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Figure 1.2 (A) An action potential recorded intracellularly from a cultured rat neo-
cortical pyramidal cell. (B) Diagram of a synapse. The axon terminal or bouton
is at the end of the axonal branch seen entering from the top of the figure. It is
filled with synaptic vesicles containing the neurotransmitter that is released when
an action potential arrives from the presynaptic neuron. Transmitter crosses the
synaptic cleft and binds to receptors on the dendritic spine, a process roughly 1
µm long that extends from the dendrite of the postsynaptic neuron. Excitatory
synapses onto cortical pyramidal cells form on dendritic spines as shown here.
Other synapses form directly on the dendrites, axon, or soma of the postsynaptic
neuron. (A recorded by L. Rutherford in the laboratory of G. Turrigiano; B adapted
from Kandel et al., 1991.)

causing ion-conducting channels to open. Depending on the nature of the
ion flow, the synapses can have either an excitatory, depolarizing, or an
inhibitory, typically hyperpolarizing, effect on the postsynaptic neuron.

Recording Neuronal Responses

Figure 1.3 illustrates intracellular and extracellular methods for record-
ing neuronal responses electrically (they can also be recorded optically).
Membrane potentials are measured intracellularly by connecting a hollow
glass electrode filled with a conducting electrolyte to a neuron, and com-
paring the potential it records with that of a reference electrode placed in
the extracellular medium. Intracellular recordings are made either with
sharp electrodes inserted through the membrane into the cell, or patchsharp and patch

electrodes electrodes that have broader tips and are sealed tightly to the surface of
the membrane. After the patch electrode seals, the membrane beneath its
tip is either broken or perforated, providing electrical contact with the in-
terior of the cell. The top trace in figure 1.3 is a schematic of an intracellular
recording from the soma of a neuron firing a sequence of action potentials.
The recording shows rapid spikes riding on top of a more slowly varying
subthreshold potential. The bottom trace is a schematic of an intracellular
recording made some distance out on the axon of the neuron. These traces
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Rate coding hypothesis:  the signal 
conveyed by a neuron is in the rate of 
spiking.  Spiking irregularity is largely due to 
noise and does not convey information.
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Figure 1.14 Variability of MT neurons in alert macaque monkeys responding to
moving visual images. (A) Variance of the spike counts for a 256 ms counting
period plotted against the mean spike count. The straight line is the prediction of
the Poisson model. Data are from 94 cells recorded under a variety of stimulus
conditions. (B) The multiplier A in the relationship between spike-count variance
and mean as a function of the duration of the counting interval. (C) The exponent
B in this relation as a function of the duration of the counting interval. (Adapted
from O’Keefe et al., 1997.)

The Fano factor describes the relationship between the mean spike count
over a given interval and the spike-count variance. Mean spike counts 〈n〉
and variances σ2

n from a wide variety of neuronal recordings have been
fitted to the equation σ2

n = A〈n〉B , and the multiplier A and exponent B
have been determined. The values of both A and B typically lie between
1.0 and 1.5. Because the Poisson model predicts A = B = 1, this indicates
that the data show a higher degree of variability than the Poisson model
would predict. However, many of these experiments involve anesthetized
animals, and it is known that response variability is higher in anesthetized
than in alert animals.

Figure 1.14 shows data for spike-count means and variances extracted
from recordings of MT neurons in alert macaque monkeys using a num-
ber of different stimuli. The MT (medial temporal) area is a visual region
of the primate cortex where many neurons are sensitive to image motion.area MT
The individual means and variances are scattered in figure 1.14A, but they
cluster around the diagonal which is the Poisson prediction. Similarly, the
results show A and B values close to 1, the Poisson values (figure 1.14B).
Of course, many neural responses cannot be described by Poisson statis-
tics, but it is reassuring to see a case where the Poisson model seems a
reasonable approximation. As mentioned previously, when spike trains
are not described very accurately by a Poisson model, refractory effects
are often the primary reason.

