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Figure 2.2: Why Bayes embodies Occam’s razor
This figure gives the basic intuition for why complex models are penalised. The horizontal axis
represents the space of possible data sets D. Bayes’ rule rewards models in proportion to how much
they predicted the data that occurred. These predictions are quantified by a normalised probability
distribution on D. In this paper, this probability of the data given model Hi, P (D|Hi), is called
the evidence for Hi.
A simple model H1 makes only a limited range of predictions, shown by P (D|H1); a more powerful
model H2, that has, for example, more free parameters than H1, is able to predict a greater variety
of data sets. This means however that H2 does not predict the data sets in region C1 as strongly as
H1. Assume that equal prior probabilities have been assigned to the two models. Then if the data
set falls in region C1, the less powerful model H1 will be the more probable model.

appreciated is how Bayes performs the second level of inference. It is here that Bayesian
methods are totally different from orthodox sampling theory methods. Indeed, when re-
gression and density estimation are discussed in most statistics texts (for example [24]),
the task of model comparison is virtually ignored; no general orthodox method exists for
solving this problem.

Model comparison is a difficult task because it is not possible simply to choose the model
that fits the data best: more complex models can always fit the data better, so the maximum
likelihood model choice would lead us inevitably to implausible over–parameterised models
which generalise poorly. ‘Occam’s razor’ is the principle that states that unnecessarily
complex models should not be preferred to simpler ones. Bayesian methods automatically
and quantitatively embody Occam’s razor [26, 38], without the introduction of ad hoc
penalty terms. Complex models are automatically self–penalising under Bayes’ rule. Figure
2.2 gives the basic intuition for why this should be expected; the rest of this chapter will
explore this property in depth.

Bayesian methods, simultaneously conceived by Bayes [6] and Laplace [80], were first laid
out in depth by the Cambridge geophysicist Sir Harold Jeffreys [38]. The logical basis for
the Bayesian use of probabilities as measures of plausibility was subsequently established by
Cox [17], who proved that consistent inference in a closed hypothesis space can be mapped
onto probabilities. For a general review of Bayesian philosophy the reader is encouraged
to read the excellent papers by Jaynes and Loredo [36, 47], and the recently reprinted text
of Box and Tiao [13]. Since Jeffreys, the emphasis of most Bayesian probability theory
has been ‘to formally utilize prior information’ [8], i.e., to perform inference in a way that
makes explicit the prior knowledge and ignorance that we have, which orthodox methods
omit. However, Jeffreys’ work also laid the foundation for Bayesian model comparison,
which does not involve an emphasis on prior information, but rather emphasises getting
maximal information from the data. Jeffreys applied this theory to simple model comparison
problems in geophysics, for example testing whether a single additional parameter is justified
by the data. Since the 1960s, Jeffreys’ model comparison methods have been applied and
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Figure 2.3: The Occam factor
This figure shows the quantities that determine the Occam factor for a hypothesis Hi having a single
parameter w. The prior distribution (dotted line) for the parameter has width ∆0w. The posterior
distribution (solid line) has a single peak at wMP with characteristic width ∆w. The Occam factor
is ∆w

∆0w .

P (D |Hi) ! P (D |wMP,Hi)
︸ ︷︷ ︸

P (wMP|Hi)∆w
︸ ︷︷ ︸

.

Evidence ! Best fit likelihood Occam factor

(2.5)

Thus the evidence is found by taking the best fit likelihood that the model can achieve and
multiplying it by an ‘Occam factor’ [26], which is a term with magnitude less than one that
penalises Hi for having the parameter w.

Interpretation of the Occam factor

The quantity ∆w is the posterior uncertainty in w. Imagine for simplicity that the prior
P (w|Hi) is uniform on some large interval ∆0w, representing the range of values of w that
Hi thought possible before the data arrived (figure 2.3). Then P (wMP|Hi) = 1

∆0w , and

Occam factor =
∆w

∆0w
,

i.e., the ratio of the posterior accessible volume of Hi’s parameter space to the
prior accessible volume, or the factor by which Hi’s hypothesis space collapses when the
data arrive [26, 38]. The model Hi can be viewed as being composed of a certain number of
equivalent submodels, of which only one survives when the data arrive. The Occam factor
is the inverse of that number. The log of the Occam factor can be interpreted as the amount
of information we gain about the model when the data arrive.

