
Unsupervised Learning

Two-layer network

. . .
x1 x2 x3 xn

. . .

Wij

. . .

y1 y2 yh

Vij

z1 z2 zm
output

"hidden units"

input

hidden layer weights
(one possible solution)

Hippocampus
.
.
.
.

?
.
.
.
.
.

V1

(Neural Computation, 1993)

Hebbian Learning and PCA

PCA
(Principal Components Analysis)

x1

x2 y2
y1

ET

E =

2

4
| |
e1 e2
| |

3

5 e1 · e2 = 0

|e1| = |e2| = 1

y1 = e1 · x
y2 = e2 · x

hx1 x2i = c12

6= 0
hy1 y2i = hy1i hy2i

= 0

x1

x2 e1
e2

a.

x1

x2 e1
e2

b.

PCA
(Principal Components Analysis)

Hebbian learning

A B
…

…
WAB

�WAB / < AB >

ẇi /
*
X

j

wj xj xi

+

ẇi ∝ 〈y xi〉

.

.

.

Σ

x1
x2
x3

xn

w1
w2
w3

wn
w0

y

inputs weights bias output

Linear Hebbian learning

ẇ ∝ Cw Cij = 〈xi xj〉

y =
X

j

wj xj

=
X

j

wj hxj xii

ẇ ∝ Cw

ẇ1 / C11 w1 + C12 w2

ẇ2 / C21 w1 + C22 w2

C = E⇤ET

E =

2

4
| | |
e1 e2 · · · en
| | |

3

5 ⇤ =

2

6664

�1 0 · · · 0
0 �2 · · · 0
...

. . .
...

0 · · · 0 �n

3

7775

ET Λ E

C

v = ET wdefine:

ẇ / Cw

= E⇤ET w

= E⇤v

ET ẇ / ET E⇤v

v̇ / ⇤v

v̇1 / �1 v1

v̇2 / �2 v2

w = Ev

w → α e1

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

W1’

W
2’

v1(t) = e�1 t v1(0)

v2(t) = e�2 tv2(0)

v1
<latexit sha1_base64="xrtXQ+viJELIsOZrxfwDSqtLKRA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbSbt0dxN2N4US+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEAturOt+O6WNza3tnfJuZW//4PCoenzSNlGiGbZYJCLdDahBwRW2LLcCu7FGKgOBnWByn/udKWrDI/VkZzH6ko4UDzmjNpemA68yqNbcursAWSdeQWpQoDmofvWHEUskKssENabnubH1U6otZwLnlX5iMKZsQkfYy6iiEo2fLm6dk4tMGZIw0lkpSxbq74mUSmNmMsg6JbVjs+rl4n9eL7HhrZ9yFScWFVsuChNBbETyx8mQa2RWzDJCmebZrYSNqabMZvHkIXirL6+T9lXdc+ve43WtcVfEUYYzOIdL8OAGGvAATWgBgzE8wyu8OdJ5cd6dj2VrySlmTuEPnM8fPbqNsg==</latexit><latexit sha1_base64="xrtXQ+viJELIsOZrxfwDSqtLKRA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbSbt0dxN2N4US+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEAturOt+O6WNza3tnfJuZW//4PCoenzSNlGiGbZYJCLdDahBwRW2LLcCu7FGKgOBnWByn/udKWrDI/VkZzH6ko4UDzmjNpemA68yqNbcursAWSdeQWpQoDmofvWHEUskKssENabnubH1U6otZwLnlX5iMKZsQkfYy6iiEo2fLm6dk4tMGZIw0lkpSxbq74mUSmNmMsg6JbVjs+rl4n9eL7HhrZ9yFScWFVsuChNBbETyx8mQa2RWzDJCmebZrYSNqabMZvHkIXirL6+T9lXdc+ve43WtcVfEUYYzOIdL8OAGGvAATWgBgzE8wyu8OdJ5cd6dj2VrySlmTuEPnM8fPbqNsg==</latexit><latexit sha1_base64="xrtXQ+viJELIsOZrxfwDSqtLKRA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbSbt0dxN2N4US+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEAturOt+O6WNza3tnfJuZW//4PCoenzSNlGiGbZYJCLdDahBwRW2LLcCu7FGKgOBnWByn/udKWrDI/VkZzH6ko4UDzmjNpemA68yqNbcursAWSdeQWpQoDmofvWHEUskKssENabnubH1U6otZwLnlX5iMKZsQkfYy6iiEo2fLm6dk4tMGZIw0lkpSxbq74mUSmNmMsg6JbVjs+rl4n9eL7HhrZ9yFScWFVsuChNBbETyx8mQa2RWzDJCmebZrYSNqabMZvHkIXirL6+T9lXdc+ve43WtcVfEUYYzOIdL8OAGGvAATWgBgzE8wyu8OdJ5cd6dj2VrySlmTuEPnM8fPbqNsg==</latexit><latexit sha1_base64="xrtXQ+viJELIsOZrxfwDSqtLKRA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbSbt0dxN2N4US+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEAturOt+O6WNza3tnfJuZW//4PCoenzSNlGiGbZYJCLdDahBwRW2LLcCu7FGKgOBnWByn/udKWrDI/VkZzH6ko4UDzmjNpemA68yqNbcursAWSdeQWpQoDmofvWHEUskKssENabnubH1U6otZwLnlX5iMKZsQkfYy6iiEo2fLm6dk4tMGZIw0lkpSxbq74mUSmNmMsg6JbVjs+rl4n9eL7HhrZ9yFScWFVsuChNBbETyx8mQa2RWzDJCmebZrYSNqabMZvHkIXirL6+T9lXdc+ve43WtcVfEUYYzOIdL8OAGGvAATWgBgzE8wyu8OdJ5cd6dj2VrySlmTuEPnM8fPbqNsg==</latexit>