Interspike interval distributions are extracted from data as interspike in-
terval histograms by counting the number of intervals falling in discrete
time bins. Figure 1.15A presents an example from the responses of a non-
bursting cell in area MT of a monkey in response to images consisting of

MT neurons
Alert macaque monkey

256 ms window

Dayan & Abbott, Figure 1.14

Fit of  σ2(n) = A ⟨n⟩B
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Reproducibility and Variability in
Neural Spike Trains

Rob R. de Ruyter van Steveninck, Geoffrey D. Lewen,
Steven P. Strong,* Roland Koberle,† William Bialek

To provide information about dynamic sensory stimuli, the pattern of action potentials
in spiking neurons must be variable. To ensure reliability these variations must be related,
reproducibly, to the stimulus. For H1, a motion-sensitive neuron in the fly’s visual system,
constant-velocity motion produces irregular spike firing patterns, and spike counts
typically have a variance comparable to the mean, for cells in the mammalian cortex. But
more natural, time-dependent input signals yield patterns of spikes that are much more
reproducible, both in terms of timing and of counting precision. Variability and repro-
ducibility are quantified with ideas from information theory, and measured spike se-
quences in H1 carry more than twice the amount of information they would if they
followed the variance-mean relation seen with constant inputs. Thus, models that may
accurately account for the neural response to static stimuli can significantly underes-
timate the reliability of signal transfer under more natural conditions.

The nervous system represents signals by
sequences of identical action potentials or
spikes (1), which typically occur in an
irregular temporal pattern (2). The details
of this pattern may just be noise that
should be averaged out to reveal meaning-
ful signals (3). Alternatively, if the precise
arrival time of each spike is significant,
then temporal variability provides a large
capacity for carrying information (4, 5).
This issue has been debated for decades
(6) and is receiving renewed attention (5,
7). In fact, different views of the neural
code may be appropriate to different con-
texts—in an environment where signals
vary slowly, the brain may neither need
nor use the full information capacity of its
neurons, but as sensory signals become
more dynamic the demands on coding ef-
ficiency increase (5, 8). Here we show
that in H1, a motion-sensitive neuron in
the fly visual system (9), variability of
response to constant stimuli coexists with
extreme reproducibility for more natural
dynamic stimuli, and that this reproduc-
ibility has a direct impact on the informa-
tion content of the spike train.

Figure 1 shows results of an experiment in
which a fly (Calliphora vicina) views a pattern
of random bars that moves across the visual
field at constant velocity (10). After a tran-

sient, the H1 neuron settles to a steady state,
spiking at a constant rate that depends on
velocity. Such results are well known for H1
(9) and have parallels in many experiments
on sensory neurons. Spike sequences appear
irregular, and interspike intervals are distrib-

uted almost exponentially (Fig. 1D), so that
the coefficient of variation (CV) is near
unity (11). If we count the spikes in a fixed
window of time during the steady response,
then by repeating the stimulus many times
we can measure both the mean count and
the variance across trials. Figure 1E shows
that, counting spikes for different stimulus
strengths and different size time windows,
the variance grows almost in proportion to
the mean, both for H1 and for cells in the
mammalian visual cortex (12). There is also
a tendency for excess variance in large time
windows (13).

In Fig. 2 we show the spike trains gener-
ated when the fly views the same pattern of
random bars, but now moving along a dy-
namic, and presumably more naturalistic
(14), trajectory. This stimulus modulates the
spike rate rapidly over a wide range (Fig.
2C). Integrating the rate over a fixed time
window gives the mean spike count (5), and
we also measure the variance of the spike
count in that window. If we do this for all
possible locations of the window (with 1-ms
resolution), we obtain, by analogy with Fig.
1E, the relation between variance and mean
(Fig. 2, E and F). In 100-ms windows, mean
counts up to 15 occur with a variance close

