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We can keep on going...
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Figure 2.2: Why Bayes embodies Occam’s razor

This figure gives the basic intuition for why complex models are penalised. The horizontal axis
represents the space of possible data sets D. Bayes’ rule rewards models in proportion to how much
they predicted the data that occurred. These predictions are quantified by a normalised probability
distribution on D. In this paper, this probability of the data given model H;, P(D|H;), is called
the evidence for H;.

A simple model H; makes only a limited range of predictions, shown by P(D|H1); a more powerful
model Ho, that has, for example, more free parameters than 7, is able to predict a greater variety
of data sets. This means however that Ho does not predict the data sets in region C; as strongly as
H.. Assume that equal prior probabilities have been assigned to the two models. Then if the data
set falls in region Cq, the less powerful model Hq will be the more probable model.
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Figure 2.3: The Occam factor
This figure shows the quantities that determine the Occam factor for a hypothesis H; having a single
parameter w. The prior distribution (dotted line) for the parameter has width A%w. The posterior
distribution (solid line) has a single peak at wyp with characteristic width Aw. The Occam factor
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Sparse coding model
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NOISE REMOVAL VIA BAYESIAN WAVELET CORING

Eero P. Stmoncells

Computer and Information Science Dept.

University of Pennsylvania
Philadelphia, PA 19104

The classical solution to the noise removal problem is
the Wiener filter, which utilizes the second-order statis-
tics of the Fourier decomposition. Subband decomposi-
tions of natural images have significantly non-Gaussian
higher-order point statistics; these statistics capture im-
age properties that elude Fourier-based techniques. We
develop a Bayesian estimator that is a natural exten-
sion of the Wiener solution, and that exploits these
higher-order statistics. The resulting nonlinear esti-
mator performs a “coring” operation. We provide a
simple model for the subband statistics, and use it to
develop a semi-blind noise-removal algorithm based on
a steerable wavelet pyramaid.

Edward H. Adelson

Brain and Cognitive Science Dept.

Massachusetts Institute of Technology
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Deep convnets are easily fooled by imperceptible
perturbations (adversarial examples)
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Szegedy et al. (2013)



Sparse inference protects against adversarial attack
(Paiton, Frye, Lundquist, Bowen, Zarcone & Olshausen 2020)

ISO-response contours
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