v2
<latexit sha1_base64="hFvtxiZBdHIotNYnp8NmcEESUEo=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Fj04rGC/YA2lM120y7d3YTdSaGE/gUvHhTx6h/y5r8xaXPQ1gcDj/dmmJkXxFJYdN1vZ2Nza3tnt7RX3j84PDqunJy2bZQYxlsskpHpBtRyKTRvoUDJu7HhVAWSd4LJfe53ptxYEeknnMXcV3SkRSgYxVyaDurlQaXq1twFyDrxClKFAs1B5as/jFiiuEYmqbU9z43RT6lBwS Sfl/uJ5TFlEzrivYxqqrj108Wtc3KZKUMSRiYrjWSh/p5IqbJ2poKsU1Ec21UvF//zegmGt34qdJwg12y5KEwkwYjkj5OhMJyhnGWEMiOyWwkbU0MZZvHkIXirL6+Tdr3muTXv8brauCviKME5XMAVeHADDXiAJrSAwRie4RXeHOW8OO/Ox7J1wylmzuAPnM8fPz+Nsw==</latexit><latexit sha1_base64="hFvtxiZBdHIotNYnp8NmcEESUEo=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Fj04rGC/YA2lM120y7d3YTdSaGE/gUvHhTx6h/y5r8xaXPQ1gcDj/dmmJkXxFJYdN1vZ2Nza3tnt7RX3j84PDqunJy2bZQYxlsskpHpBtRyKTRvoUDJu7HhVAWSd4LJfe53ptxYEeknnMXcV3SkRSgYxVyaDurlQaXq1twFyDrxClKFAs1B5as/jFiiuEYmqbU9z43RT6lBwS Sfl/uJ5TFlEzrivYxqqrj108Wtc3KZKUMSRiYrjWSh/p5IqbJ2poKsU1Ec21UvF//zegmGt34qdJwg12y5KEwkwYjkj5OhMJyhnGWEMiOyWwkbU0MZZvHkIXirL6+Tdr3muTXv8brauCviKME5XMAVeHADDXiAJrSAwRie4RXeHOW8OO/Ox7J1wylmzuAPnM8fPz+Nsw==</latexit><latexit sha1_base64="hFvtxiZBdHIotNYnp8NmcEESUEo=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Fj04rGC/YA2lM120y7d3YTdSaGE/gUvHhTx6h/y5r8xaXPQ1gcDj/dmmJkXxFJYdN1vZ2Nza3tnt7RX3j84PDqunJy2bZQYxlsskpHpBtRyKTRvoUDJu7HhVAWSd4LJfe53ptxYEeknnMXcV3SkRSgYxVyaDurlQaXq1twFyDrxClKFAs1B5as/jFiiuEYmqbU9z43RT6lBwS Sfl/uJ5TFlEzrivYxqqrj108Wtc3KZKUMSRiYrjWSh/p5IqbJ2poKsU1Ec21UvF//zegmGt34qdJwg12y5KEwkwYjkj5OhMJyhnGWEMiOyWwkbU0MZZvHkIXirL6+Tdr3muTXv8brauCviKME5XMAVeHADDXiAJrSAwRie4RXeHOW8OO/Ox7J1wylmzuAPnM8fPz+Nsw==</latexit><latexit sha1_base64="hFvtxiZBdHIotNYnp8NmcEESUEo=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Fj04rGC/YA2lM120y7d3YTdSaGE/gUvHhTx6h/y5r8xaXPQ1gcDj/dmmJkXxFJYdN1vZ2Nza3tnt7RX3j84PDqunJy2bZQYxlsskpHpBtRyKTRvoUDJu7HhVAWSd4LJfe53ptxYEeknnMXcV3SkRSgYxVyaDurlQaXq1twFyDrxClKFAs1B5as/jFiiuEYmqbU9z43RT6lBwS Sfl/uJ5TFlEzrivYxqqrj108Wtc3KZKUMSRiYrjWSh/p5IqbJ2poKsU1Ec21UvF//zegmGt34qdJwg12y5KEwkwYjkj5OhMJyhnGWEMiOyWwkbU0MZZvHkIXirL6+Tdr3muTXv8brauCviKME5XMAVeHADDXiAJrSAwRie4RXeHOW8OO/Ox7J1wylmzuAPnM8fPz+Nsw==</latexit>

Constraining the growth of the weight vector

Oja’s rule

or

. . .
x1 x2 x3 xn

y1 y2 ym. . .