R. R. de Ruyter van Steveninck, G. D. Lewen, S. P.
Strong, W. Bialek, NEC Research Institute, 4 Indepen-
dence Way, Princeton, NJ 08540, USA.
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USA.
†Present address: Instituto de Fı́sica e Quı́mica de São
Carlos (IFQSC), Universidade de São Paolo, 13560 São
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Fig. 1. Spike statistics
for constant stimuli. (A) A
random bar pattern (10)
moves across the visual
field at constant speed
(0.022°/s) and in the H1
neuron’s preferred di-
rection. (B) Fifty re-
sponse traces to the
stimulus in (A), each last-
ing 1 s, and taken 20 s
apart. The occurrence of
each spike is shown as a
dot. The traces are taken
from a segment of the
experiment where tran-
sient responses have
decayed. (C) The peri-
stimulus time histogram
(PSTH; bin width 3 ms,
96 presentations), which
describes the rate at
which spikes are gener-
ated in response to the
stimulus shown in (A).
The fluctuations are due
to finite sampling. (D) Interval histogram describing the probability density, P(t), of finding an interspike
interval of length t. (E) Scatter plot of spike count variance as a function of mean count. Open circles are
data for the fly’s H1 neuron, stimulated with a wide field pattern moving at several constant velocities (0°,
0.007°, 0.014°, 0.022°, 0.029°, and 0.058°/s) For each velocity, spikes are counted in windows of
different sizes (3, 10, 30, 100, 300, and 1000 ms). The variance of these counts is plotted against the
mean for each combination of velocity and window size. Points obtained at the same velocity are
connected by lines. The data plotted here are for average rates below 80 spikes per second. For large
counting windows, the variance grows faster then the mean. The filled circles [redrawn from Tolhurst et
al. (12)] are data from simple cells in cat visual cortex analyzed in the same way (but with either 250- or
500-ms counting windows). Comparison of the data shows that for constant stimuli, the neurons from
fly and cat are very similar in their counting statistics. Furthermore, they both approximately follow the
Poisson behavior, variance 5 mean, given by the dashed line.
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Fly H1 neuron - constant stimulus
(de Ruyter et al., 1997)



to unity. In 10-ms windows, the variance
drops to nearly zero for windows that contain
one or two spikes on average. Spikes are
discrete events, so there must be variation
from trial to trial if, for example, the average
count is 0.5. The variance is minimized if
half the trials have one spike and the other
half have none, in which case s2 5 0.25.
Generally, if the mean count is an integer
plus a fraction f, the minimum variance is
smin

2 5 f(1 2 f ). The plot of minimum
variance versus mean is scalloped, repeating
with period one. Figure 2E shows that the
data points cluster near this curve of mini-
mum variance (15), far from the relation
variance ' mean found with static stimuli.

Spike counts in response to dynamic
stimuli have smaller variances than those in
response to static stimuli, but interspike
intervals seem more variable (see Figs. 1D
and 2D). Interspike interval distributions,
however, confound variations across time
with variations across trials. To characterize
the reproducibility across trials, we measure
the distribution of interspike intervals that
bracket a fixed time in the stimulus; typi-
cally, these “stimulus-locked” interval dis-
tributions have a CV ; 0.1. This indicates
that, although the responses to dynamic
stimuli are variable across time, they are
reproducible from trial to trial.

The spike patterns seen, for example, in
Fig. 2B, are complex: Short interspike inter-
vals come in bursts, a specific event in the
stimulus may fail to elicit a spike on some
trials, and isolated spikes may occur with low
probability. It might be interesting to under-
stand how each feature arises, but here it is
more important to ask whether all these
different features can be quantified in the
same units, summarizing the variability and
reproducibility of the spike train. Shannon
proved that the only measure of variability
consistent with certain intuitive require-
ments is the entropy (16). We need two
different entropies, each of which can be
estimated directly from experiment (17): the
total entropy of the spike train, which quan-
tifies the variations across time and sets the
capacity of the spike train to carry informa-
tion, and the noise entropy, which measures
the irreproducibility from trial to trial. Both
quantities depend on the size of the time
windows T and on the time resolution Dt
with which we observe the spike train.

