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1 Wavenumber of a passive cochlea
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1 Wavenumber of a +20 dB active cochlea

Figure 14.3: Three snapshots of a traveling wave in a passive cochlea (left), and in an active cochlea (right),
responding to a sinusoid. The wavenumber, top, is estimated using the methods of Chapter 12, to correspond
with our cascade of asymmetric resonators (CAR) model of Chapter 16. The slightly positive imaginary part
of the one on the right corresponds to the active gain. The wave is calculated via the WKB approximation, at
many more points than we would typically model in a filterbank. In the passive case, the amplitude peak is
not very localized. To display the amplified signal in the active case, we cut its gain by a factor of 10 (–20 dB)
after showing the part near the base that nearly matches the passive case. To get the large number of cycles
from base to apex, we use 10 filter stages per mm, or 350 total, which is more than we would typically use in
a machine hearing system (that is, the wavenumbers as plotted in mm�1 units are 10 times the natural log of
the filter stage transfer functions).

Figure 14.4: The traveling waves shown in Figure 14.3 are here mapped onto a 3D model of the basilar
membrane, greatly exaggerated and stylized with colored lights. The active case with 20 dB more gain (right)
is rendered for a 30 dB lower input level, so it represents the response on the same scale with a factor of
1000 less input power, corresponding to a cube-root-compressive system (10 dB output level change for 30
dB input level change).
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Figure 14.10: Greenwood’s frequency–place map, illustrated on a spiral that approximates the shape of the
human cochlea. Distances from the apex in mm are labeled inside the spiral, and frequencies of octaves on
the outside. The fundamental frequencies, or pitches, of the notes of the 88 keys of a piano are marked by
circles. Notice that geometrically spaced frequencies—octaves and notes—are about equally spaced, at nearly
5 mm per octave, in the basal and mid regions, but are bunched up near the apex, with only about 1 mm for
the lowest octave of the piano. The human cochlea has about two and three-quarter turns; the final quarter
turn shown in the center (the last 1 mm), which maps frequencies down to zero, should be interpreted as the
helicotrema.
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Figure 14.1: Four classic cross sections of the cochlea, from the macroscopic to the microscopic, with boxes
and lines to show approximately how they relate.
Upper left: Leo Testut (1897) includes this drawing by Johann Czermak of the outer ear’s sound path through
the ear canal (G) to the eardrum, or tympanic membrane (T), and the middle ear bones that couple sound into
the cochlea of the inner ear, via the oval window (O).
Upper right: Gray’s Anatomy section through the cochlea. The structures that separate scala vestibuli (S. V.)
from scala tympani (S. T.), in the region highlighted, are detailed in the next figure.
Lower left: This cross section through part of one turn of the mammalian cochlea, by Anders Retzius (1884),
shows the cochlear duct (D.C, shown as scala media, S. M., in previous figure), scala vestibuli (s.v), scala
tympani (s.t), basilar membrane (b.m), Reissner’s membrane (R), tectorial membrane (Mt), nerve fibers (n),
and the organ of Corti.
Lower right: This Gray’s Anatomy drawing by Retzius shows a section through the organ of Corti, pointing
out one inner hair cell and four outer hair cells.





266 Chapter 10

 The coding challenge 

 To recode analogue voltages carrying more than 100 bits per second 
to spikes requires high firing rates. For example, to recode 100 bits per 
second, assuming no noise and no temporal correlation between spikes, 
would require about 30 spikes per second. However, real axons  do  
have noise, plus temporal correlations that increase with spike rate. For 
example, an optic axon firing even at a modest mean rate (~10 Hz) fills only 
about 30% of its theoretical channel capacity (Koch et al., 2004, 2006). 
Moreover, this fraction declines as spike rate rises (Koch et al., 2006). 
Therefore, to encode 100 bits per second would require the spike rate to 
substantially exceed 100 Hz. Although neurons can fire transiently at 
much higher frequencies, those frequencies are uneconomical and largely 
unsustainable. 

 The stage selected for recoding depends on the magnitude of the initial 
information rate. Recall that higher spike rates need larger diameter axons 

smell hearingtouch vision

 Figure 10.1 
  Analogue sensors recode to spikes at different stages . Smell and various touch sen-
sors recode directly to spikes; sound sensors use one synaptic stage (arrowed), and 
photo sensors use two synaptic stages (arrows) before spiking. For exceptions to this 
broad rule, see Baden et al. (2013). 