Multiple output units

Sanger’s rule:

10 Mp camera

(always on)

1 Gb/sec

datastream

20 watts

Decorrelation
P1: GDL
April 9, 2001 16:15 Annual Reviews AR121-39

STATISTICS OF NATURAL IMAGES 1201

Figure 3 (a) Joint distributions of image pixel intensities separated by three different
distances. (b) Autocorrelation function.

Spatial Correlations

Even from a casual inspection of natural images, one can see that neighbor-
ing spatial locations are strongly correlated in intensity. This is demonstrated in
Figure 3, which shows scatterplots of pairs of intensity values, separated by
three different distances, and averaged over absolute position of several different
natural images. The standard measurement for summarizing these dependencies
is the autocorrelation function, C(1x, 1y), which gives the correlation (average
of the product) of the intensity at two locations as a function of relative position.
From the examples in Figure 3, one can see that the strength of the correlation
falls with distance.7
By computing the correlation as a function of relative separation, we are assum-

ing that the spatial statistics in images are translation invariant. As described above,

7Reinagel & Zador (1999) recorded eye positions of human observers viewing natural
images and found that correlation strength falls faster near these positions than generic
positions.

Joint distribution of pixels
in natural images

P1: GDL
April 9, 2001 16:15 Annual Reviews AR121-39

STATISTICS OF NATURAL IMAGES 1197

Figure 1: Illustration of principal component analysis on Gaussian-distributed data in two di-
mensions. (a) Original data. Each point corresponds to a sample of data drawn from the source
distribution (i.e. a two-pixel image). The ellipse is three standard deviations from the mean in
each direction. (b) Data rotated to principal component coordinate system. Note that the ellipse
is now aligned with the axes of the space. (c) Whitened data. When the measurements are repre-
sented in this new coordinate system, their components are distributed as uncorrelated (and thus
independent) univariate Gaussians.

response levels of the other neurons). The beauty of the independence prop-
erty is that unlike the result for single neurons, it does not require any auxilliary
constraints.
Now consider the problem faced by a “designer” of an optimal sensory system.

One wants to decompose input signals into a set of independent responses. The
general problem is extremely difficult, because characterizing the joint histogram
of the input grows exponentially with the number of dimensions, and thus one
typically must restrict the problem by simplifying the description of the input
statistics and/or by constraining the form of the decomposition. The most well-
known restriction is to consider only linear decompositions, and to consider only
the second-order (i.e. covariance or, equivalently, correlation) properties of the
input signal. The solution of this problem may be found using an elegant and
well-understood technique known as principal components analysis (PCA)3. The
principal components are a set of orthogonal axes along which the components
are decorrelated. Such a set of axes always exists, although it need not be unique.
If the data are distributed according to a multi-dimensional Gaussian,4 then the
components of the data as represented in these axes are statistically independent.
This is illustrated for a two-dimensional source (e.g. a two-pixel image) in Figure 1.

3The axes may be computed using standard linear algebraic techniques: They correspond
to the eigenvectors of the data covariance matrix.
4AmultidimensionalGaussian density is simply the extension of the scalarGaussian density
to a vector. Specifically, the density is of the form P(Ex) / exp[°ExT3°1Ex/2], where 3

is the covariance matrix. All marginal and conditional densities of this density are also
Gaussian.

(from Simoncelli & Olshausen 2001)

spatial separation

co
rre

la
tio

n

0

W = EΛ
−

1

2 E
T

Y = WX

X E
T

X Λ
−

1

2 E
T

X EΛ
−

1

2 E
T

X

Whitening

PCA “Whitening”