To observe the full range of temporal
variability, we deliver a stimulus chosen
from the same probability distribution as in
the experiments of Fig. 2, but continuing
for 9000 s without repeating. In time win-
dows of size T we digitize the spike train
with a precision Dt, so that possible spike
trains are labeled by K-letter “words,” with
K 5 T/Dt (Fig. 3); a complete analysis
requires that we explore a range of T and Dt

(17). Searching through the entire experi-
ment we estimate the probability P(W) of
each possible word W and then compute
the entropy of this distribution,

Stotal 5 2 O
W

P(W)log2P(W) bits (1)

To assess the reproducibility of the respons-
es, we return to the experiment in which a
single dynamic stimulus waveform is pre-
sented many times and examine the proba-
bility of occurrence P(Wt) for words W at
a particular time t relative to the stimulus.
These distributions (one for each t) also
have entropies, and the average of these
entropies over time is the noise entropy,

Snoise 5 K2O
W

P(Wt)log2P(Wt)L
t

bits (2)

where ^ zzz &t denotes the average over all
possible times t, with resolution Dt (18).
The average information I that the spike
train provides about the stimulus is precise-
ly the difference between these two entro-
pies, I 5 Stotal 2 Snoise. This characteriza-
tion of variability, reproducibility, and in-
formation transmission is independent of
any assumptions about which features of the

stimulus are being encoded or about which
features of the spike train are most impor-
tant in the code (17, 19).

With windows of T 5 30 ms— compa-
rable to the behavioral reaction times
(14)—and a time resolution of Dt 5 3 ms,
we find Stotal 5 5.05 6 0.01 bits and Snoise
5 2.62 6 0.02 bits. Thus, the average
information about the stimulus conveyed
in 30 ms is 2.43 6 0.03 bits, and this is
increased slightly if we sample with Dt 5
1.5 or even 0.7 ms (20). Hence, down to
millisecond time resolution, half of the
total variability of the spike train is used
to provide information about the stimulus
(21).

Information transmission is clearly en-
hanced by rapid modulations of the spike rate
(Fig. 2C). Are these rapid rate variations the
only important feature of the response? Con-
sider a model neuron that has the correct
dynamics of the firing rate, but follows the
variance-mean relation observed in response
to static stimuli. If the variance-mean relation
is given by the dashed line in Fig. 1E, then
neural firing is a modulated Poisson process
(5, 22). We simulate spike trains that result
from a Poisson process with the rate modula-
tions observed in Fig. 2C and then repeat the

Fig. 2. Spike statistics
for dynamic stimuli. (A)
The fly views the same
spatial pattern as in Fig.
1A, but now moving
with a time-dependent
velocity, part of which is
shown. The motion ap-
proximates a random
walk with diffusion con-
stant D ' 14 degrees2/
s. For illustration, the
waveform shown is low-
pass filtered. In the ex-
periment, a 10-s wave-
form is presented 900
times, every 20 s. During
the second half of this
20-s period the fly sees
the same pattern, but
now for each trial
we draw a new—inde-
pendent—velocity wave-
form from the same dis-
tribution. (B) A set of 50
response traces to the
repeated stimulus wave-
form shown in (A). (C) Averaged rate (PSTH) for the same segment. The rate is strongly modulated, but its
time average is very close to that in Fig. 1C. (D) Interval histogram for the nonrepeating part of the
experiment. It is clearly nonexponential, with CV 5 1.94, and very different from the interval distributions in
Fig. 1D. (E and F) Scatter plots of variance versus mean count. Here, in contrast to Fig. 1E, each figure
shows the mean and the variance for only one size of counting window—10 ms in (E), 100 ms in (F). Each
point is a variance-mean combination for counts across all 900 trials in a fixed time window relative to the
onset of the repeated stimulus. The first window starts 100 ms after onset of the repeated waveform,
spanning 100 to 110 ms in (E) or 100 to 200 ms in (F). Successive windows overlap as they are stepped
in 1-ms increments [for example, 101 to 111 ms, 102 to 112 ms, . . . and so on for (E)], and altogether 9000
time windows are analyzed. For comparison, the variance for the Poisson distribution is given by the
dashed lines.
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Fly H1 neuron - time-varying stimulus
(de Ruyter et al., 1997)

10 ms window

100 ms window



Spike timing can be very precise in 
response to time-varying signals

Mainen & Sejnowski (1995)



Analysis by Bair & Koch 
(1996)  
“This suggests that 
temporal dynamics of a 
higher order than those 
found in rigid translation 
are necessary to induce 
a specific and unique 
time course in the spike 
discharge pattern.”

