
Supervised learning



Perceptron model
(Rosenblatt, ca. 1960)
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Perceptron learning rule
(Rosenblatt 1962)
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Gradient descent in weight space
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Linear neuron learning rule
(Widrow & Hoff 1960)

Objective function Learning rule
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Two-layer network
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Learning rule for output layer
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Learning rule for hidden layer
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NetTalk
(Sejnowski & Rosenberg 1987)





“LeNet”
(Yann LeCun et al., 1989) 



Carnegie Mellon University
Research Showcase @ CMU

Computer Science Department School of Computer Science

1989

ALVINN, an autonomous land vehicle in a neural
network
Dean A. Pomerleau
Carnegie Mellon University

Follow this and additional works at: h+p://repository.cmu.edu/compsci

*is Technical Report is brought to you for free and open access by the School of Computer Science at Research Showcase @ CMU. It has been
accepted for inclusion in Computer Science Department by an authorized administrator of Research Showcase @ CMU. For more information, please
contact research-showcase@andrew.cmu.edu.

ALVINN 
Architecture 

Road Intensity 
Feedback Unit 

45 Direction 
Output Units 

8x32 Range Finder 
Input Retina 

30x32 Video 
Input Retina 

Figure 1: ALVINN Architecture 

is lighter or darker than the non-road in the current image. During testing, the activation 
of the output road intensity feedback unit is recirculated to the input layer in the style 
of Jordan [Jordan, 1988] to aid the network's processing by providing rudimentary in-
formation concerning the relative intensities of the road and the non-road in the previous 
image. 

TRAINING 
Training on actual road images is logistically difficult, because in order to develop a 
general representation, the network must be presented with a large number of training 
exemplars depicting roads under a wide variety of conditions. Collection of such a 
data set would be difficult, and changes in parameters such as camera orientation would 
require collecting an entirely new set of road images. To avoid these difficulties we have 
developed a simulated road generator which creates road images to be used as training 
exemplars for the network. The simulated road generator uses nearly 200 parameters 
in order to generate a variety of realistic road images. Some of the most important 
parameters are listed in figure 2. 

Figure 3 depicts the video images of one real road and one artificial road generated with a single set of values for the parameters from Figure 2. Although not shown in Figure 3, the road generator also creates corresponding simulated range finder images. 
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Gain Fields
(Zipser & Anderson, 1987)



Gain Fields
(Zipser & Anderson, 1987)



Deep networks appear to predict responses of V4 and IT neurons
(Yamins & DiCarlo 2016)
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a rectified linear threshold or a sigmoid, (iii) pooling, a nonlinear  
aggregation operation—typically the mean or maximum of local  
values13, and (iv) divisive normalization, correcting output values to 
a standard range17. Not all HCNN incarnations use these operations 
in this order, but most are reasonably similar. All the basic operations 
exist within a single HCNN layer, which is then typically mapped to 
a single cortical area.

Analogously to neural receptive fields, all HCNN operations are 
applied locally, over a fixed-size input zone that is typically smaller 
than the full spatial extent of the input (Fig. 1c). For example, on a 
256 × 256 pixel image, a layer’s receptive fields might be 7 × 7 pixels. 

Because they are spatially overlapping, the filter and pooling operations  
are typically ‘strided’, meaning that output is retained for only a  
fraction of positions along each spatial dimension: a stride of 2 in 
image convolution will skip every second row and column.

In HCNNs, filtering is implemented via convolutional weight shar-
ing, meaning that the same filter templates are applied at all spatial 
locations. Since identical operations are applied everywhere, spatial 
variation in the output arises entirely from spatial variation in the 
input stimulus. It is unlikely the brain literally implements weight 
sharing, since the physiology of the ventral stream and other sensory 
cortices appears to rule out the existence of a single master location in 
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Figure 1 HCNNs as models of sensory  
cortex. (a) The basic framework in which  
sensory cortex is studied is one of encoding—the process by which stimuli are transformed  
into patterns of neural activity—and decoding, the process by which neural activity generates  
behavior. HCNNs have been used to make models of the encoding step; that is, they describe  
the mapping of stimuli to neural responses as measured in brain. (b) The ventral visual pathway is the most comprehensively studied sensory cascade. 
It consists of a series of connected cortical brain areas (macaque brain shown). PIT, posterior inferior temporal cortex; CIT, central; AIT, anterior; 
RGC, retinal ganglion cell; LGN, lateral geniculate nucleus. DoG, difference of Gaussians model; T(•), transformation. (c) HCNNs are multilayer neural 
networks, each of whose layers are made up of a linear-nonlinear (LN) combination of simple operations such as filtering, thresholding, pooling and 
normalization. The filter bank in each layer consists of a set of weights analogous to synaptic strengths. Each filter in the filter bank corresponds to a 
distinct template, analogous to Gabor wavelets with different frequencies and orientations; the image shows a model with four filters in layer 1, eight in 
layer 2, and so on. The operations within a layer are applied locally to spatial patches within the input, corresponding to simple, limited-size receptive 
fields (red boxes). The composition of multiple layers leads to a complex nonlinear transform of the original input stimulus. At each layer, retinopy 
decreases and effective receptive field size increases. HCNNs are good candidates for models of the ventral visual pathway. By definition, they are image 
computable, meaning that they generate responses for arbitrary input images; they are also mappable, meaning that they can be naturally identified in a 
component-wise fashion with observable structures in the ventral pathway; and, when their parameters are chosen correctly, they are predictive, meaning 
that layers within the network describe the neural response patterns to large classes of stimuli outside the domain on which the models were built.

Box 1 Minimal criteria for a sensory encoding model 

We identify three criteria that any encoding model of a sensory cortical system should meet:
Stimulus-computability: The model should accept arbitrary stimuli within the general stimulus domain of interest;
Mappability: The components of the model should correspond to experimentally definable components of the neural system; and
Predictivity: The units of the model should provide detailed predictions of stimulus-by-stimulus responses, for arbitrarily chosen neurons in each 
mapped area.
These criteria may sometimes be in tension—insisting on mappability at the finest grain might hinder identifying models that actually work for complex 
real-world stimuli, since low-level circuit tools may operate best in reduced stimulus regimes. While seeking detailed models of neural circuit connec-
tivity in simplified contexts is important, if such models do not add up in the aggregate to accurate predictors of neural responses to real-world stimuli, 
the utility of their lower-level verisimilitude is limited.
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