Typically, a complex model with many parameters, each of which is free to vary over a
large range ∆0w, will be penalised with a larger Occam factor than a simpler model. The
Occam factor also provides a penalty for models which have to be finely tuned to fit the
data; the Occam factor promotes models for which the required precision of the parameters
∆w is coarse. The Occam factor is thus a measure of complexity of the model, but unlike
the V–C dimension or algorithmic complexity, it relates to the complexity of the predictions
that the model makes in data space; therefore it depends on the number of data points and
other properties of the data set. Which model achieves the greatest evidence is determined
by a trade–off between minimising this natural complexity measure and minimising the data
misfit.
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The classical solution to the noise removal problem is
the Wiener filter, which utilizes the second-order statis-
tics of the Fourier decomposition. Subband decomposi-
tions of natural images have significantly non-Gaussian
higher-order point statistics; these statistics capture im-
age properties that elude Fourier-based techniques. We
develop a Bayesian estimator that is a natural exten-
sion of the Wiener solution, and that exploits these
higher-order statistics. The resulting nonlinear esti-
mator performs a “coring” operation. We provide a
simple model for the subband statistics, and use it to
develop a semi-blind noise-removal algorithm based on
a steerable wavelet pyramid.

A common technique for noise reduction is known as
“coring”. An image signal is split into two or more
bands; the highpass bands are subjected to a thresh-
old non-linearity that suppresses low-amplitude values
while retaining high-amplitude values. Use of such
techniques is widespread: for example, most consumer
VCR’s use a simple one-dimensional coring technique.
Many variants of coring have been developed, includ-
ing two-dimensional coring [1], multi-scale oriented cor-
ing [2, 3], pyramid coring [4], and multi-band coring
with orthogonal bases [5]. The nonlinear operator is of-
ten smoothed to give a “soft” threshold, but the exact
choice of function in these techniques has been ad hoc.
Similar techniques, based on the statistical concept of
“shrinkage”, have been recently used with wavelet ex-
pansions [6].
The intuition underlying coring is that images typically
have spatial structure, consisting of smooth areas inter-
spersed with occasional edges. This notion is evident
statistically: the pixels in highpass and bandpass sub-
bands of images have significantly non-Gaussian proba-
bility density functions (pdf’s) that are sharply peaked
at zero with broad tails. Specifically, the coefficient
of kurtosis κ (fourth moment divided by squared vari-
ance) is typically well above the value of 3 that one
expects for a Gaussian pdf.
Field [7] has shown that kurtosis for subbands of nat-
ural scenes varies with filter bandwidth, and is maxi-
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Figure 1. Histograms of a mid-frequency subband
in an octave-bandwidth wavelet decomposition for
two different images. Left: The“Einstein” image.
Right: A white noise image with uniform pdf.

mal at roughly one octave. Significantly wider or nar-
rower bandwidths produce kurtoses near 3 (i.e., Gaus-
sian statistics). Several authors have used Laplacian
pdf models (with kurtosis 6) for image subband statis-
tics (e.g., [8, 9]).
Figure 1 contains an example histogram from a single
subband of a wavelet transform built on the “Einstein”
image, for which the sample kurtosis is 9.8. For com-
parison, the histogram of the same subband built on
uniform white noise is shown. This histogram is nearly
Gaussian, with a sample kurtosis of 2.9. Coring relies
on the striking dissimilarity between the point statis-
tics of these two image types.
In the following, we describe a technique for determin-
ing the optimal coring function in the Bayesian sense1,
and apply it to a steerable wavelet pyramid.

1. BAYESIAN SIGNAL ESTIMATION

Consider a scalar x contaminated with additive noise
n: y = x + n. The mean of the posterior distribution
provides an unbiased least-squares estimate of the vari-
able x, given measurement y. Bayes’ rule allows us to
write this in terms of the probability densities of the
noise and signal:

x̂(y) =
∫

dx Px|y(x|y) x

1An earlier version of this technique is described in [10], a
bachelor’s thesis supervised by the authors.

y = x+ n
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MAP estimate:
=

∫
dx Py|x(y|x) Px(x) x∫
dx Py|x(y|x) Px(x)

=
∫

dx Pn(y − x) Px(x) x∫
dx Pn(y − x) Px(x)

, (1)

where Pn indicates the probability density function of
the noise, and Px the prior probability density function
of the signal. The denominator is the pdf of the noisy
observation, computed via convolution of the noise and
signal pdf’s. In order to use this equation to estimate
the original signal value x, we must know both of these
probability density functions.
Consider a few simple examples. First, let the noise
have a zero-mean Gaussian distribution with variance
σ2

n, and let the signal prior be a zero-mean Gaussian
with variance σ2

s . In this case, a well-known closed-
form solution exists:

x̂(y) =
σ2

s y

σ2
s + σ2

n

.