Design of Neural Circuits 267

and thus use disproportionately more space and energy because they rise as 
diameter squared (chapter 3). Recall that vestibular axons, which fire con-
tinuously at about 100 Hz, are extremely thick (figure 4.6). This design 
works because vestibular axons are relatively few. However, optic axons are 
100-fold more numerous, so if they had the same caliber as a vestibular 
axon, our optic nerve would be 10-fold thicker, one centimeter instead of 
one millimeter — and the  blind spot  where the optic nerve exits the retina 
would be 100-fold greater in area, 75 mm 2  instead of 0.75 mm 2  (B. Peterson 
and D. Dacey,  M. nemestrina , unpublished data). Consequently, sensory 
neurons must either pay a high unit price, like vestibular axons, or use 
lower mean spike rates (figure 10.2).    

 Low-rate sensors code directly 

 An olfactory sensory neuron collects information at low rates. A sensor 
expresses only a single type of receptor protein, and there are about 1,000 
types, so each sensor patrols a relatively small fraction of the full odorant 
spectrum. Odorant particles travel slowly, spreading out as they go, and 
therefore an olfactory source is blurry in space and time. To localize an 
odorant roughly in time and intensity requires a sensor to capture relatively 
few particles, each corroborating the others, and capturing more would add 
little information. Therefore, the sensor ’ s delicate cilia express receptor 
molecules sparsely (  figure 10.3 ).  1   Moreover, when a neuron has signaled the 
binding of a few odorant molecules, it adapts. Thus, the messages are rare, 
slow, and brief. 

optic
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olfactory
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 Figure 10.2 
  Sensor axon caliber trades off with axon number . Axon diameter varies across types 
by 10-fold, so cross-sectional area varies by nearly 100-fold. Array size (axon number) 
varies reciprocally by 1,000-fold. Shown here are mean diameters and axon numbers 
for human (Perge et al., 2012). 

From: Sterling & Laughlin (2017)
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Figure 16.6: The cumulative frequency response (Bode plot) of a cascade of 71 pole–zero CAR stages, with
12 stages per octave at the high-frequency end. Every fifth output tap (or channel) is shown with heavy
solid curves, for the same three damping factors as before; at the middle damping, all channels are plotted,
with light dashed lines. The pole frequencies range from about 9900 Hz (2.818 radians per sample) down to
about 30 Hz, based on equal spacing on a Greenwood map and a 22.050 kHz sample rate. Peak locations of
responses at the lowest damping define the characteristic frequency (CF) values used in subsequent plots.

‘Auditory Filters’

(from Lyon 2017)
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Figure 4.8: Period histograms of auditory nerve fiber firings in response to a periodic vowel sound show
pitch-synchronized activity, for fibers of all CFs (Delgutte, 1997). Even fibers that primarily synchronize to
the formant (vocal tract resonance) frequencies (here F1, 8 cycles per pitch period, and F2, 14 cycles per pitch
period) show a pattern that repeats at the pitch rate. Synchrony to the formant frequencies spreads to fibers
of higher CF. Fibers with CF above 2 kHz show synchrony to a wide range of lower frequencies, in a pattern
prominently synchronized to the pitch rate. The pitch here, 100 Hz, is quite low relative to the cat’s auditory-
system tuning, so we do not see the resolved low harmonics (2 through 5 cycles per pitch period) that would
likely be apparent in human auditory nerve data.

(from Delgutte 1997)

Spikes of auditory nerve fibers are phase locked to 
components of sound waveform



Fourier analysis 
vs.

Time-frequency analysis





Effect of temporal envelope on timbre
(ASA auditory demonstrations CD, tracks 54-56)

Original

Notes played backward

Recording of notes 
played backward, 
played backward



Circularity in pitch judmgement
(ASA auditory demonstrations CD, track 52)

Tritone paradox
(Diana Deutsch musical illusions CD, tracks 14-18)
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engineers are the Gabor filter and the
wavelet filter. Gabor filters, which con-
sist of Gaussian-windowed sinusoids,
provide the optimal joint resolution in
both time and frequency, and they tile
the time–frequency plane with windows
of equal temporal width at all frequen-
cies. Wavelet filters can be viewed as
variants of Gabor filters in which the
temporal windows become narrower as
frequency increases, giving the filters the
property of self-similarity. They are pop-
ular for many signal-processing applica-
tions because they capture the
self-similar structure that is present in
many natural signals. But these are just
examples, and there is no end to the
variety of tiling schemes that can be
imagined.