Spike timing can be very precise in 
response to time-varying signals

MT neuron response to 
stochastic moving dot 
stimuli at different levels 
of coherence (Newsom 
lab)

3.2 Discrimination 89
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Figure 3.1 The moving random-dot stimulus for different levels of coherence. The
visual image consists of randomly placed dots that jump every 45 ms according
to the scheme described in the text. At 0% coherence the dots move randomly.
At 50% coherence, half the dots move randomly and half move together (upward
in this example). At 100% coherence all the dots move together. (Adapted from
Britten et al., 1992.)

In the following sections, we present examples of decoding that involve
both single neurons and neuronal populations. We first study a restricted
case of single-cell decoding, discrimination between two different stimu-
lus values. We then consider extracting the value of a parameter that char-
acterizes a static stimulus from the responses of a population of neurons.
As a final example, we return to single neurons and discuss spike-train
decoding, in which an estimate of a time-varying stimulus is constructed
from the spike train it evokes.

3.2 Discrimination

To introduce the notion of discriminability and the receiver operating char-
acteristic that lie at the heart of discrimination analysis, we will discuss a
fascinating study performed by Britten et al. (1992). In their experiments,
a monkey was trained to discriminate between two directions of motion
of a visual stimulus. The stimulus was a pattern of dots on a video moni-
tor that jump from random initial locations to new locations every 45 ms.
To introduce a sense of directed movement at a particular velocity, a per-
centage of the dots move together by a fixed amount in a fixed direction
(figure 3.1). The coherently moving dots are selected randomly at each
time step, and the remaining dots move to random new locations. The
percentage of dots that move together in the fixed direction is called the
coherence level. At 0% coherence, the image appears chaotic with no sense
of any particular direction of motion. As the coherence increases, a sense
of movement in a particular direction appears in the image until, at 100%
coherence, the entire array of dotsmoves together on themonitor. By vary-
ing the degree of coherence, the task of detecting the movement direction
can be made more or less difficult.

The experiments combined neural recording with behavioral measure-
ments. In the behavioral part, the monkey had to report the direction
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fascinating study performed by Britten et al. (1992). In their experiments,
a monkey was trained to discriminate between two directions of motion
of a visual stimulus. The stimulus was a pattern of dots on a video moni-
tor that jump from random initial locations to new locations every 45 ms.
To introduce a sense of directed movement at a particular velocity, a per-
centage of the dots move together by a fixed amount in a fixed direction
(figure 3.1). The coherently moving dots are selected randomly at each
time step, and the remaining dots move to random new locations. The
percentage of dots that move together in the fixed direction is called the
coherence level. At 0% coherence, the image appears chaotic with no sense
of any particular direction of motion. As the coherence increases, a sense
of movement in a particular direction appears in the image until, at 100%
coherence, the entire array of dotsmoves together on themonitor. By vary-
ing the degree of coherence, the task of detecting the movement direction
can be made more or less difficult.

The experiments combined neural recording with behavioral measure-
ments. In the behavioral part, the monkey had to report the direction





Neural encoding and decoding



MIT Press (1997) MIT Press (2002)



SPIKES FIG 2.2

v (omm/s)

-20 0 20

n
a
v

0

10

20

30

n

0 10 20 30

v
a

v
 (

o
m

m
/s

)

-20

0

20

-20

0

20v

P(v|n)

0

10

20

30 n

P(n|v)

0

10

20

30

-20

0

20 n
av

(v)v

0

10

20

30

-20

0

20 nv
av

(n)

-20

0

20

P(v)

v

0

10

20

30

P(n)

n

a b

c

d e

f g

P(n,v)

h i

Encoding and decoding are related through the joint 
distribution over stimulus (v) and response (n)
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(from Spikes)

n = f(v)̂v = g(n)
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Strategy for estimating information rate

Adapted from Spikes, by Rieke, Warland, de Ruyter, & Bialek

1. Estimate signal from spikes ⇢(t) ! ŝ(t)

2. Compute noise in estimate ñ(!) = s̃(!)� ˆ̃s(!)

3. Compute SNR SNR(!) =
h|s̃(!)|2i
h|ñ(!)|2i

4. Calculate lower bound to 
information rate from SNR R =

1

2

Z
d!

2⇡
log2[1 + SNR(!)]
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 Figure 10.5 
  Vestibular hair cells, transducing low frequencies, can sum their analogue signals be-
fore recoding to spikes. Upper : Head rotates slowly (1 Hz). Spikes from second-order 
vestibular axon are modulated linearly through the full cycle around 50 spikes per 
second.  Lower:  Adjacent hair cells each converge multiple active zones onto single 
afferent fiber. Modified from Eatock et al. (2008). 

From Sterling & Laughlin
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 The coding challenge 

 To recode analogue voltages carrying more than 100 bits per second 
to spikes requires high firing rates. For example, to recode 100 bits per 
second, assuming no noise and no temporal correlation between spikes, 
would require about 30 spikes per second. However, real axons  do  
have noise, plus temporal correlations that increase with spike rate. For 
example, an optic axon firing even at a modest mean rate (~10 Hz) fills only 
about 30% of its theoretical channel capacity (Koch et al., 2004, 2006). 
Moreover, this fraction declines as spike rate rises (Koch et al., 2006). 
Therefore, to encode 100 bits per second would require the spike rate to 
substantially exceed 100 Hz. Although neurons can fire transiently at 
much higher frequencies, those frequencies are uneconomical and largely 
unsustainable. 

 The stage selected for recoding depends on the magnitude of the initial 
information rate. Recall that higher spike rates need larger diameter axons 

smell hearingtouch vision

 Figure 10.1 
  Analogue sensors recode to spikes at different stages . Smell and various touch sen-
sors recode directly to spikes; sound sensors use one synaptic stage (arrowed), and 
photo sensors use two synaptic stages (arrows) before spiking. For exceptions to this 
broad rule, see Baden et al. (2013). 
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and thus use disproportionately more space and energy because they rise as 
diameter squared (chapter 3). Recall that vestibular axons, which fire con-
tinuously at about 100 Hz, are extremely thick (figure 4.6). This design 
works because vestibular axons are relatively few. However, optic axons are 
100-fold more numerous, so if they had the same caliber as a vestibular 
axon, our optic nerve would be 10-fold thicker, one centimeter instead of 
one millimeter — and the  blind spot  where the optic nerve exits the retina 
would be 100-fold greater in area, 75 mm 2  instead of 0.75 mm 2  (B. Peterson 
and D. Dacey,  M. nemestrina , unpublished data). Consequently, sensory 
neurons must either pay a high unit price, like vestibular axons, or use 
lower mean spike rates (figure 10.2).    

 Low-rate sensors code directly 

 An olfactory sensory neuron collects information at low rates. A sensor 
expresses only a single type of receptor protein, and there are about 1,000 
types, so each sensor patrols a relatively small fraction of the full odorant 
spectrum. Odorant particles travel slowly, spreading out as they go, and 
therefore an olfactory source is blurry in space and time. To localize an 
odorant roughly in time and intensity requires a sensor to capture relatively 
few particles, each corroborating the others, and capturing more would add 
little information. Therefore, the sensor ’ s delicate cilia express receptor 
molecules sparsely (  figure 10.3 ).  1   Moreover, when a neuron has signaled the 
binding of a few odorant molecules, it adapts. Thus, the messages are rare, 
slow, and brief. 

optic

vestibular

olfactory

auditory

number of axons axon diameter

104

5×104

106

107

 Figure 10.2 
  Sensor axon caliber trades off with axon number . Axon diameter varies across types 
by 10-fold, so cross-sectional area varies by nearly 100-fold. Array size (axon number) 
varies reciprocally by 1,000-fold. Shown here are mean diameters and axon numbers 
for human (Perge et al., 2012). 

From Sterling & Laughlin



Neural responses are half-wave rectified (action 
potentials are positive-only).  Signals are thus 
combined in a push-pull fashion, similar to push-pull 
amplifiers.

