

The Fractional Power Encoding approach (Section 3.2.1) to the representation of 2D images was
employed in [23, 90, 190]. It imposes a structure between pixels’ positions and can preserve simi-
larity in a local neighborhood. In particular, the image HV is formed as follows. Two random base
HVs are assigned for the x-axis and y-axis, respectively. In order to represent x and y coordinates,
the corresponding base HVs are exponentiated to coordinate values; and z(x ,y) —the HV for the
(x, y) coordinate—is formed as their binding (assuming β = 1 cf. (15)):

z(x ,y) = xx ◦ yy . (19)

Finally, the binding with the HV of the pixel value is done. The variant of the fractional power
encoding-based representation in hexagonal coordinates was presented in [89].

3.4.3 Neural Network-based Representations. Since neural networks are currently one of the
main tools for processing 2D images, it is becoming common to use them for producing HVs of
2D images. This is especially relevant since directly transforming pixel values into HVs does not
usually provide a good representation for solving machine learning tasks with competitive perfor-
mance. For example, there were some studies [43, 110] directly transforming 2D images in MNIST
to HVs. Their accuracy was further improved by either enhancing the HV encoder (e.g., with a
receptive field and max pooling layer [107], or learning binary class HVs from a cross-entropy
loss [17]. However, the reported accuracy was, in fact, lower than the one obtained with, e.g., a
kNN classifier applied directly to pixels’ values, or a simple neural network with two layers. Re-
call, however, that the HV representations must be designed to capture the information that is
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important for solving the problem and presenting it in a form that can be exploited by the
HDC/VSA mechanisms. Therefore, it is important to either apply some feature extraction tech-
niques (as was, e.g., the case in [93, 97]) or use neural networks as a front-end. One of the earliest
attempts to demonstrate this was presented in [194, 195]. The proposed approach takes activations
of one of the hidden layers of a convolutional neural network caused by an input image. These
activations are then binarized and the result of the binarization is used as an initial grid state of
an elementary cellular automaton. The automaton is evolved for several steps and the results of
previous steps are concatenated together, the result of which is treated as an HV corresponding to
the image. The automaton evolution performs non-linear feature extraction, in the spirit of LIRA
and RLD.

Later works used activations of convolutional neural networks without extra cellular automata
computations. For example, in [116, 122] pre-trained off-the-shelf convolutional neural networks
were used, while in [44, 71] a network’s attention mechanism and loss function were specifically
designed to produce HVs with desirable properties. For example, it directed the output of the
neural network to assign quasi-orthogonal HVs to images from different classes [71]. This quasi-
orthogonality of the class HVs also enables continual learning of many novel classes, from very few
training samples, with small interference, which leads to the state-of-the art classification accuracy
on natural and handwritten images [44]. It is important to note that obtaining HVs from neural
networks is a rather new direction and there are no studies that would scrupulously compare HVs
obtained from different neural network architectures.

3.5 Graphs

3.5.1 Undirected and Directed Graphs. A graph, denoted as G, consists of nodes and edges.
Edges can either be undirected or directed. Figure 3 presents examples of both directed and undi-
rected graphs. First, we consider the following simple transformation of graphs into HVs [35]. A
random HV is assigned to each node of the graph, following Figure 3 node HVs are denoted by
letters (i.e., a for node “a” and so on). An edge is represented as the binding of HVs of the connected
nodes, e.g., the edge between nodes “a” and “b” is a ◦ b. The whole graph is represented simply as
the superposition of HVs (denoted as g) representing all edges in the graph, e.g., the undirected
graph in Figure 3 is:

g = a ◦ b + a ◦ e + b ◦ c + c ◦ d + d ◦ e. (20)

To represent directed graphs, the directions of the edges should be included into their HVs. This
could be done, e.g., by applying a permutation, so that the directed edge from node “a” to “b” in
Figure 3 is represented as a ◦ ρ (b). Thus, the directed graph in Figure 3 is represented by the
following HV:

g = a ◦ ρ (b) + a ◦ ρ (e) + c ◦ ρ (b) + d ◦ ρ (c) + e ◦ ρ (d). (21)

Note that such representation implicitly labels graph’s nodes. The elements of the graph g can
be recovered using an item memory (Section 2.2.5). For graphs that have the same node HVs, the
dot product is a measure of the number of overlapping edges. The described graph representations
do not represent isolated vertices, but this could be fixed, by, e.g., separate representations of the
vertex set and edge set [35].