W = ET
<latexit sha1_base64="1x3eDdt6KOvgvW9k3r8YFcANTWo=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSK4KokIuhGKIris0Be0tUymk3boZBJmJmIJ+RU3LhRx64+482+cpFlo64HLPZxzL3PneBFnSjvOt7Wyura+sVnaKm/v7O7t2weVtgpjSWiLhDyUXQ8rypmgLc00p91IUhx4nHa86U3mdx6pVCwUTT2L6CDAY8F8RrA20tCuJH3PR530Ku+36UOzPLSrTs3JgZaJW5AqFGgM7a/+KCRxQIUmHCvVc51IDxIsNSOcpuV+rGiEyRSPac9QgQOqBkl+e4pOjDJCfihNCY1y9fdGggOlZoFnJgOsJ2rRy8T/vF6s/ctBwkQUayrI/CE/5kiHKAsCjZikRPOZIZhIZm5FZIIlJtrElYXgLn55mbTPaq5Tc+/Pq/XrIo4SHMExnIILF1CHO2hACwg8wTO8wpuVWi/Wu/UxH12xip1D+APr8weAOZNs</latexit><latexit sha1_base64="1x3eDdt6KOvgvW9k3r8YFcANTWo=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSK4KokIuhGKIris0Be0tUymk3boZBJmJmIJ+RU3LhRx64+482+cpFlo64HLPZxzL3PneBFnSjvOt7Wyura+sVnaKm/v7O7t2weVtgpjSWiLhDyUXQ8rypmgLc00p91IUhx4nHa86U3mdx6pVCwUTT2L6CDAY8F8RrA20tCuJH3PR530Ku+36UOzPLSrTs3JgZaJW5AqFGgM7a/+KCRxQIUmHCvVc51IDxIsNSOcpuV+rGiEyRSPac9QgQOqBkl+e4pOjDJCfihNCY1y9fdGggOlZoFnJgOsJ2rRy8T/vF6s/ctBwkQUayrI/CE/5kiHKAsCjZikRPOZIZhIZm5FZIIlJtrElYXgLn55mbTPaq5Tc+/Pq/XrIo4SHMExnIILF1CHO2hACwg8wTO8wpuVWi/Wu/UxH12xip1D+APr8weAOZNs</latexit><latexit sha1_base64="1x3eDdt6KOvgvW9k3r8YFcANTWo=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSK4KokIuhGKIris0Be0tUymk3boZBJmJmIJ+RU3LhRx64+482+cpFlo64HLPZxzL3PneBFnSjvOt7Wyura+sVnaKm/v7O7t2weVtgpjSWiLhDyUXQ8rypmgLc00p91IUhx4nHa86U3mdx6pVCwUTT2L6CDAY8F8RrA20tCuJH3PR530Ku+36UOzPLSrTs3JgZaJW5AqFGgM7a/+KCRxQIUmHCvVc51IDxIsNSOcpuV+rGiEyRSPac9QgQOqBkl+e4pOjDJCfihNCY1y9fdGggOlZoFnJgOsJ2rRy8T/vF6s/ctBwkQUayrI/CE/5kiHKAsCjZikRPOZIZhIZm5FZIIlJtrElYXgLn55mbTPaq5Tc+/Pq/XrIo4SHMExnIILF1CHO2hACwg8wTO8wpuVWi/Wu/UxH12xip1D+APr8weAOZNs</latexit><latexit sha1_base64="1x3eDdt6KOvgvW9k3r8YFcANTWo=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSK4KokIuhGKIris0Be0tUymk3boZBJmJmIJ+RU3LhRx64+482+cpFlo64HLPZxzL3PneBFnSjvOt7Wyura+sVnaKm/v7O7t2weVtgpjSWiLhDyUXQ8rypmgLc00p91IUhx4nHa86U3mdx6pVCwUTT2L6CDAY8F8RrA20tCuJH3PR530Ku+36UOzPLSrTs3JgZaJW5AqFGgM7a/+KCRxQIUmHCvVc51IDxIsNSOcpuV+rGiEyRSPac9QgQOqBkl+e4pOjDJCfihNCY1y9fdGggOlZoFnJgOsJ2rRy8T/vF6s/ctBwkQUayrI/CE/5kiHKAsCjZikRPOZIZhIZm5FZIIlJtrElYXgLn55mbTPaq5Tc+/Pq/XrIo4SHMExnIILF1CHO2hACwg8wTO8wpuVWi/Wu/UxH12xip1D+APr8weAOZNs</latexit>