From:  Neural Engineering, by Eliasmith & Anderson



Push-Pull decoding

From:  Neural Engineering, by Eliasmith & Anderson
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pairs of spiking neurons. Specifically, we have defined the encoding

R(t;A) =
M�

i,k

⌦i⇤(t � tik(A)), (4.20)

and decoding

x̂(t) = h(t) ⇥ R(t;A), (4.21)

where

h(↵n) =
⌃A(↵n)R⇥(↵n;A)⌥A⌘

|R(↵n;A)|2
✓

A

. (4.22)

4.3.4 Discussion

Now that we know how to find the optimal temporal filter, and have a means of deter-

mining how good it is, let us consider the linear decoder, h(t), in more detail. As just
noted, our estimate of the signal that is encoded by the neurons into the spike train is

given by (4.21). Substituting (4.20) into (4.21), and recalling the result in (4.13), we

can write

x̂(t) =
M�

i,k

⌦i⇤(t � tik) ⇥ h(t) (4.23)

=
M�

i,k

⌦ih(t � tik). (4.24)

In essence, this equation says that our estimate is found by putting a waveform in the

shape of the linear filter at each spike time and summing the results (see figure 4.7).

This estimate is closely related to the population estimates we used in the previous

chapters. In particular, we could re-write (4.24) as

x̂(t;A) =
M�

i

ai(x(t;A))⌦i(t), (4.25)

where M is the number of time-steps we have divided the signal into, the ai are 1, 0,

or -1, depending whether or not a neuron emitted a spike, and the ⌦i(t) are all time-
shifted versions of h(t) (i.e., h(t � ti)). This notation is unusual because the neuron
activity in the population code is mapped onto activity (the presence of a spike) at

some time ti, so, as in the case of the population code, for each ‘active element’ we
need one decoder. This results in a large number, M , of temporal decoders, all of

which are essentially the same. While awkward, this notation shows exactly how the

temporal decoders and the population decoders perform the same function—both serve

to translate an activity back into the original domain that was encoded (i.e., either x for
the population code or x(t) for the temporal code). As an aside, it is interesting to note
that most of the coefficients, ai, in (4.25) will be zero for any particular signal. In this

sense, the representation is a ‘sparse’ representation. It makes sense that the neural
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'On' spikes

'Off' spikes

Input signal

Decoded estimate

Figure 4.7: An example of linear filtering. The input signal, x(t), is fed into the somas
of a pair of on-off neurons which encode the signal into ‘on’ and ‘off’ spikes. To get

an estimate, x̂(t), of that signal, we can linearly filter those spike trains by effectively
placing the filter at the time of occurrence of each spike and summing the result. When

the on and off neurons are symmetrical, their respective filters will be ‘mirror images’,

as shown in the figure.

code is sparse, as this results in more efficient coding (Olshausen 2000) and a better

use of available energy (Baddeley 1996).

Because x(t) is a function, its representation is much like the representation of x(⇧)
that we discussed in section 3.2. Looking again at equation (3.6) we see that it is indeed

very similar to (4.25). However, there is also an important difference between popula-

tion and temporal encoding that becomes evident from this comparison. Namely, there

is no temporal encoding function in the sense of ⌦̃i(⇧). This is because the temporal
encoding is defined completely by the intrinsic properties of the neuron, which are cap-

tured by Gi [·]. This difference means that it is much more difficult to derive the same
kinds of analytical results for understanding temporal coding as we do for population

coding (see section 7.3).

Nevertheless, it proves to be useful that both temporal and population codes in

neurons can be characterized using linear coding, since it allows us to unify these two

kinds of coding (as we discuss in section 5.1). Before doing so, however, let us consider

a number of examples of how to use this characterization of temporal coding to measure

the efficiency of information transmission in neural models. We begin with the simple

LIF neuron and progress to more complex models. Perhaps the most important lesson

to be learned from these examples is that the basic LIF model has just about the same

information transmission characteristics as its more complex counterparts. And, both

kinds of models perform comparably to real neurons.
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