3.5.2 Directed Ordered Acyclic Graphs. When modeling, e.g., analogical reasoning (Section 3.1.2
of Part II of the survey [84]) or knowledge graphs, it is common to use acyclic graphs where
both edges and nodes have associated labels, and edges are directed. Let us consider the repre-
sentation of a graph shown in Figure 4, which can also be written in the bracketed notation as:
cause(bite(Spot,Jane),flee(Jane,Spot)).
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Fig. 3. An example of an undirected and a directed graph

with 5 nodes. In the case of the undirected graph, each node

has two edges.

Fig. 4. An example of a labeled graph rep-

resenting the episode – cause(bite(Spot,
Jane), flee(Jane,Spot)).

Using the role-filler binding approach (see Section 3.1.3), a relation, e.g., bite(Spot,Jane), can
be represented by HVs (in HRR or BSC) as follows [139]:

BITE = 〈bite + 〈spot + jane〉 + biteagent ◦ spot + biteobject ◦ jane〉. (22)

Here, bite, biteagent, and biteobject are atomic HVs, while spot = 〈spotID + dog〉 and jane =

〈janeID + human〉 are the compositional ones. In the same way, FLEE is formed, and finally the
HV of the whole graph:

〈cause + 〈BITE + FLEE〉 + causeantecedent ◦ BITE + causeconsequent ◦ FLEE〉. (23)

This particular representation was chosen to influence the similarity of the graph HVs because
of the multiplicative binding operation properties in HRR and BSC. In SBDR, the binding preserves
structured similarity in a different manner so the formation of graph’s resultant HV could be made
more compact [146]:

BITE = 〈〈biteagent ∨ spot〉 ∨ 〈biteobject ∨ jane〉〉; (24)

FLEE = 〈〈fleeagent ∨ jane〉 ∨ 〈fleeobject ∨ spot〉〉; (25)

CAUSE = 〈〈causeantecedent ∨ BITE〉 ∨ 〈causeconsequent ∨ FLEE〉〉. (26)

Also, Predicate-Arguments relation representation using random permutations to represent the
order of relation arguments was proposed in [68, 146, 153]:

BITE = 〈bite + spot + jane + ρagent (spot) + ρobject (jane)〉; (27)

FLEE = 〈flee + spot + jane + ρagent (jane) + ρobject (spot)〉; (28)

CAUSE = 〈cause + BITE + FLEE + ρantecedent (BITE) + ρconsequent (FLEE)〉. (29)

Note that in the last six equations 〈·〉 refers to the CDT procedure. These types of graph rep-
resentations by HVs will be further discussed in Section 3.1.2 of Part II of the survey [84] when
describing analogical reasoning with HDC/VSA.

Representations of knowledge graphs were further studied in [109]. The work proposed to use
a Cauchy distribution to generate atomic HVs and demonstrated the state-of-the-art results on the
task of inferring missing links using HVs of knowledge graphs as an input to a neural network.
HVs of knowledge graphs can also be constructed using HVs of nodes and relations that are learned
from data as proposed in [125], where HRR was used due to its differentiability.
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3.5.3 Trees. Trees are an instance of graphs where a node at the lower level (child) belongs to
a single higher-level node (parent). Therefore, trees can be represented in the same manner as the
graphs above. Please refer to the examples of the transformations to HVs given, e.g., in [153] for
unordered binary trees and in [24, 78] for ordered binary trees. A representation of trees for the
TPR model, using cryptographic hashing algorithms, was investigated in [40].

4 DISCUSSION

In this section, we only discuss of the HDC/VSA aspects covered in this first part of the survey.
Please refer to Part II [84] for an extensive discussion of the aspects related to application areas,
interplay with neural networks, and open issues.

4.1 Connections Between HDC/VSA Models

As presented in Section 2.3, there are several HDC/VSA models. Currently, there are many unan-
swered questions about the connections between models. For example, some models use interac-
tions between multiple components of HVs when performing the multiplicative binding operation
(e.g., circular convolution or the CDT procedure). Other models (e.g., FHRR and BSC) use multi-
plicative binding operations that are component-wise. It is not always clear in which situations
one is better than the other. Therefore, it is important to develop a more principled understanding
of the relations between the multiplicative binding operation and of the scope of their applicability.
For example, a recent theoretical result in this direction [28] is that under certain conditions the
multiplicative binding in MAP is mathematically equivalent to the multiplicative binding in TPR.