W = E⇤� 1
2ET

<latexit sha1_base64="dkCtCMZJG/i4KUcOhtR1fS8UZEU=">AAACHnicbVDLSsNAFJ3UV62vqEs3g0VwY0mKohuhKIILFxX6giYtk8mkHTp5MDMRSsiXuPFX3LhQRHClf+MkzUJbDwz3cM69M3OPEzEqpGF8a6Wl5ZXVtfJ6ZWNza3tH393riDDmmLRxyELec5AgjAakLalkpBdxgnyHka4zuc787gPhgoZBS04jYvtoFFCPYiSVNNTPEsvxYDe9zOtNmhfrTl3gonSQnFgeRzgx06SepkXLoFUZ6lWjZuSAi8QsSBUUaA71T8sNceyTQGKGhOibRiTtBHFJMSNpxYoFiRCeoBHpKxognwg7yddL4ZFSXOiFXJ1Awlz9PZEgX4ip76hOH8mxmPcy8T+vH0vvwk5oEMWSBHj2kBczKEOYZQVdygmWbKoIwpyqv0I8RioQqRLNQjDnV14knXrNNGrm/Wm1cVXEUQYH4BAcAxOcgwa4BU3QBhg8gmfwCt60J+1Fe9c+Zq0lrZjZB3+gff0AS4Sh8g==</latexit><latexit sha1_base64="dkCtCMZJG/i4KUcOhtR1fS8UZEU=">AAACHnicbVDLSsNAFJ3UV62vqEs3g0VwY0mKohuhKIILFxX6giYtk8mkHTp5MDMRSsiXuPFX3LhQRHClf+MkzUJbDwz3cM69M3OPEzEqpGF8a6Wl5ZXVtfJ6ZWNza3tH393riDDmmLRxyELec5AgjAakLalkpBdxgnyHka4zuc787gPhgoZBS04jYvtoFFCPYiSVNNTPEsvxYDe9zOtNmhfrTl3gonSQnFgeRzgx06SepkXLoFUZ6lWjZuSAi8QsSBUUaA71T8sNceyTQGKGhOibRiTtBHFJMSNpxYoFiRCeoBHpKxognwg7yddL4ZFSXOiFXJ1Awlz9PZEgX4ip76hOH8mxmPcy8T+vH0vvwk5oEMWSBHj2kBczKEOYZQVdygmWbKoIwpyqv0I8RioQqRLNQjDnV14knXrNNGrm/Wm1cVXEUQYH4BAcAxOcgwa4BU3QBhg8gmfwCt60J+1Fe9c+Zq0lrZjZB3+gff0AS4Sh8g==</latexit><latexit sha1_base64="dkCtCMZJG/i4KUcOhtR1fS8UZEU=">AAACHnicbVDLSsNAFJ3UV62vqEs3g0VwY0mKohuhKIILFxX6giYtk8mkHTp5MDMRSsiXuPFX3LhQRHClf+MkzUJbDwz3cM69M3OPEzEqpGF8a6Wl5ZXVtfJ6ZWNza3tH393riDDmmLRxyELec5AgjAakLalkpBdxgnyHka4zuc787gPhgoZBS04jYvtoFFCPYiSVNNTPEsvxYDe9zOtNmhfrTl3gonSQnFgeRzgx06SepkXLoFUZ6lWjZuSAi8QsSBUUaA71T8sNceyTQGKGhOibRiTtBHFJMSNpxYoFiRCeoBHpKxognwg7yddL4ZFSXOiFXJ1Awlz9PZEgX4ip76hOH8mxmPcy8T+vH0vvwk5oEMWSBHj2kBczKEOYZQVdygmWbKoIwpyqv0I8RioQqRLNQjDnV14knXrNNGrm/Wm1cVXEUQYH4BAcAxOcgwa4BU3QBhg8gmfwCt60J+1Fe9c+Zq0lrZjZB3+gff0AS4Sh8g==</latexit><latexit sha1_base64="dkCtCMZJG/i4KUcOhtR1fS8UZEU=">AAACHnicbVDLSsNAFJ3UV62vqEs3g0VwY0mKohuhKIILFxX6giYtk8mkHTp5MDMRSsiXuPFX3LhQRHClf+MkzUJbDwz3cM69M3OPEzEqpGF8a6Wl5ZXVtfJ6ZWNza3tH393riDDmmLRxyELec5AgjAakLalkpBdxgnyHka4zuc787gPhgoZBS04jYvtoFFCPYiSVNNTPEsvxYDe9zOtNmhfrTl3gonSQnFgeRzgx06SepkXLoFUZ6lWjZuSAi8QsSBUUaA71T8sNceyTQGKGhOibRiTtBHFJMSNpxYoFiRCeoBHpKxognwg7yddL4ZFSXOiFXJ1Awlz9PZEgX4ip76hOH8mxmPcy8T+vH0vvwk5oEMWSBHj2kBczKEOYZQVdygmWbKoIwpyqv0I8RioQqRLNQjDnV14knXrNNGrm/Wm1cVXEUQYH4BAcAxOcgwa4BU3QBhg8gmfwCt60J+1Fe9c+Zq0lrZjZB3+gff0AS4Sh8g==</latexit>

“Whitening”

original image whitened image

I(X;R)�
X

j

�j hrji

replacements

b
w2

w1

x1x1

x2x2 f2
f1

Figure 1: a. Schematic of the model (see text for description). The goal is to maximize information
transfer between images x and the neural response r, subject to metabolic cost of firing spikes. b.
Information about the stimulus is conveyed both by the arrangement of the filters and the steepness
of the neural nonlinearities. Top: two neurons encode two stimulus components (e.g. two pixels of
an image, x1 and x2) with linear filters (black lines) whose output is passed through scalar nonlinear
functions (thick color lines; thin color lines show isoresponse contours at evenly spaced output
levels). The steepness of the nonlinearities specifies the precision with which each projection is
represented: regions of steep slope correspond to finer partitioning of the input space, reducing the
uncertainty about the input. Bottom: joint encoding leads to binning of the input space according to
the isoresponse lines above. Grayscale shading indicates the level of uncertainty (entropy) in regions
of the input (lighter shades correspond to higher uncertainty). Efficient codes optimize this binning,
subject to input distribution, noise levels, and metabolic costs on the outputs.

Parameter λj specifies the trade-off between information gained by firing more spikes, and the cost
of generating them. It is difficult to obtain a biologically valid estimate for this parameter, and
ultimately, the value of sensory information gained depends on the behavioral task and its context
[26]. Alternatively, we can use λj as a Lagrange multiplier to enforce the constraint on the mean
output of each neuron.