Which scheme is ‘optimal’ would
seem to depend on a number of factors:
the relative behavioral importance of dif-
ferent types of information, neurobio-
logical or biophysical constraints, and
the statistical  properties of signals pre-
sent in the environment. Lewicki focus-
es on the last of these, attempting to find
a time–frequency tiling scheme that
maximizes statistical independence
among the filters. The motivation for
maximizing independence is related to
ideas proposed long ago by Attneave2

and Barlow3, who argued that the ner-
vous system should try to exploit the
redundancies present in signals in order
to form representations of the structure
present in the environment. It is also
related to principles of efficient coding,
which aim to make the most use of lim-
ited neural resources4.

Lewicki’s method1 for deriving a set
of optimal filters draws on a recent
advance in signal analysis called ‘inde-
pendent component analysis’ (ICA). ICA
provides a method for extracting a lin-

pre-existing properties of the peripheral
auditory system.

Lewicki’s analysis does not attempt to
provide a comprehensive account of
auditory coding. For example, it does not
consider the effect of changing sound
intensity. The tuning of Lewicki’s filters
is independent of sound intensity, but
this is not true of real auditory nerve
fibers. Most fibers reach the limit of their
dynamic range roughly 30–40 dB above
threshold, meaning their firing rates sat-
urate at even moderate intensities7. At
these intensities, their frequency tuning
also becomes considerably broader8. But
these facts are not necessarily inconsis-
tent with Lewicki’s results, because most
physiological measurements are made
using isolated pure tones. Less is known
about how auditory nerve fibers behave
in response to more ecologically realistic
broadband stimuli, and it is possible that
gain control mechanisms maintain fre-
quency selectivity even with high-inten-
sity stimuli9.

There are also a few peculiarities to
Lewicki’s filters that arise from the par-
ticular way in which ICA was imple-
mented. For example, the filters learned
by the algorithm are fairly symmetric in
time (the attack and decay occur at
about the same rate), whereas the
‘gamma-tone’ filters that have been char-
acterized physiologically are asymmet-
ric in time (they rise more steeply than
they decay). In addition, the algorithm
produces filters with the same frequen-
cy response but shifted in time, whereas
auditory nerve fibers do not show such
delays. But it would be fairly straight-
forward to modify the algorithm so that
the filters are constrained to be causal
(that is, filter outputs are determined
from present and past values of the
input), in which case their temporal

ear decomposition of signals that mini-
mizes not just correlations but many
higher-order statistical dependencies as
well5. Lewicki shows that when ICA is
applied to different ensembles of natur-
al sounds (using short samples of 8 ms
duration), the time–frequency tiling pat-
terns that emerge are strikingly differ-
ent. For environmental sounds (such as
crackling twigs), one obtains time–fre-
quency windows similar to a wavelet,
whereas for animal vocalizations (mon-
key coos), one obtains a tiling pattern
similar to the Fourier transform. Speech,
which (as noted above) contains a mix-
ture of temporal and frequency cues,
gives rise to an intermediate tiling pat-
tern, somewhere between a Gabor and a
wavelet; the temporal accuracy increases
with frequency, but to a lesser extent
than with wavelet filters.

The tiling pattern that is optimal for
speech is thus intermediate between
those optimized for environmental
sounds and animal vocalizations. As
Lewicki shows, a close match is obtained
with a 2:1 mixture of environmental to
animal sounds. Interestingly, this pattern
is similar to what has been observed
physiologically in cat auditory nerve
fibers, and it also bears similarity to the
auditory filters that have been charac-
terized psychophysically in humans and
other animals. Although auditory filters
measured behaviorally are not necessar-
ily determined by the cochlea6 (they
could theoretically arise anywhere with-
in the auditory system), these results,
taken together, suggest that the cochlea
and auditory nerve may be optimized to
transmit a wide range of naturally occur-
ring sounds to the brain. It is even pos-
sible, as the author suggests, that the
acoustic properties of human speech
have evolved to make efficient use of the
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Fig. 1. The time–frequency plane can be tiled in multiple ways, any of which  provides a complete representation of a signal. Some of these possi-
bilities have been named by engineers (Gabor, wavelet, Fourier  transform). Each row within a tiling represents one filter. The vertical dimension of
each row represents the frequency specificity  of the filter. The width of each box within a row represents the temporal resolution of the filter.
Note that although the shapes vary, the area of each box is the same; this area represents the lower bound imposed by the fact that it is impossible
to achieve arbitrarily precise resolution of both timing and frequency. How the boxes within a tiling are shaped reflects the chosen trade-off
between time and frequency.
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(from Olshausen & O’connor 2002)