Moreover, in general it is not clear whether there is one best model, which will dominate all
others, or whether each model has its own applicability scope. There are works [73, 169] reporting
systematic experimental comparisons between the models for aspects such as, e.g., mathematical
properties of the operations, information capacity of representations, or robustness to noise. We
believe that this line of work should be continued since an abstract mathematical characterization
of the necessary properties for HDC/VSA might make it easier to generate new HDC/VSA models
as alternative instantiations of such properties. Finally, there is the question of whether there is a
need for new HDC/VSA models.

4.2 Theoretical Foundations of HDC/VSA

It should be noted that HDC/VSA have largely started as an empirical field. At the same time,
HDC/VSA implicitly used well-known mathematical phenomena such as concentration of mea-
sure [28] and RP [183].

Currently, there is a demand for laying out solid theoretical principles for HDC/VSA. We are
starting to see promising results in this direction. For example, there is a recent “capacity the-
ory” [27] (Section 2.4), which provides a way of estimating the amount of information that could
be reconstructed from HVs using the nearest neighbor search in the item memory. Another exam-
ple is the upper bound guarantees for the reconstruction of data structures from HVs [183]. In [28]
manipulations of HVs in HDC/VSA were shown to be connected to the compressed sensing.

Recently, in [196], the expressivity of HDC/VSA models was characterized using similarity ma-
trices. It proved that BSC could not approximate a given similarity matrix arbitrarily well, and
could therefore not learn a Bayes optimal classifier. This work has also formalized HDC/VSA us-
ing the notion of finite groups and as a result introduced a new model CGR that generalized BSC,
and is equivalent to FHRR in the limit.

Another important aspect that should be studied theoretically is the definition of the binding
operation. Currently, there is no agreement on what shall be considered a canonical definition
of the binding. Various researchers define it differently. For example, is it compulsory that the
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result of binding is dissimilar to its arguments as is, e.g., the case in FHRR or BSC, or shall it
preserve some similarity as in SBDR? An attempt to taxonomize the existing proposals can be
found in [169], but it does not provide an answer to the question of whether there exists some
abstract mathematical definition of a “pure” binding operation and whether it is useful in practice
to deviate from this definition and create concrete realizations of the binding operation that would
not comply completely with that definition. In that vein, a recent theoretical consideration of
multiplicative binding was presented in [49]. We foresee that, as HDC/VSA will be exposed more
to theoretical computer scientists and applied mathematicians, we will see more works building
the theoretical foundations of the field.

4.3 Implementation of the HDC/VSA Models in Hardware

A large part of the promise of HDC/VSA is based on the fact that they are suitable for implementa-
tions on a variety of unconventional hardware such as neuromorphic hardware [29], in-memory
computing [70], monolithic 3D integration hardware [105, 192], and so on. It is interesting that
the motivation to use HDC/VSA on specialized hardware was present from the very beginning.
Early examples are specialized neurocomputers [100] built to operate with SBDR. Moreover, the
topic of hardware implementations has received a lot of attention recently. This is mostly due to
the fact that modern machine learning algorithms such as deep neural networks require massive
resources to train and run them [181]. In our opinion, an additional motivation comes from the fact
that HDC/VSA can be seen as an abstraction algorithmic layer and can, thus, be used for designing
computational primitives, which can then be mapped to various hardware platforms [78]. Never-
theless, hardware for HDC/VSA is an active research field and a topic of its own, therefore, we have
decided to leave it outside the scope of this survey. However, we expect that in the coming years
this topic is going to play an important role in the development of the community. As another
interesting direction, HDC/VSA can embrace noise and stochasticity of in-memory computing
hardware [70, 71, 197] to enhance security as shown in [198] by directly generating time-variable
cipher-texts that are yet decryptable.

5 CONCLUSION

In this Part I of the survey, we provided a comprehensive coverage of the computing framework
known under the names HDC and VSA. We paid particular attention to existing HDC/VSA models
and the transformations of input data of various types into hypervector representations.

Part II of the survey [84] reviews known applications, touches upon cognitive modeling and
cognitive architectures, and discusses the open problems along with the most promising directions
for the future work.
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