Our goal is to adjust both the filters and the nonlinearities of the neural population so as to maximize
the expectation of (3) under the joint distribution of inputs and outputs, p(x, r). We assume the
filters are unit norm (‖wj‖=1) to avoid an underdetermined model in which the nonlinearity scales
along its input dimension to compensate for filter amplification. The nonlinearities fj are assumed
to be monotonically increasing. We parameterized the slope of the nonlinearity gj =dfj/dyj using
a weighted sum of Gaussian kernels,

gj(yj |cjk, µjk,σj) =
K
∑

k=1

cjk exp

(

−
(yj − µjk)2

2σ2
j

)

, (4)

with coefficients cjk≥0. The number of kernelsK was chosen for sufficiently flexible nonlinearity
(in our experimentsK = 500). We spaced µjk evenly over the range of yj and chose σj for smooth
overlap of adjacent kernels (kernel centers 2σj apart).

2.1 Computing mutual information

How can we compute the information transmitted by the nonlinear network of neurons? Mutual
information can be expressed as the difference between two entropies, I(X ;R) = H(X)−H(X |R).
The first term is the entropy of the data, which is constant (i.e. it does not depend on the model) and
can therefore be dropped from the objective function. The second term is the conditional differential
entropy and represents the uncertainty in the input after observing the neural response. It is computed
by taking the expectation over output values H(X |R) = Er

[

−
∫

p(x|r) ln p(x|r)dx
]

. In general,
computing the entropy of an arbitrary high dimensional distribution is not tractable. We make several
assumptions that allow us to approximate the posterior, compute its entropy, and maximize mutual
information. The posterior is proportional to the product of the likelihood and the prior, p(x|r) ∝
p(r|x)p(x); below we describe these two functions in detail.

3

1 16

16

1

ON−center

1 16

16

1

OFF−center

0

15

a b

c

Figure 2: In the presence of biologically realistic level of noise, the optimal filters are center-
surround and contain both On-center and Off-center profiles; the optimal nonlinearities are hard-
rectifying functions. a. The set of learned filters for 100 model neurons. b. In pixel coordinates,
contours of On-center (Off-center) filters at 50% maximum (minimum) levels. c. The learned non-
linearities for the first four model neurons, superimposed on distributions of filter outputs.

0

10

sp
/s
ec

1 16 −3 0 3
0

10

sp
/s
ec

0

12

24

sp
/s
ec

1 11 −3 0 3
0

30

60

sp
/s
ec

a b

Figure 3: a. A characterization of two retinal ganglion cells obtained with white noise stimulus
[31]. We plot the estimated linear filters, horizontal slices through the filters, and mean output as
a function of input (black line, shaded area shows one standard deviation of response). b. For
comparison, we performed the same analysis on two model neurons. Note that the spatial scales of
model and data filters are different.

in the number of On-center neurons (bottom left panel). In this case, increasing the number of
neurons restored the balance of On- and Off-center filters (not shown). In the case of vanishing
input and output noise, we obtain localized oriented filters (top left panel), and the nonlinearities are
smoothly accelerating functions that map inputs to an exponential output distribution (not shown).
These results are consistent with previous theoretical work showing that optimal nonlinearity in the
low noise regime maximizes the entropy of the output subject to response constraints [11, 7, 17].

How important is the choice of linear filters for efficient information transmission? We compared
the performance of different filtersets across a range of firing rates (Fig. 5). For each simulation, we
re-optimized the nonlinearities, adjusting λj’s for desired mean rate, while holding the filters fixed.
As a rough estimate of input entropyH(X), we used an upper bound – a Gaussian distribution with
the covariance of natural images. Our results show that when filters are mismatched to the noise
levels, performance is significantly degraded. At equivalent output rate, the “wrong” filters transmit
approximately 10 fewer bits; conversely, it takes about 50% more spikes to encode the same amount
of information.

We also compared the coding efficiency of networks with variable number of neurons. First, we
fixed the allotted population spike budget to 100 (per input), fixed the absolute output noise, and

6

Objective function:

Efficient coding model of retina
(Karklin & Simoncelli 2012)

Competitive Learning

x1

x2 e1e2

a.

x1

x2 e1e2

b.

Gaussian non-Gaussian

Non-linear Hebbian learning

Non-linear neuron:

Hebbian learning then yields:

Winner-take-all learning

Network:

Learning rule:

Winner-take-all learning

before learning after learning

Winner-take-all learning

Energy function:

Gradient descent:

significantly correlated, the above scheme could learn to
code colour and type on separate sets of units, and to
represent a particular car as a combination of activity in
those units (a 'yellow' and a 'Volkswagen' unit). Gener-
alization may then occur specifically along one feature or
aspect of the input. An output correlated only with
'Volkswagen' would get connected to the unit in the
'type' group, and it could generalise to other colours
even when it has a large Hamming distance from the
original.

