
Computing with high-dimensional vectors



Among the most challenging scientific questions of our time are the 
corresponding analytic and synthetic problems:  How does the brain function? 
 Can we design a machine which will simulate a brain?
-- Automata Studies, 1956

Alan Turing John von Neumann Marvin Minsky John McCarthy

Artificial Intelligence



“The theory reported here clearly demonstrates the feasibility and fruitfulness of a 
quantitative statistical approach to the organization of cognitive systems. By the study of 
systems such as the perceptron, it is hoped that those fundamental laws of organization 
which are common to all information handling systems, machines and men included, may 
eventually be understood.”  -- Frank Rosenblatt


The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. In, 
Psychological Review, Vol. 65, No. 6, pp. 386-408, November, 1958.

Cybernetics/neural networks

Norbert Wiener Warren McCulloch & Walter Pitts Frank Rosenblatt



Single neuron recording  ⇒  Single neuron thinking
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Holographic Reduced 
Representations

Vector Symbolic 
Architectures

Hyperdimensional 
Computing

• Everything represented as a high-dimensional vector.
• Algebra over vectors (instead of numbers).



Hyperdimensional Computing

• The brain’s circuits are high-dimensional.


• Computing elements are stochastic, not 
deterministic.


• No two brains are alike, yet they exhibit the 
same behavior.


• Learns from data/example, learns by 
analogy, or even “one-shot.”


• Integrates signals from disparate senses.


• Allows high degree of parallelism.

Pentti Kanerva



Computing with High-Dimensional Vectors
(aka ‘HD computing’)
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Set or Bundling { a, b, c, … } Z(a) + Z(b) + Z(c) + ….

Key-Value binding x  a← K(x)  V(a)⊙

Spatial relations, 
transformation

‘object a’ at ‘position x’
shift by y

S = O(a)  Z(x)⊙
S_new = Z(y)  S⊙

Sequencing [ a b c … ] Z(a) + (Z(b)) + (Z(c)) + ….ρ ρ2

HDC Algebra
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Vector Symbolic Architectures
as a Computing Framework
for Emerging Hardware
This article reviews recent progress in the development of the computing framework
referred to as vector symbolic architectures, or hyperdimensional computing.
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ABSTRACT | This article reviews recent progress in the devel-

opment of the computing framework vector symbolic archi-

tectures (VSA) (also known as hyperdimensional computing).

This framework is well suited for implementation in stochastic,

emerging hardware, and it naturally expresses the types of

cognitive operations required for artificial intelligence (AI).

We demonstrate in this article that the field-like algebraic

structure of VSA offers simple but powerful operations on

high-dimensional vectors that can support all data structures

and manipulations relevant to modern computing. In addition,

we illustrate the distinguishing feature of VSA, “computing

in superposition,” which sets it apart from conventional com-

puting. It also opens the door to efficient solutions to the

difficult combinatorial search problems inherent in AI applica-

tions. We sketch ways of demonstrating that VSA are com-

putationally universal. We see them acting as a framework

for computing with distributed representations that can play a

role of an abstraction layer for emerging computing hardware.

This article serves as a reference for computer architects by

illustrating the philosophy behind VSA, techniques of distrib-

uted computing with them, and their relevance to emerging

computing hardware, such as neuromorphic computing.

KEYWORDS | Computing framework; computing in superpo-

sition; data structures; distributed representations; emerging

hardware; holographic reduced representation (HRR); hyperdi-

mensional (HD) computing; Turing completeness; vector sym-

bolic architectures (VSA).

I. I N T R O D U C T I O N
The demands of computation are changing. First, artificial
intelligence (AI) and other novel applications pose a host
of computing problems that require a search over an
immense space of possible solutions, with many approx-
imately correct answers, but rarely a single correct one.
Second, future emerging hardware platforms, operating
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