The solution is a simple linear rescaling of the measure-
ment. When applied to the coefficients of a Fourier
transform, this estimator corresponds to the Wiener
filter. When applied to subbands of a wavelet trans-
form, the solution is an approximation to the Wiener
filter, in which the power spectral density information
is averaged over each of the subbands.
Now consider the case in which the noise distribution
is Gaussian, but the signal prior is a more sharply
peaked distribution, such as that shown in figure 1. In
such cases, a closed-form expression for the estimator
in equation (1) may not be available, but a numerical
solution may be used.2. We have computed a numeri-
cal approximation of the estimator for the histograms
illustrated figure 1. The estimator is illustrated graph-
ically in figure 2. Note that this estimator now corre-
sponds to a nonlinear “coring” operation: large ampli-
tude values are preserved, and small amplitude values
are suppressed. This is intuitively sensible: given the
substantial signal probability mass at x = 0, small val-
ues of y are assumed to have arisen from a value of
x = 0. This curve is similar to the soft-thresholding
functions that have been previously devised by more
ad hoc methods; the Bayesian derivation thus provides
a principled justification for coring systems.

2. PARAMETERIZED MODEL FOR
WAVELET COEFFICIENT STATISTICS

The Bayesian estimator discussed above relies on a
knowledge of the signal point statistics. In order to uti-
lize it, we need a parameterized model for these pdf’s
such that: 1) the model provides a good fit to the

2One must, in practice, take care to regularize singularities
resulting from distribution points with very small probability.
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Figure 2. Bayesian estimator (symmetrized) for
the signal and noise histograms shown in figure 1.
Superimposed on the plot is a straight line indicat-
ing the identity function.

statistics of natural images, and 2) one can estimate
the model parameters from the noisy observation.
For our purposes here, we use a two-parameter gener-
alized Laplacian distribution, also used by Mallat [11]:

Px(x) ∝ e−|x/s|p . (2)

The distribution is zero-mean and symmetric, and the
parameters {s, p} are directly related to the second and
fourth moments. Specifically (after consultation with
an integral table) one obtains:

σ2 =
s2Γ( 3

p )

Γ( 1
p )

, κ =
Γ( 1

p )Γ( 5
p )

Γ2( 3
p )

, (3)

where Γ(x) =
∫ ∞
0 tx−1e−t dt, the well known “gamma”

function. Given the sample variance and kurtosis of
a histogram, we can solve for the two parameters of
our model pdf. Typical values for p are in the range
[0.5, 1.0]. This method of model density estimation is
simple and direct, but clearly suboptimal. In the cur-
rent context, the quality of the estimator should be
tested by comparing the noise removal results using
the sample (histogram) statistics, and those using the
model pdf: such a comparison is given in section 4.
We are also interested in a more realistic “blind” al-
gorithm, in which the parameters are estimated from
noisy observations. We note that the second and fourth
moments of a generalized Laplacian signal corrupted by
additive Gaussian white noise are:

σ2 = σ2
n +

s2Γ( 3
p )

Γ( 1
p )

, m4 = 3σ4
n +

6σ2
ns2Γ( 3

p )

Γ( 1
p )

+
s4Γ( 5

p )

Γ( 1
p )

.

Assuming σn is known, the measurements of these two
moments of the noisy data is sufficient to estimate the
model pdf parameters. Results of such an algorithm
are given in section 4.