7 Combination of Hebbian and anti-Hebbian
mechanisms

In the following network, the detection of suspicious
coincidences is performed by conventional Hebbian
feed-forward weights, but units are connected by anti-
Hebbian inhibitory feedback connections (Fig. 1). For
linear units, this arrangement has been shown to per-
form principal component analysis by projecting into the
subspace of the eigenvectors corresponding to the n
largest eigenvalues of the covariance matrix of the input
(Frldifik 1989).' The model discussed here has similar
architecture, but units here are nonlinear, so it can learn
not only about the second-order statistics, i.e. pairwise
correlations between input elements, but also about
higher-order dependencies and features of the input.

In order to achieve sparse coding, an additional
mechanism is assumed: each unit tries to keep its prob-
ability of firing close to a fixed value by adjusting its
own threshold. A unit that has been inactive for a long
time gradually lowers its threshold (i.e~ decreases its
selectivity), while a frequently active unit gradually
becomes more selective by raising its threshold.

The network has m inputs: xy,j = 1 . . . m, and n
representation units: Yi, i = 1 . . . n. Because of the feed-
back and the nonlinearity of the units, the output
cannot be calculated in a single step as in the case of
one unit, because the final output here is influenced by
the feedback from the other units. Provided that the
feedback is symmetric (wij = wji), the network is guar-
anteed to settle into a stable state after an initial
transient (Hopfield 1982). This transient was simulated
by numerically solving the following differential equa-
tion for each input pattern:

dY*dt = f ~ i qiyxj+ j=~l w~y* - t i) - y*

where q,j is the weight of the connection from xy to
y~, w U is the connection between units y, and yj and the
nonlinearity of the units is represented by the function
f(u) = 1/(1 +exp(-Au)) . The outputs are then calcu-
lated by rounding the values of y* in the stable state to
0 or 1 (Yi = 1 if y* > .5, y~ = 0 otherwise). The feedfor-
ward weights are initially random, 2 and the feedback
weights are 0.

' A similar but asymmetrically connected network has also been
proposed for this purpose by Rubner and Sehulten (1990)
2 Selected from a uniform distribution on [0, 1] and normalised to
unit length (Y-jq~ = 1)

167

x 1

x 2

x m

Yl

Y2

Yn

Fig. 1. The architecture of the proposed network. Empty circles
are Hebbian excitatory, flied circles are anti-Hebbian inhibitory
connections

On each learning trial, after the output has been
calculated, the connections and thresholds are modified
according to the following rules:

anti-Hebbian rule-
Aw iy = - ot(yiyj - p2)
(if i = j or w;j > 0 then w # : = 0)

Hebbian rule-

Aq# = flYi (xj - qij)
threshold modification-

Ati = Y(Yi - P) .
Here ct, fl and T are small positive constants and p is

the specified bit probability. The Hebbian rule contains
a weight decay term in order to keep the feed-forward
weight vectors bounded. The anti-Hebbian rule is inher-
ently stable so no such normalizing term is necessary.
Note that these rules only contain terms related to the
units that the weight connect, so all the information
necessary for the modification is available locally at the
site of the connection.

In the next two sections some aspects of the model
will be demonstrated on two simple, artificially gener-
ated distributions.

8 Example 1: learning fines

Patterns consisting of random horizontal and vertical
lines were presented to the network. This example was
chosen for comparison with that given by Rumelhart
and Zipser (1985) to demonstrate competitive learning.

momon m mo
Fig. 2. A random sample of the patterns presented to the network in
Example 1

significantly correlated, the above scheme could learn to
code colour and type on separate sets of units, and to
represent a particular car as a combination of activity in
those units (a 'yellow' and a 'Volkswagen' unit). Gener-
alization may then occur specifically along one feature or
aspect of the input. An output correlated only with
'Volkswagen' would get connected to the unit in the
'type' group, and it could generalise to other colours
even when it has a large Hamming distance from the
original.

7 Combination of Hebbian and anti-Hebbian
mechanisms

In the following network, the detection of suspicious
coincidences is performed by conventional Hebbian
feed-forward weights, but units are connected by anti-
Hebbian inhibitory feedback connections (Fig. 1). For
linear units, this arrangement has been shown to per-
form principal component analysis by projecting into the
subspace of the eigenvectors corresponding to the n
largest eigenvalues of the covariance matrix of the input
(Frldifik 1989).' The model discussed here has similar
architecture, but units here are nonlinear, so it can learn
not only about the second-order statistics, i.e. pairwise
correlations between input elements, but also about
higher-order dependencies and features of the input.

In order to achieve sparse coding, an additional
mechanism is assumed: each unit tries to keep its prob-
ability of firing close to a fixed value by adjusting its
own threshold. A unit that has been inactive for a long
time gradually lowers its threshold (i.e~ decreases its
selectivity), while a frequently active unit gradually
becomes more selective by raising its threshold.

