
Neural Computation (VS 265), Problem Set 1

Due date: September 8, 3:30pm

Fall 2022

General guidelines:

• We are grading problem sets anonymously. Include your student ID in the submission, but do
not include your name.

• You may work in small groups of 2-3. Note that you are responsible for writing up and submitting
your submission individually.

• You are expected to attach any code you used for this assignment but will be evaluated primarily on
the writeup.

Part 1: The Membrane Equation

(a) Membrane dynamics. Simulate the membrane equation to show how the voltage across the cell membrane
will change in response to a step input current, I(t). Numerically simulate the solution for a duration of
least 500 milliseconds with the following parameters:

• Initial condition: V (0) = Vrest = −70mV

• Membrane capacitance: C = 100 pF

• I(t) =

{
100 pA t ≥ 100ms

0 pA t < 100ms

• GLeak = 5nS.

Try different values of GLeak and C to explore how these parameters affect the rise time and resulting
membrane voltage. Plot the results of your simulation and interpret your findings.

You may find it easiest to run this simulation using the Euler method, but you are free to use any other
method. (See the handout on Simulating Differential Equations for further information).

(b) Membrane nonlinearity. Now let’s examine how the membrane voltage at equilibrium behaves in response
to specific ion channels opening, first in isolation and then in combination.

i. Examine the effect of a single synaptic input that opens a set of sodium channels (∆GNa). Sweep
∆GNa from 0nS to 25 nS and plot the resulting equilibrium membrane potential (by solving for V at
dV
dt = 0) over this range. You should notice a regime where the membrane voltage can be reasonably
approximated as a linear function of ∆GNa – what is that regime and why?

ii. Now do the same for an inhibitory synaptic input that opens a set of potassium channels, by varying
∆GK over the same range and superimposing on the plot above.

iii. Next, examine how the membrane responds jointly to both synaptic inputs. Show this as a contour plot
and choose a range of values for ∆GNa and ∆GK that allows you to see the linear vs. nonlinear regimes
for combined input. Explain why this is happening with reference to your plots above.

1

https://redwood.berkeley.edu/wp-content/uploads/2018/08/diffeq_sim.pdf


iv. Finally, in a third plot, show the effect of shunting inhibition by simulating an inhibitory synaptic input
that causes chloride channels to open by some amount (say ∆GCl = 10nS) and now sweep ∆GNa over
the same range as above. (You may assume VCl = Vrest.) How does this compare to what you would
expect from a linear superposition? (plot as a dashed line). Explain your results.

Part 2: Perceptron

As discussed in class, the Perceptron is a simple model of a neuron that assumes synaptic inputs x1, x2, . . . , xn

are combined linearly, and the sum is thresholded to 0 or 1 as a crude approximation to the action potential.
That is,

u =

n∑
i=1

wi xi + w0

y = Θ(u) ≡
{

1 u > 0
0 u ≤ 0

where the w1, w2, . . . , wn correspond to synaptic weights and y is the output of the neuron.
Rosenblatt also defined a learning rule for updating the weights based on a set of training examples and

of inputs and their desired output (‘teacher signal’), T = {+1,−1}. Let x(m)
1,2,...n, y

(m), and T (m) denote the
m-th example of input, resulting neuron output, and teacher signal, respectively. The learning rule for wk

is defined as:

∆wk =

{
2η T (m) x

(m)
k if (2 y(m) − 1) ̸= T (m)

0 otherwise

where ∆wk is the incremental change to wk and η is a learning rate.

Implement the perceptron learning rule for the dataset posted to the course website. When you plot the
dataset, it should look as shown below:

1.0 0.5 0.0 0.5 1.0
x1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

x 2

Example dataset

Class -1 Class +1

Train your network until it achieves 100 percent accuracy. Make a plot of how classification accuracy
changes as a function of training epochs. Finally, show the final decision boundary (i.e. the line that
partitions one class from another) on top of the data.

(Optional) A limitation of the Perceptron is that it can only correctly separate data that are linearly
separable. An example of a problem that is not linearly separable is the exclusive-or (XOR) function, defined
as follows:

x1 x2 T
0 0 -1
0 1 +1
1 0 +1
1 1 -1

2



However, a multi-layer Perceptron (MLP), where the output of one layer of Perceptrons is fed as input
to another layer of Perceptrons, could solve this problem. Construct (by hand for now) an example of an
MLP architecture, including the weights at each layer, to compute the XOR function. The lack of a learning
rule for MLP’s was central to Minksy & Papert’s critique and set back the field of neural network research
for at least two decades.

3