2
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Figure 4. Noise reduction example. (a) Original image (cropped). (b) Image contaminated with additive Gaussian
white noise (SNR = 9.00dB). (c) Image restored using (semi-blind) Wiener filter (SNR = 11.88dB). (d) Image restored
using (semi-blind) Bayesian estimator (SNR = 13.82dB).

ful in other applications, such as image compression or
texture synthesis.
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original image image + noise

Wiener filter wavelet coring

=
∫

dx Py|x(y|x) Px(x) x∫
dx Py|x(y|x) Px(x)

=
∫

dx Pn(y − x) Px(x) x∫
dx Pn(y − x) Px(x)

, (1)

where Pn indicates the probability density function of
the noise, and Px the prior probability density function
of the signal. The denominator is the pdf of the noisy
observation, computed via convolution of the noise and
signal pdf’s. In order to use this equation to estimate
the original signal value x, we must know both of these
probability density functions.
Consider a few simple examples. First, let the noise
have a zero-mean Gaussian distribution with variance
σ2

n, and let the signal prior be a zero-mean Gaussian
with variance σ2

s . In this case, a well-known closed-
form solution exists:

x̂(y) =
σ2

s y

σ2
s + σ2

n

.

The solution is a simple linear rescaling of the measure-
ment. When applied to the coefficients of a Fourier
transform, this estimator corresponds to the Wiener
filter. When applied to subbands of a wavelet trans-
form, the solution is an approximation to the Wiener
filter, in which the power spectral density information
is averaged over each of the subbands.
Now consider the case in which the noise distribution
is Gaussian, but the signal prior is a more sharply
peaked distribution, such as that shown in figure 1. In
such cases, a closed-form expression for the estimator
in equation (1) may not be available, but a numerical
solution may be used.2. We have computed a numeri-
cal approximation of the estimator for the histograms
illustrated figure 1. The estimator is illustrated graph-
ically in figure 2. Note that this estimator now corre-
sponds to a nonlinear “coring” operation: large ampli-
tude values are preserved, and small amplitude values
are suppressed. This is intuitively sensible: given the
substantial signal probability mass at x = 0, small val-
ues of y are assumed to have arisen from a value of
x = 0. This curve is similar to the soft-thresholding
functions that have been previously devised by more
ad hoc methods; the Bayesian derivation thus provides
a principled justification for coring systems.

2. PARAMETERIZED MODEL FOR
WAVELET COEFFICIENT STATISTICS

The Bayesian estimator discussed above relies on a
knowledge of the signal point statistics. In order to uti-
lize it, we need a parameterized model for these pdf’s
such that: 1) the model provides a good fit to the

2One must, in practice, take care to regularize singularities
resulting from distribution points with very small probability.
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Figure 2. Bayesian estimator (symmetrized) for
the signal and noise histograms shown in figure 1.
Superimposed on the plot is a straight line indicat-
ing the identity function.

statistics of natural images, and 2) one can estimate
the model parameters from the noisy observation.
For our purposes here, we use a two-parameter gener-
alized Laplacian distribution, also used by Mallat [11]:

Px(x) ∝ e−|x/s|p . (2)

The distribution is zero-mean and symmetric, and the
parameters {s, p} are directly related to the second and
fourth moments. Specifically (after consultation with
an integral table) one obtains:

σ2 =
s2Γ( 3

p )

Γ( 1
p )

, κ =
Γ( 1

p )Γ( 5
p )

Γ2( 3
p )

, (3)

where Γ(x) =
∫ ∞
0 tx−1e−t dt, the well known “gamma”

function. Given the sample variance and kurtosis of
a histogram, we can solve for the two parameters of
our model pdf. Typical values for p are in the range
[0.5, 1.0]. This method of model density estimation is
simple and direct, but clearly suboptimal. In the cur-
rent context, the quality of the estimator should be
tested by comparing the noise removal results using
the sample (histogram) statistics, and those using the
model pdf: such a comparison is given in section 4.
We are also interested in a more realistic “blind” al-
gorithm, in which the parameters are estimated from
noisy observations. We note that the second and fourth
moments of a generalized Laplacian signal corrupted by
additive Gaussian white noise are:

σ2 = σ2
n +

s2Γ( 3
p )

Γ( 1
p )

, m4 = 3σ4
n +

6σ2
ns2Γ( 3

p )

Γ( 1
p )

+
s4Γ( 5

p )

Γ( 1
p )

.

Assuming σn is known, the measurements of these two
moments of the noisy data is sufficient to estimate the
model pdf parameters. Results of such an algorithm
are given in section 4.
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Figure 5: Adversarial examples generated for AlexNet [9].(Left) is correctly predicted sample, (center) dif-
ference between correct image, and image predicted incorrectly magnified by 10x (values shifted by 128 and
clamped), (right) adversarial example. All images in the right column are predicted to be a “ostrich, Struthio
camelus”, which is fast-running African flightless bird with two-toed feet, largest living bird. Average distortion
based on 64 examples is 0.006508.

increasing the robustness and convergence speed of the models [9, 13]. These deformations are,
however, statistically inefficient, for a given example: they are highly correlated and are drawn from
the same distribution throughout the entire training of the model. We propose a scheme to make this
process adaptive in a way that exploits the model and its deficiencies in modeling the local space
around the training data.

We make the connection with hard-negative mining explicitly, as it is close in spirit: hard-negative
mining, in computer vision, consists of identifying training set examples (or portions thereof) which
are given low probabilities by the model, but which should be high probability instead, cf. [5]. The
training set distribution is then changed to emphasize such hard negatives and a further round of
model training is performed. As shall be described, the optimization problem proposed in this work
can also be used in a constructive way, similar to the hard-negative mining principle.

4.1 Formal description

We denote by f : Rm �! {1 . . . k} a classifier mapping image pixel value vectors to a discrete
label set. We also assume that f has an associated continuous loss function denoted by lossf :
Rm ⇥ {1 . . . k} �! R+. For a given x 2 Rm image and target label l 2 {1 . . . k}, we aim to solve
the following box-constrained optimization problem:

• Minimize krk2 subject to:

1. f(x+ r) = l

2. x+ r 2 [0, 1]m

The minimizer r might not be unique, but we denote one such x + r for an arbitrarily chosen
minimizer by D(x, l). Informally, x + r is the closest image to x classified as l by f . Obviously,
D(x, f(x)) = f(x), so this task is non-trivial only if f(x) 6= l. In general, the exact computation
of D(x, l) is a hard problem, so we approximate it by using a box-constrained L-BFGS. Concretely,
we find an approximation of D(x, l) by performing line-search to find the minimum c > 0 for which
the minimizer r of the following problem satisfies f(x+ r) = l.

• Minimize c|r|+ lossf (x+ r, l) subject to x+ r 2 [0, 1]m

4.2 Experimental results

Our “minimimum distortion” function D has the following intriguing properties, which we will
demonstrate with qualitative and quantitative experiments in this section:
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Figure 5: Adversarial attacks are orthogonal to iso-response contours. The left and middle plots show adversarial attacks following

equation (8) for low dimensional models with straight and bent iso-response contours, respectively. Here, contours were computed

using Euler’s method. The large black arrows indicate weight vectors, the small arrows indicate gradient directions, and the colored

arrow indicates the trajectory of an iterative adversarial attack against a single neuron, where color corresponds to the target neuron’s

activation. Note that both the attack and the gradient field are orthogonal to the iso-response contours. The right plot shows the trajectory

of a projected gradient descent adversarial attack on the LCA network with 768 latent units and a linear classifier trained on the MNIST

dataset (the leftmost network in Figure 6). The neuron’s weight vectors are displayed as images along with the input image, a 1, and the

final attack output, which resembles the final classification output, a 3. The original and interim attack image positions are computed by

projecting the image data onto the plane spanned by the two weight vectors.

approximately orthogonal to the iso-response contour in this plane indicating that, for the early phase of the attack, the single-neuron228

attack approximation is good. In the following section, we demonstrate that attacks against this same network also require increased229

perturbation magnitudes for equal adversarial confidence than attacks against a more typical pointwise nonlinear network. We find that230

this result holds for both the MNIST and grayscale CIFAR-10 classification datasets.231

Sparse coding provides defense against adversarial attacks232

To test how population nonlinearities affect more typical adversarial attacks, we trained fully-connected, leaky ReLU (Maas et al.,233

2013) discriminative models on the MNIST and grayscale, cropped CIFAR-10 datasets (with preprocessing detailed in appendix section234

) as our control (denoted “w/o LCA”). Our comparison model is an LCA layer trained without supervision and a classifier trained on235

LCA activations (denoted “w/ LCA”). The LCA network was trained using the unsupervised learning rule defined in section , and the236

supervised classifier weights were trained by minimizing the cross-entropy between the one-hot ground-truth labels and the softmax237

Sparse inference protects against adversarial attack
(Paiton, Frye, Lundquist, Bowen, Zarcone & Olshausen 2020)

linear
projection sparsified

iso-response contours