The network has m inputs: xy,j = 1 . . . m, and n
representation units: Yi, i = 1 . . . n. Because of the feed-
back and the nonlinearity of the units, the output
cannot be calculated in a single step as in the case of
one unit, because the final output here is influenced by
the feedback from the other units. Provided that the
feedback is symmetric (wij = wji), the network is guar-
anteed to settle into a stable state after an initial
transient (Hopfield 1982). This transient was simulated
by numerically solving the following differential equa-
tion for each input pattern:

dY*dt = f ~ i qiyxj+ j=~l w~y* - t i) - y*

where q,j is the weight of the connection from xy to
y~, w U is the connection between units y, and yj and the
nonlinearity of the units is represented by the function
f(u) = 1/(1 +exp(-Au)) . The outputs are then calcu-
lated by rounding the values of y* in the stable state to
0 or 1 (Yi = 1 if y* > .5, y~ = 0 otherwise). The feedfor-
ward weights are initially random, 2 and the feedback
weights are 0.

' A similar but asymmetrically connected network has also been
proposed for this purpose by Rubner and Sehulten (1990)
2 Selected from a uniform distribution on [0, 1] and normalised to
unit length (Y-jq~ = 1)

167

x 1

x 2

x m

Yl

Y2

Yn

Fig. 1. The architecture of the proposed network. Empty circles
are Hebbian excitatory, flied circles are anti-Hebbian inhibitory
connections

On each learning trial, after the output has been
calculated, the connections and thresholds are modified
according to the following rules:

anti-Hebbian rule-
Aw iy = - ot(yiyj - p2)
(if i = j or w;j > 0 then w # : = 0)

Hebbian rule-

Aq# = flYi (xj - qij)
threshold modification-

Ati = Y(Yi - P) .
Here ct, fl and T are small positive constants and p is

the specified bit probability. The Hebbian rule contains
a weight decay term in order to keep the feed-forward
weight vectors bounded. The anti-Hebbian rule is inher-
ently stable so no such normalizing term is necessary.
Note that these rules only contain terms related to the
units that the weight connect, so all the information
necessary for the modification is available locally at the
site of the connection.

In the next two sections some aspects of the model
will be demonstrated on two simple, artificially gener-
ated distributions.

8 Example 1: learning fines

Patterns consisting of random horizontal and vertical
lines were presented to the network. This example was
chosen for comparison with that given by Rumelhart
and Zipser (1985) to demonstrate competitive learning.

momon m mo
Fig. 2. A random sample of the patterns presented to the network in
Example 1

<latexit sha1_base64="5ZaczyMhc5ojruih1mKyBJd5Y04=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbabt2s4m7G6GE/ggvHhTx6u/x5r9x0+agrQ8GHu/NMDMviAXXxnW/ncLK6tr6RnGztLW9s7tX3j9o6ihRDBssEpFqB1Sj4BIbhhuB7VghDQOBrWB8k/mtJ1SaR/LeTGL0QzqUfMAZNVZqPfZS/jAt9coVt+rOQJaJl5MK5Kj3yl/dfsSSEKVhgmrd8dzY+ClVhjOB01I30RhTNqZD7FgqaYjaT2fnTsmJVfpkEClb0pCZ+nsipaHWkzCwnSE1I73oZeJ/Xicxgys/5TJODEo2XzRIBDERyX4nfa6QGTGxhDLF7a2EjaiizNiEshC8xZeXSfOs6l1Uz+/OK7XrPI4iHMExnIIHl1CDW6hDAxiM4Rle4c2JnRfn3fmYtxacfOYQ/sD5/AEcFY9u</latexit>qij
<latexit sha1_base64="rNw6PTs239CN1bCc68BSpLVnNLA=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbbbt2swm7E6WE/ggvHhTx6u/x5r9x0+agrQ8GHu/NMDMviKUw6LrfTmFldW19o7hZ2tre2d0r7x80TZRoxhsskpFuB9RwKRRvoEDJ27HmNAwkbwXjm8xvPXJtRKTucRJzP6RDJQaCUbRS66mXiodpqVeuuFV3BrJMvJxUIEe9V/7q9iOWhFwhk9SYjufG6KdUo2CST0vdxPCYsjEd8o6liobc+Ons3Ck5sUqfDCJtSyGZqb8nUhoaMwkD2xlSHJlFLxP/8zoJDq78VKg4Qa7YfNEgkQQjkv1O+kJzhnJiCWVa2FsJG1FNGdqEshC8xZeXSfOs6l1Uz+/OK7XrPI4iHMExnIIHl1CDW6hDAxiM4Rle4c2JnRfn3fmYtxacfOYQ/sD5/AElUY90</latexit>wij

<latexit sha1_base64="A3MAO5GrU3jlBqCvlNxgS2sZY/8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0Io/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHkyXoR3QoecgZNVZ6yPq8X664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGn1BlOBM4LfVSjQllYzrErqWSRqj9yfzUKTmzyoCEsbIlDZmrvycmNNI6iwLbGVEz0sveTPzP66YmvPYnXCapQckWi8JUEBOT2d9kwBUyIzJLKFPc3krYiCrKjE2nZEPwll9eJa2LqndZrd3XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gBlBI3i</latexit>yi

Learning lines

Input patterns:

Learned weights:

