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Abstract

According to the efficient coding hypothesis, sensory systems are adapted to maximize

their ability to encode information about the environment. Sensory neurons play a key

role in encoding by selectively modulating their firing rate for a subset of all possible sti-

muli. This pattern of modulation is often summarized via a tuning curve. The optimally

efficient distribution of tuning curves has been calculated in variety of ways for one-dimen-

sional (1-D) stimuli. However, many sensory neurons encode multiple stimulus dimen-

sions simultaneously. It remains unclear how applicable existing models of 1-D tuning

curves are for neurons tuned across multiple dimensions. We describe a mathematical

generalization that builds on prior work in 1-D to predict optimally efficient multidimen-

sional tuning curves. Our results have implications for interpreting observed properties of

neuronal populations. For example, our results suggest that not all tuning curve attributes

(such as gain and bandwidth) are equally useful for evaluating the encoding efficiency of

a population.

Author summary

Our brains are tasked with processing a wide range of sensory inputs from the world

around us. Natural sensory inputs are often complex and composed of multiple distinctive

features (for example, an object may be characterized by its size, shape, color, and weight).

Many neurons in the brain play a role in encoding multiple features, or dimensions, of

sensory stimuli. Here, we employ the computational technique of population modeling to

examine how groups of neurons in the brain can optimally encode multiple dimensions

of sensory stimuli. This work provides predictions for theory-driven experiments that can

leverage emerging high-throughput neural recording tools to characterize the properties

of neuronal populations in response to complex natural stimuli.
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Introduction

A functioning nervous system is metabolically expensive, but offers a significant advantage in

evolutionary fitness. This observation motivates the idea that natural selection has acted to

optimize the nervous system subject to biological constraints. Indeed, optimality has proven to

be a powerful concept for explaining the function of neural systems, circuits, and individual

cells. But optimality arguments come with their own set of auxiliary questions. Optimal in

what sense? Subject to what specific constraints?

A common framework for choosing these criteria is the efficient coding hypothesis. This

hypothesis posits that sensory neurons maximize the information that they encode about the

world while using as few resources (e.g., action potentials) as possible [1, 2]. For example, by

defining a set of neurons as optimal if they may be used in linear combination to accurately

represent an arbitrary image, and imposing the constraint that for any given input as little neu-

ral activity should be used as possible, we arrive at a sparse coding model [3]. Considering

instead the constraint that each neuron should encode as little redundant information as possi-

ble gives rise to independent components analysis [4, 5].

To understand how neuronal populations can operate efficiently during natural behavior, it

is often advantageous to consider that natural sensory signals have robust statistical regularities

(See [6] and [7] for review). Thus, neurons are generally tasked with encoding a small subset of

all possible stimuli. Said another way, the probability distribution of stimuli experienced in the

natural environment is highly non-uniform. Given a particular non-uniform probability dis-

tribution of a 1-D stimulus, a body of recent work considers how to optimize the efficiency of

neuronal populations in which each neuron is characterized by a tuning curve that defines its

mean response as a function of the stimulus value [8–14]. This simple population model yields

several appealing solutions for optimal encoding populations with testable predictions. For

example, a recent formulation predicts that neurons tuned to more frequently occurring stim-

ulus values should be more densely packed and tightly tuned, but should not necessarily have

higher or lower response gain (Fig 1, upper row) [8, 9]. These predictions with respect to den-

sity and tuning shape can successfully explain empirical measurements in a variety of sensory

neuron populations [15–17].

While 1-D population models have yielded a range of insights and predictions for neural

efficiency, it is important to note that sensory neurons throughout the brain are selective to

more than one stimulus dimension. Canonical examples include neurons in mammalian pri-

mary visual and auditory cortices that can jointly encode spatial frequency/orientation and

pitch/timbre, respectively [18, 19], as well as medial temporal neurons that encode multiple

variables relevant to 3-D spatial position or pose [20–23]. In higher-level sensory cortices,

larger dimensionality in the encoding regimes may be common (e.g., [24, 25]). To date, the

pay off of the efficient coding framework for understanding high-dimensional stimulus encod-

ing has been more modest because fewer predictions for efficient multidimensional tuning

curves are formalized [13, 26]. As a consequence, it is more challenging to predict and evaluate

efficiency in higher dimensions. With high-throughput experimental paradigms and large

data sets becoming more common in neuroscience, the ability to model optimal encoding of

higher dimensional stimuli is increasingly relevant.

In the current work, we make advances towards filling this gap by extending existing frame-

works for modeling efficient 1-D population codes to higher dimensions (summarized in Fig

1, bottom row). We first review the formulation of an encoding model that employs a con-

strained heterogeneous population of neurons to optimally (in the information preserving

sense) encode a 1-D stimulus using a finite and fixed number of spikes [8, 9]. As our first con-

tribution, we generalize this formulation by re-parameterizing the heterogeneous population
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in terms of a more generic transformation, based on recent work describing transformations

between probability distributions [27]. This generalization replicates prior work in 1-D and

enables a natural extension to solve for the parameters of optimal encoding populations in

higher dimensions. We show that this extension produces similarly elegant predictions for the

relationship between stimulus probability and neuronal density in populations encoding an

arbitrary number of stimulus dimensions. However, predicting the actual shapes of multidi-

mensional tuning curves when there are statistical dependencies between stimulus dimensions

remains more complicated. Focusing on 2-D stimuli, we show that it is nonetheless possible to

utilize a numerical method (developed in [27]) to predict tuning curves of efficient encoding

populations across the stimulus space. Using this approach, we examine the predicted tuning

properties for neuronal encoding populations optimized for 2-D stimuli. These results high-

light both the utility and limitations of simple encoding models for evaluating the efficiency of

neuronal populations that encode multiple stimulus dimensions.

Fig 1. Overview of optimally efficient heterogeneous neuronal encoding populations in 1-D and 2-D. Top row: Based on prior work [8, 9], we derive

a closed-form solution for an optimal heterogeneous neuronal population encoding a non-uniform 1-D stimulus probability distribution. This

population has a neuronal density that is proportional to the probability of the stimulus. The neuronal density can be mapped to a specific population

(here, represented by a set of Gaussian tuning curves) by using the cumulative of the probability distribution p(s) to warp the stimulus coordinates (s)
over which each neuron’s tuning curve is defined. The resulting heterogeneous 1-D neuronal population is compressed in regions of higher probability

and expanded in regions of lower probability. Bottom row: Neurons throughout the nervous system encode more than one stimulus dimension. Here,

we extend the previous 1-D framework to examine optimally efficient neuronal populations in arbitrary dimensions. In closed form, we show that given

the same assumptions used for 1-D populations, higher dimensional neuronal populations should also have density proportional to probability.

However, in higher dimensions with statistical dependencies, density remapping cannot be achieved via the cumulative. Instead, we show that in both

1-D and higher dimensions, the optimal mapping is embodied by the gradient of a scalar potential function that reflects the displacement necessary to

uniformly distribute neuronal density as a function of probability. This encoding potential is illustrated here as a surface, with its inverse gradient

illustrated as a vector field below. The vector field is inverted to provide a more intuitive visual of how neuronal density gets condensed to areas of high

probability. This gradient can be numerically optimized in 2-D for a given density function, which we exploit to derive optimal 2-D neuronal

populations.

https://doi.org/10.1371/journal.pcbi.1008146.g001
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Methods

Encoding objective

One natural question in the context of neural coding is: how much information about a stimu-

lus is contained in the responses of a population of sensory neurons? The average amount of

information learned about some random variable (say, the value of a stimulus) by observing

another random variable (say, the firing rate of a sensory neuron) is given by the mutual infor-

mation (M½x; y�) [28]:

M½x; y� ¼
Z Z

pðx; yÞlog
pðx; yÞ
pðxÞpðyÞ

� �

dxdy: ð1Þ

Here, x and y denote any two random variables, p(�) denotes the probability distribution of

a variable, and p(x, y) denotes their joint probability. Though mutual information appears to

be a strong candidate for an objective function to maximize for efficiency, it is difficult to opti-

mize because doing so requires integration over all variables. To avoid this issue, researchers

often instead optimize approximations of the mutual information that make use of a quantity

called the Fisher information (F ) [9, 26, 28–30]. The Fisher information provides another

way to quantify the amount of information an observable random variable (x) carries about a

parameter (y). It can be computed from the conditional probability distribution of x given y as

FðyÞ ¼ Ey �
@

2logðpðxjyÞÞ
@y2

� �

; ð2Þ

where Ey[�] denotes taking the expectation of the bracketed property over the parameter y. When

the curvature of the conditional distribution, p(x|y), is high, small changes in the parameter

cause large changes in the probability. Thus, observations in this region are more informative.

The Fisher information limits the variance with which a parameter may be estimated

(through a relationship known as the Cramer-Rao bound). This fact has been used to derive

an approximation of mutual information [11, 12, 31]:

M½x; y� � HðyÞ þ
Z

pðyÞ
1

2
log

FðyÞ
2pe

� �

dy: ð3Þ

Here HðyÞ is the entropy of the probability distribution for the parameter y, and is a con-

stant. For an unbiased estimator, this approximation approaches equality in the limit of low

noise, which occurs in the context of neural coding when there are either a large number of

neurons or a large number of action potentials fired. A recent and detailed exploration of

Fisher information and mutual information can be found in [12]. Following previous work,

we will thus use the Fisher information in the neuronal population response to the sensory

stimulus to determine the quantity to be maximized in our neuronal population model [8–11,

13, 14, 31–33].

Neuronal population model

The encoding characteristics of sensory neurons are often described via a tuning curve, which

is a function that defines how an idealized neuron responds to different values of a particular

stimulus. In this work, we will consider neuronal responses in the form of rate codes, where

the tuning curve of a neuron defines the mean firing rate as a function of the presented stimu-

lus value. There is an inherent trade off between the range of stimulus values that an individual

neuron can encode and how much information it can convey. A very broad tuning curve

would be able to respond to a large number of stimulus values, but because the magnitude of
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the response changes slowly it will be more difficult to discriminate between different encoded

values. Conversely a very narrow tuning curve might be able to encode a single value with very

high certainty, but would leave a large set of values unaccounted for. In practice, sensory sys-

tems often use a large population of neurons (each with their own, different tuning curve) to

encode the same sensory variable. This strategy is known as population coding.

We will consider a neuronal population in which each neuron’s firing rate is determined by

an independent Poisson process. In describing this population, we adopt notation from [9], as

our work builds on theirs. A (homogeneous) Poisson process is a model for a series of indepen-

dent events (in this case, action potentials) in which events are equally likely to occur at any

time independent of the number or timing of previous events. The distribution that describes

the probability of observing r events within a given time interval for a Poisson process is defined

by a single parameter, λ, which represents the expected (mean) number of events in the interval.

The probability distribution for observing r events for a Poisson process with mean λ is:

pðrÞ ¼
l
re� l

r!
: ð4Þ

In the context of neural coding, the parameter λ that determines the mean firing rate r of a

neuron in response to a stimulus is defined by that neuron’s tuning curve h(�). Since neurons

can be tuned over multiple stimulus dimensions, we can denote the stimulus attributes that

modulate the firing rate with the vector s of any dimensionality. However, we will initially be

focusing on the case of 1-D stimuli, so we will denote the 1-D stimulus as s and the tuning

curve as h(s). Thus, the probability of a sensory neuron firing with rate r conditioned on the

presentation of the stimulus s is:

pðrjsÞ ¼
hðsÞre� hðsÞ

r!
: ð5Þ

We will consider a population of N neurons, each with its own tuning curve, which respond

to the presented stimulus (conditionally) independently of all of the other neurons in the pop-

ulation. Thus, the probability of observing a population response r upon the presentation of

stimulus s is:

pðrjsÞ ¼
YN

n

hnðsÞ
rn e� hnðsÞ

rn!
: ð6Þ

Here n indexes the population of neurons, hn is the tuning curve of the nth neuron, and r is

an N-dimensional continuous vector whose elements (rn) denote the firing rate of the nth neu-

ron in response to some stimulus. Because each neuron is assumed to act conditionally inde-

pendently of any other neuron in the population, the joint probability of the responses is

modeled as the product of the individual responses.

The primary goal of this work will be to find how a population of sensory neurons should

respond to the presentation of a stimulus in order to maximize the mutual information

between the stimulus and response. To do so we will optimize an approximation of M½r; s�. As

such, we will use the Fisher information for the independent Poisson population encoding

model. As described in [33], this quantity is given by:

FðsÞ ¼
XN

n

h02n ðsÞ
hnðsÞ

; ð7Þ

where h0nðsÞ denotes the first derivative of the tuning curve.
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Parameterization of 1-D heterogeneous neuronal populations

Our parameterization of hetereogeneous populations follows on the formulation introduced

in [8, 9]. As a starting point (Fig 2), we will define a population of 1-D tuning curves, where

each curve has an identical shape determined by the function h(s), and individual tuning

curves (hn(s)) fall at evenly spaced intervals so that hn(s) = h(s − sn). Here, sn denotes evenly

spaced values that determine the preferred stimulus for each neuron (Fig 2A). Additionally,

we assume that the population of neurons approximately tiles the stimulus space (tuning

curves are thus not separated by large gaps, nor do they take the form of monotonically

increasing functions) [8, 9, 34, 35]. Specifically,

XN

n

hnðsÞ � k: ð8Þ

This means that the number of spikes emitted by the population is an approximately con-

stant (k) function of the presented stimulus. The constant spike rate means that the Fisher

information for this uniform population (which we denote F uðsÞ) is also approximately con-

stant (Eq (7), Fig 2B). Therefore, this population is non-optimal for encoding stimuli with

non-uniform probability distributions.

Fig 2. Parameterizing hetereogeneous neuronal populations. A) A uniform population of neurons approximately tiles the stimulus space (s) with

identical, equally spaced Gaussian tuning curves. B) The Fisher information of this population is roughly uniform (blue line), matching the

approximation in Eq (16) (red line). C) A displacement field that is smooth and slowly varying relative to the tuning curves. These displacement values

apply to the stimulus space, arrows below illustrate the direction and magnitude of shifts in the resulting tuning curves defined over s (which

corresponds to the inverse of the displacement field). D) After the displacement field is applied, the neuronal population now has heterogeneous tuning

curves. Displacements that stretch the stimulus space result in denser, narrower tunings. Displacements that compress the stimulus space result in

sparser, wider tunings. E) A gain function that is smooth relative to the tuning curves can also allow neurons to have different response magnitudes. F)

Following the application of both the displacement field and the gain function, we have a transformed heterogeneous population with variable tuning

curves. G) The Fisher information in the hetereogenous population is no longer uniform, as illustrated by the measured (blue) and approximated (red)

lines. S1 Fig illustrates the consequences when the displacement field and gain function are not smooth and slowly varying with respect to the tuning

curves.

https://doi.org/10.1371/journal.pcbi.1008146.g002
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To determine an optimal encoding population for a non-uniformly distributed stimulus,

we will define two functions that warp and scale this uniform population, and thus reallocate

Fisher information to different regions of the stimulus space. The choice of parameters and the

constraints on their smoothness build on the formulation introduced in [8, 9]. However, it is

important to note that alternative parameterizations can produce quite different predictions

[12, 30], which we will consider in the Discussion.

Specifically, we will parameterize the population with two smooth and continuous func-

tions. The first is a displacement field, f(s), which will warp the tuning curves to change their

local density (Fig 2C and 2D). The second is a gain function, g(s), which will control the

maximum response of neurons to a given stimulus (by multiplicatively scaling the size of the

response) (Fig 2E and 2F). Each of these functions will also be constrained to be slowly chang-

ing relative to the individual tuning curves. This property of each parameter will force the

warped and scaled tuning curves to (approximately) retain their functional form and tile the

space (S1 Fig illustrates the consequences of violating this constraint).

The notable difference between this formulation and that of previous work [8, 9] is that we

use a displacement field to change neuronal density. The displacement field can be thought of

as transforming the original stimulus space (which is simply the value of some stimulus vari-

able s) to a new domain as follows:

ŝ ¼ sþ f ðsÞ: ð9Þ

Following the nomenclature suggested by [30], we will refer to the original space as the

stimulus space (which is the space defined by the stimulus variable s), and the transformed

space as the sensory space (̂s, which is the space defined by some transformation as denoted

in Eq (9)). In contrast to this approach, previous work changed neuronal density by applying

the cumulative of a function that directly described the desired density of tuning curves. Shift-

ing the population based on the cumulative of the desired density function has the elegant

property of producing the desired density directly [8, 9, 30, 36]. However, the reliance on a

cumulative function is not appropriate when considering higher dimensions with statistical

dependencies, because the multivariate cumulative treats each dimension separately. The more

general displacement field is still related to the density function, and in 1-D there is still a one-

to-one relationship between displacement and density.

What is the relationship between the transformation in Eq (9) and density in 1-D? The first

derivative of a 1-D transformation directly embodies the change in density associated with

that transformation (indeed, this is why the cumulative of the desired density function was

used in prior work). Thus, if the density with which the tuning curves tile the space is defined

by d(s), then in 1-D we simply take the first derivative of Eq (9) to obtain the density after

transformation:

dðsÞ ¼ 1þ f 0ðsÞ: ð10Þ

Intuitively, this relationship arises because f(s) defines how much each point on each tuning

curve is shifted in a given direction, and successive points being shifted in the same direction

by an increasing amount will become less densely packed. Similarly, successive points being

shifted in the same direction by a decreasing amount will become more densely packed.
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Fisher information in the 1-D heterogeneous neuronal populations

The displacement field and gain function each have a distinct effect on the Fisher information

of the population. The effect of the displacement field on the Fisher information is:

F f ðsÞ ¼ F uðŝÞ
dŝ
ds

� �2

: ð11Þ

Here, F f ðsÞ denotes the Fisher information after the stimulus space has been ‘warped’ into

the sensory space. Because F uð�Þ, the Fisher information of the unwarped uniform population,

is approximately equal to a constant, we can rewrite this equation with the constant denoted

as U:

F f ðsÞ � Uð1þ f 0ðsÞÞ2: ð12Þ

Here, we have also rewritten the first derivative of ŝ with respect to s following Eq (9),

which we already noted is equal to the neuronal density (Eq (10)).

To consider the effect of the gain parameter on the Fisher information, we multiply each of

the tuning curves in Eq (7) by a function g(s), giving:

F gðsÞ ¼
XN

n

½½gðsÞhnðsÞ�
0
�
2

gðsÞhnðsÞ
: ð13Þ

Then using the product rule we see,

F gðsÞ ¼
XN

n

ðgðsÞh0nðsÞ þ g 0ðsÞhnðsÞÞ
2

gðsÞhnðsÞ
: ð14Þ

Assuming that the gain function g(s) changes slowly compared to the tuning curves, so g(s)
h0(s)� g0(s)h(s), we have:

F gðsÞ �
XN

n

ðgðsÞh0nðsÞÞ
2

gðsÞhnðsÞ
¼ gðsÞU: ð15Þ

So, the Fisher information of the warped and scaled population F f ;gðsÞ is:

F f ;gðsÞ � gðsÞð1þ f 0ðsÞÞ2U: ð16Þ

These approximations apply for the Fisher information of the population, rather than for

any individual tuning curve. The validity of the assumptions we made to arrive at this expres-

sion for the Fisher information can be visualized by comparing the result of Eq (16) to the

empirically measured Fisher information in example neuronal populations. We can see in Fig

2B and 2G that the uniform population Fisher information is approximately constant and that

the example warped and scaled population Fisher information is well described by Eq (16).

Results

Optimally efficient 1-D heterogeneous neuronal populations

Using the described coding objective and neuronal population model, we will first determine

the parameters of a neuronal population optimized to encode a 1-D stimulus. The constants

in Eq (3) can be ignored for the purpose of optimization. So the final form of the objective
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function we will use is:
Z

pðsÞlog½F f ;gðsÞ�ds: ð17Þ

In accordance with previous work on this problem [8, 9] we adopt two constraints:
Z

pðsÞgðsÞds ¼ R ð18Þ

Z

ð1þ f 0ðsÞÞds ¼ N: ð19Þ

These are global resource constraints. The first is approximately equal to the expected firing

rate of the population as a whole and so can be interpreted as requiring that the total number

of spikes fired by the population in a given time interval will be finite and constant. Integrating

the density of tuning curves yields the total number of neurons in the population, thus the sec-

ond constraint expresses the fact that the encoding scheme must only use a finite number of

neurons.

We are dealing with an optimization problem with integral constraints so we turn to meth-

ods from the calculus of variations. To solve such a problem, as in [8, 9], we design a function

called a Lagrangian,

L ðf 0ðsÞ; gðsÞ; s; l1; l2Þ ¼

Z

pðsÞlog½gð1þ f 0ðsÞÞ2U�dsþ l1

Z

ð1þ f 0ðsÞÞds � N
� �

þ l2

Z

pðsÞgðsÞds � R
� �

:
ð20Þ

To optimize, we solve the system of equations obtained by setting the gradient of the

Lagrangian equal to zero (note that in this case taking the partial derivative with respect to the

Lagrange multipliers λ1 and λ2 simply reproduces the constraint equations):

@L

@f 0ðsÞ
¼

2pðsÞ
1þ f 0ðsÞ

� l1 ¼ 0 ð21Þ

@L

@gðsÞ
¼

pðsÞ
gðsÞ
þ l2pðsÞ ¼ 0: ð22Þ

Solving for 1+ f 0(s) in the first equation and g(s) in the second gives:

1þ f 0ðsÞ ¼
2pðsÞ
l1

ð23Þ

gðsÞ ¼
1

l2

: ð24Þ

Because 1+ f 0(s) must integrate to N, p(s) integrates to 1, and p(s)g(s) must integrate to R, it

is simple to determine the value of the λ’s and write the solutions:

1þ f 0ðsÞ ¼ NpðsÞ ð25Þ

gðsÞ ¼ R: ð26Þ
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Recall that 1+ f 0(s) is equivalent to the density function from prior work, which we denote

with d(s) (Eq (10)) [8, 9]. Thus, substituting this identity in to Eq (25), we reach the same con-

clusion as prior work that

dðsÞ ¼ NpðsÞ: ð27Þ

That is, the density of tuning curves in the optimal encoding population is proportional to

the probability distribution of the stimulus and the gain is constant (see Fig 1 upper row).

Because of the resulting proportionality between probability and density, and the fact that

the gain function should be held constant, the optimal transformation results in a population

where each neuron is equally likely to fire. In regions of high stimulus probability, there are a

large number of tuning curves that are relatively narrow or selective. In regions of low proba-

bility, the tuning curves are sparser, but more broad (so they fire strongly in response to a

larger range of stimuli). Said another way, the transformation to the optimal population maps

the stimulus distribution to a new sensory space in which the distribution and the Fisher infor-

mation are all uniform. This observation links the problem of optimal coding to the problem

of finding a mapping function between an arbitrary probability distribution and the uniform

distribution.

What is the form of the mapping function that accomplishes this goal? Prior work defined

this mapping function a priori to be the cumulative of a function parameterizing the density of

the tuning curves [8, 9, 30]. Following Eq (27), the optimal mapping function is then simply a

scaled version of the cumulative of p(s). However, by using the cumulative density, this formu-

lation is limited to situations in which the transformation can be described by a cumulative.

This limitation becomes problematic for the case of multidimensional stimuli because the

cumulative treats all dimensions as if they are separable. In our new formulation, we have

replaced the cumulative density with the more general transformation embodied by the vari-

able ŝ (that is, s+ f(s)). This generalization produces the same solution in 1-D, as described

above. In addition, in the following section we will see that this formulation can describe the

appropriate allocation of neuronal density for non-separable distributions in arbitrary dimen-

sions in closed form.

Extending the 1-D optimization to arbitrary dimensions

For a neuronal population encoding k stimulus dimensions, the Fisher information becomes a

kxk matrix with the entry in row i and column j defined by:

½F ðsÞ�ij ¼ E �
@

2log pðrjsÞ
@si@sj

" #

s

; ð28Þ

where si and sj are two dimensions in the stimulus space. Note that the multidimensional stim-

ulus is now defined by a k-dimensional vector s. The k-dimensional tuning function of the nth

neuron in the population will thus be written as hn(s). For the Poisson population, Eq (28)

reduces to:

½F ðsÞ�ij ¼
X

n

@hnðsÞ
@si

� �
@hnðsÞ
@sj

 !
1

hnðsÞ

� �

: ð29Þ

The objective function will now depend on the determinant of the Fisher information

matrix, rather than the scalar value of the Fisher information. This is the case because in 1-D

Fisher information bounds a variance, while in multiple dimensions the determinant of the

Fisher information matrix bounds the determinant of a covariance matrix [11]. Thus, similar
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to the 1-D population (Eq (17)), the k-dimensional population will seek to optimize

Z

pðsÞlogðjF f ;gðsÞjÞds; ð30Þ

where |�| denotes the matrix determinant.

The expression for how the Fisher information changes under the multidimensional repar-

ameterization must be adjusted from 1-D as well. Starting with the displacement transforma-

tion from Eq (9), which is now ŝ ¼ sþ f ðsÞ, the effect of the warping into the sensory space is:

F f ðsÞ ¼ JTŝ F uðŝÞJŝ ; ð31Þ

where Jŝ is the Jacobian matrix of the transformation from s to ŝ. For square matrices, |AB| =

|A||B| and |AT| = |A|, so we can write

jF f ðsÞj ¼ jF uðŝÞjjJŝ j
2
: ð32Þ

In 1-D we made the assumption that the sum of the Fisher information as a function of the

stimulus variable was approximately constant, and the corresponding assumption in multiple

dimensions is that the determinant of F uð�Þ is approximately constant. We will again call this

constant U.

The effect of the gain function on the Fisher information will also be different in higher

dimensions. The gain function will multiply each element of the matrix, so because |aA| =

ak|A| where k is the dimension of the matrix, we have:

jF gðsÞj ¼ gðsÞkU: ð33Þ

Finally, the determinant of the fully parameterized Fisher information matrix can be writ-

ten as:

jF f ;gðsÞj ¼ gðsÞkjJŝ j
2U: ð34Þ

After making the replacement for the density of the warped tuning curves dðsÞ ¼ jJŝ j (note

that the determinant of the Jacobian of a transformation defines the relative density between

the two spaces), we can write the Lagrangian for the multidimensional case (the optimization

constraints are essentially unchanged from the one dimensional case):

L ðdðsÞ; gðsÞ; sÞ ¼
Z

pðsÞlog½gðsÞkdðsÞ2U�dsþ l1

Z

dðsÞds � N
� �

þ l2

Z

pðsÞgðsÞds � R
� �

:
ð35Þ

Setting the gradient equal to zero yields the system of equations:

@L

@dðsÞ
¼

2pðsÞ
dðsÞ

� l1 ¼ 0 ð36Þ

@L

@gðsÞ
¼

pðsÞ
gðsÞ
þ l2pðsÞ ¼ 0; ð37Þ

so we conclude that d(s)/ p(s) and g(s)/ a constant. This gives us a result in higher
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dimensions that mirrors the 1-D case:

dðsÞ ¼ NpðsÞ ð38Þ

gðsÞ ¼ R: ð39Þ

In summary, rather than parameterize a heterogenous population of tuning curves by the

cumulative of the density with which they tile the stimulus space, we chose instead to use a

displacement field that warps an initially uniform lattice. This choice allowed us to avoid any

reference to a cumulative density function, which is beneficial because the utility of the cumu-

lative is restricted to 1-D. However, because the objective function turns out to depend on the

Jacobian of the transformation between the uniform tiling and the warped tiling, the density

still appears in the k-dimensional optimization problem in a natural way. This allowed us to

arrive at a solution for the optimal density with which a population of heterogeneous tuning

curves should tile a multidimensional stimulus space given the probability distribution of the

stimuli, and a solution for the gain function that optimally modulates the firing rate of each

neuron in said population. Additionally, the result is still intuitively sensible: it says that the til-

ing should be more dense in regions where the stimulus is more likely, but that the response

gain of tuning curves should be uniform. Taken together these statements imply that in an

optimal population each neuron is equally likely to fire a spike in natural conditions.

Importantly, at this point we have not shown that a displacement field exists that can

describe an optimal transformation between the stimulus space s and the sensory space ŝ. We

have rather shown that if or when this displacement field does exist, the optimal density of a

population of tuning curves is proportional to the density of the multidimensional stimulus.

Note also that the precise arrangement of a k-dimensional population is not uniquely deter-

mined by the density because it only describes the determinant of the Jacobian, which cannot

be integrated to recover the mapping. This is in contrast to 1-D, where the Jacobian is simply

the 1-D derivative making it possible to directly integrate the density to recover the mapping.

Thus for multidimensional tuning curves, in order to show that the optimal neuronal popula-

tion density is proportional to the density of the stimulus, a field f(s) that maps between stimu-

lus and sensory space must be found such that its Jacobian determinant is properly defined.

In the next section, we show that, although there is no longer a one-to-one correspondence

between the density and the mapping function in higher dimensions, the mapping function is

nonetheless well constrained and can be approximated with numerical methods.

Determining optimally efficient heterogeneous neuronal populations in

higher dimensions

A description of the multidimensional displacement field f(s) that embodies the mapping func-

tion can be derived by considering the properties of the stimulus and sensory spaces. Follow-

ing on the derivation in [27], we will show that some basic assumptions about these spaces can

be used to constrain the possible transformations between them. First, we note that both the

stimulus probability distribution in stimulus space p(s) and the uniform probability distribu-

tion in sensory space uðŝÞmust integrate to one. Thus, we have:
Z

pðsÞds ¼
Z

uðŝÞdŝ; ð40Þ

where multiple integration over the dimensions of s and ŝ is implied.

To examine the relationship between the two spaces, we can eliminate the integrals by dif-

ferentiating both sides of this equation with respect to s. First, because ŝ is defined by a
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transformation of s, we can let ĉðsÞ be the transformation function for sensory coordinates:

ŝ ¼ ĉðsÞ ¼ sþ f ðsÞ. The second integral can now be rewritten using the change of variables

theorem yielding:

Z

pðsÞds ¼
Z

uðĉðsÞÞjJðĉðsÞÞjds: ð41Þ

Here J(�) denotes the Jacobian operator, and JðĉðsÞÞ gives the Jacobian matrix Jŝ from Eq

(31). Taking the derivative of each side with respect to the (arbitrary) upper limits of integra-

tion, substituting the definition of ĉðsÞ, and isolating the determinant gives a constraint on the

relationship between the two distributions, and therefore a constraint on f(s):

pðsÞ=uðsÞ ¼ jJðsþ f ðsÞÞj ¼ jI þ Jðf ðsÞÞj: ð42Þ

where I is the identity matrix. Here we have substituted u(s) for uðĉðsÞÞ because u is a constant

function and the argument has no effect on its value. The limits of the multiple integration are

a vector, and the derivative has been taken with respect to each element.

Note that Eq (42) is under constrained because each component of the vector f ðsÞ 2 Rk is

an unknown, whereas the left hand side is a scalar value. However, recall from the 1-D deriva-

tion that f(s) is constrained to be a smooth, continuous function of s. This implies that both

the sensory and stimulus spaces, ŝ and s, are defined over continuous coordinate systems that

are simply connected and do not have coordinate singularities—an assumption that has been

implicit in prior work, where smooth 1-D distributions p(s) have been integrated into a cumu-

lative density function to transform coordinates between the stimulus and sensory spaces. We

will show that these mild constraints imply that f(s) is a conservative field in higher dimen-

sions, and can therefore be described as the gradient of a scalar function. This reduces the

number of unknowns to one at each point s. We refer to this scalar function as the encoding

potential: the gradient of this function yields the mapping that is needed to acheive the opti-

mality criteria derived in the preceding sections.

For f(s) to be conservative, its integral along an arbitraty path r(t) through stimulus space

must not depend upon the path taken, but solely on the endpoints. Here, t denotes the variable

parameterizing the path. To write the line integral along the path, note that f ðsÞ ¼ ĉðsÞ � s
is the difference between two coordinates. Let c(s) define the stimulus coordinates similarly

to the sensory coordinates. That is, s = c(s), where c(s) is simply the identity function. Thus,

f ðsÞ ¼ ĉðsÞ � cðsÞ. This additional notation is adopted to make the meaning of the line inte-

gral clear:

Z

f ðrðtÞÞ � r0ðtÞdt ¼
Z

½ĉðrðtÞÞ � cðrðtÞÞ� � r0ðtÞdt: ð43Þ

Here, the dot is used to denote the dot product. For the line integral to be independent of

the path, r(t), it must be integrable. The second coordinate function, c(s), integrates trivially.

Let γ(s) refer to this stimulus coordinate potential:

Z

cðrðtÞÞ � r0ðtÞdt ¼
1

2
s2 þ C � gðsÞ: ð44Þ

where r0ðtÞ ¼ dr
dt and C is a constant of integration. Whether f(s) is conservative therefore

depends upon the integrability of the sensory coordinate function, ĉðsÞ.
We can ensure ĉðsÞ to be Riemann integrable by leveraging a constraint that has been

implicit in prior work [9]: the sensory coordinate function is constrained to be continuous

and thus integrable. Note that this introduces a constraint on the coordinates, rather than the
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functions defined on them. Let ĝðsÞ refer to this sensory coordinate potential:
Z

ĉðrðtÞÞ � r0ðtÞdt � ĝðsÞ: ð45Þ

The line integral of the displacement field f(s) can therefore be described by a scalar poten-

tial v(s):
Z

f ðrðtÞÞ � r0ðtÞdt ¼ ĝðsÞ � gðsÞ � vðsÞ ð46Þ

f ðsÞ ¼ rvðsÞ: ð47Þ

Here,rv(s) denotes the gradient of the scalar potential. We can now rewrite Eq (42) with

the substitution f(s) =rv(s):

pðsÞ=uðsÞ ¼ jI þ JðrvðsÞÞj ð48Þ

¼ jI þHðvðsÞÞj; ð49Þ

where I is the identity matrix, and H(�) denotes the Hessian operator. Note that this equation

now contains only one unknown (the scalar value of v(s) at each point in space), and holds

regardless of the dimensionality of the spaces.

In summary, constraining the transformed sensory coordinates, ŝ, to be continuous implies

that the line integral in Eq (45) can be evaluated for all paths, which in turn implies that the

underlying displacement field f(s) can be written as the gradient of a scalar potential function

—and conversely, constraining f(s) to be the gradient of a scalar function implies that the coor-

dinates ŝ are continuous. In the next section we show that Eq (49) can be solved for the poten-

tial v(s), from which we recover f(s). The optimal neuronal population density is therefore

proportional to the density of the stimulus as predicted in Eq (38).

Solving for the optimal mapping function in 2-D

The work laid out in the previous sections advances our ability to predict the properties of neu-

ronal populations that efficiently encode more than one stimulus dimension. In practice, the

characterization of neuronal tuning curves beyond 1-D requires exponentially increasing

amounts of data collection in the laboratory. While large datasets of multidimensional tuning

curves are becoming more feasible due to the development of high-throughput data collection

paradigms, as a next step we will focus on making predictions for 2-D stimuli, because these

are most likely to be relevant for experimental confirmation in the near term.

We will denote the separate dimensions of a 2-D stimulus s as s1 and s2. For 2-D stimuli, the

determinant in Eq (49) expands to give the following differential equation:

pðsÞ=uðsÞ ¼
@

2v
@s1

2

@
2v

@s2
2
�

@
2v

@s1@s2

� �2

þ
@

2v
@s1

2
þ
@

2v
@s2

2
þ 1: ð50Þ

A numerical method for solving this equation is given in [27]. Briefly, the optimization

procedure initializes v(s) to the zero matrix (no transformation) at a fixed resolution. This

initial estimate is then refined to minimize the total squared difference between the right and

left hand sides of Eq (50), accumulated across the discretized domain (See [27], Equations

(17)–(23).) Numerical refinement proceeds using the non-linear conjugate gradient method

of [37] and computations are made efficient using optimal, separable filters derived by [38].
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The optimization is wrapped in a multi-grid scheme in which a low resolution potential is

first estimated.

The discretized domain is defined within a finite square boundary. Geometric properties of

the potential are used to constrain the numerical solution within this boundary. Specifically,

the potential must obey boundary constraints, or probability mass will be mapped outside of

its finite domain (mass must be conserved under f(s)). Components ofrv that are orthogonal

to the boundary must be zero at the boundary. The potential must therefore become flat as one

approaches the boundary, but can be sloped as one travels along the boundary. This constraint

is enforced by repeating the values of v(s) within a fixed perpendicular distance of the bound-

ary. The fixed distance is the width of the discrete convolutional operators, guaranteeing that

the perpendicular component of the discrete gradient is zero at the boundary. In the optimiza-

tion, these repeated values are changed as a group to enforce this constraint.

Lastly, the above optimization as-is would force the domain boundary to be square. To

allow for different boundary shapes, the uniform distribution can be defined in a smaller inte-

rior region, such as a circle. Outside of this region, both probability distributions are defined

to be equal to avoid introducing discontinuities. After optimization, the gradient field is

cropped to the boundary of this region. An implementation of this optimization in Matlab

code is publicly available (https://github.com/eacooper/MultidimensionalEfficientCoding).

Note that the numerical optimization does not guarantee that the solution is unique. Multiple

minima have not, however, been observed while testing with a variety of probability distribu-

tions. Once v(s) is found, its gradient gives the displacement field f(s).

Summary of constraints and assumptions

Thus far, a variety of constraints, assumptions, and approximations have been chosen. Here,

we will summarize and discuss some of the key choices and the limitations they introduce for

predicting optimal heterogenenous neuronal populations. In the following sections, we will

then apply this framework to example 2-D stimulus distributions and discuss some common

features of the optimized encoding populations.

First, we make a number of choices about the initial uniform neuronal population in stimu-

lus space. The neuronal tuning curves are assumed to be unimodal so that they can tile the

stimulus space and the approximation in Eq (8) can hold. This assumption is incompatible

with monotonically increasing tuning curves. For example, the population-level activity for

uniformly spaced sigmoidal tuning curves increases in the direction that the sigmoids are

increasing, resulting in quite different populations that satisfy the constraint on expected firing

rate, as discussed in [9]. Even restricting ourselves to unimodal tuning curves, the final appear-

ance of the optimal heterogeneous encoding population is affected by the exact shapes of these

tuning curves, as well as the original density with which they tile the space. This issue is also

true in prior 1-D work, in which one must manually select various features of the uniform

population (the number of neurons, their initial tuning curve shapes, and their amount of

overlap) in order to visualize an optimized population [9]. However, the extension into multi-

ple dimensions necessitates additional choice-making. For example, in addition to the popula-

tion density, one must also choose the lattice over which the uniform population is defined.

We chose a hexagonal lattice in the simulations below, but similar results were obtained with a

rectangular lattice. The initial lattice will affect the final positions of individual neurons in the

optimized population—where they start affects where they end up. We assume that most bio-

logical neuronal populations are in a high density regime and should thus be evaluated at a

population level, rather than based on the positioning of individual neurons. Another choice

that becomes less constrained in higher dimensions is the shapes of the tuning curves. For

PLOS COMPUTATIONAL BIOLOGY Efficient sensory coding of multidimensional stimuli

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008146 September 24, 2020 15 / 25

https://github.com/eacooper/MultidimensionalEfficientCoding
https://doi.org/10.1371/journal.pcbi.1008146


example, in the following simulations we chose isotropic 2-D tuning curves, but non-isotropic

shapes could satisfy Eq (8) equally well. The choice of the initial tuning bandwidth in each

dimension is thus left unconstrained. Importantly, these choices will change the specific details

of the predicted optimal population, but they will not result in populations that disobey the

core predictions of the theory: an optimal population places proportionally more neurons with

narrower tuning in regions of the stimulus space that are more likely to occur and does not

modify their gain.

Second, only two functions are adopted to parameterize the heterogeneous population in

terms of a transformed version of this uniform population. These functions are the displace-

ment field and the gain function. The simplicity of this parameterization limits the ultimate

shape of the heterogeneous population, and also requires constraints on these functions in

order to reach a closed form solution. Specifically, these functions are constrained to be con-

tinuous and slowly changing with respect to the tuning curves. These constraints ensure that

Eqs (16) and (34) are valid approximations of the heterogeneous population’s Fisher infor-

mation, and the solution will thus hold more exactly when tuning curves are relatively nar-

row. These constraints are carried over from the 1-D framework that we build on, but the

constraint that the displacement field be continuous takes on new significance in higher

dimensions [9]. In 1-D, this continuity constraint on displacement was implicit because the

warping function was defined by the cumulative, an integral of a density function that was

itself continuous [9]. In the multidimensional case, the continuity constraint implies that the

optimal displacement field must be conservative. As described in the previous section, the

fact that the displacement field is conservative means that it can be written as the gradient of

a scalar function and is curl free (this is the outcome of Eqs (43)–(47)). This conservative

property allows us to obtain a numerical solution, but it limits our approach to modeling

neuronal populations that represent continuously valued stimulus variables. For the current

formulation, this constraint provides a useful starting point and importantly enables us to

derive detailed predictions for populations that encode multiple stimulus dimensions. But

developing models that move away from the closed-form framework used here may provide

new insights into the variety of multidimensional schemes that can lead to efficient neural

representations.

Lastly, the numerical method for solving for the potential function (whose gradient defines

an optimal displacement field) introduces additional assumptions. Eq (50) defines the stimulus

distribution and the sensory distribution (the latter being uniform) over the same domain.

Because the two domains are related by the addition of a displacement field, they are required

to share the same units and metric, and the left hand side of the equation is only well defined if

the two domains overlap. However, the choice of domain does not change the optimal solution

arbitrarily. For example, we can consider a change of units or scale in one stimulus dimension.

If the range is initially 0-1 kHz but becomes 0-1000 Hz, this will change both the range of the

domain in one dimension and also will generally change the geometry of the 2-D domain.

Importantly, the solution to Eq (50) is invariant under such a domain transformation, after

applying the same change of units to the potential function, and thus does not vary arbitrarily

with a change to the geometry of the domain. In contrast, the shape of the domain does come

into play when the numeric optimization is implemented. The main observed effect of the

boundary shape is to change the tuning curve shapes near the boundary. We use a simple cir-

cular or square boundary in all simulations that follow. Similar issues arise in the 1-D cumula-

tive distribution solution, in which tuning curves become constant in areas of the domain

where the stimulus probability falls to zero. From a practical standpoint, because the choice of

boundary is unconstrained and primarily affects the results near the boundary, we restricted

our analysis to a smaller central square region of the stimulus space.

PLOS COMPUTATIONAL BIOLOGY Efficient sensory coding of multidimensional stimuli

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008146 September 24, 2020 16 / 25

https://doi.org/10.1371/journal.pcbi.1008146


Stimulus distributions and optimal neuronal populations in 2-D

Given any 2-D stimulus probability distribution, the method described in the previous section

allows us to find a displacement field with which to warp a neuronal population in order to

efficiently encode the stimulus (i.e., with neuronal density proportionate to probability). In

this section, we explore the properties of neuronal populations optimized with this method

(Fig 3). Fig 3A illustrates four 2-D stimulus probability distributions. One distribution is

Gaussian over s1 and uniform over s2 (top), one distribution is an isotropic bivariate Gaussian

(upper middle), one distribution is an anisotropic leptokurtotic generalized Gaussian (lower

middle) and one distribution is Gaussian over s1 with a standard deviation that varies non-lin-

early with s2 (bottom). For each 2-D stimulus probability distribution, we also show the inverse

of the numerically optimized displacement field, which intuitively illustrates the warping of

neuronal tuning curves (Fig 3B). Generating visualizations of the warped populations involves

some choices, the most obvious of which is the shape of the unwarped 2-D tuning curves. For

these examples, we chose bivariate isotropic Gaussians for the unwarped tuning curves, though

any shape that can reasonably tile the stimulus space is possible. The resulting warped 2-D

populations are shown in Fig 3C. Finally, for each population, two example 1-D samples are

shown (Fig 3D). These samples show what the 1-D tuning curves in this population look like

as a function of s1 assuming s2 was held constant at two different values. As described in the

previous section, only the central region of the stimulus domain is analyzed in each panel due

to limitations of the numerical method at the boundary.

Several features of the optimized populations are qualitatively notable. First, the density

with which tuning curves tile a particular region of the space is proportional to the probability

density in that region, as required by Eq (38) [8, 9]. Because the population is constrained to

maintain a fixed overlap between neurons, the widths of the tuning curves in the population

are thus heterogeneous. Qualitatively, the bandwidth appears narrower (sharper tuning

curves) in areas of high probability, and broader in areas of low probability. However, the

bandwidth can also vary substantially for s1 and s2. With respect to the maximum firing rates

of the neurons, following from the fact that the optimal gain function is uniform, each neuron

has the same peak firing rate associated with its 2-D tuning curve (Eq (39)). S2 Fig illustrates

the measured distribution of Fisher information in each of the example populations in Fig 3C,

and shows that these distributions follow the square root of the stimulus probability density as

expected by Eq (34). Thus, if a population is optimal in the sense described here, it would be

possible to predict the natural distribution of the stimuli being encoded from the Fisher infor-

mation measured from the population responses. Such an inverse efficient coding scheme is

similar to a method proposed in [39], which derives the stimulus distribution from the distri-

bution of firing thresholds in an optimal population of spiking neurons.

Because empirical measurements of neurons often characterize a subset of their tuning

properties, we next conducted simulations designed to examine how measurements of lower

dimensional (1-D) tuning properties relate to the higher-dimensional (2-D) stimulus probabil-

ity distribution encoded by example populations (Fig 4). These simulations can reveal insights

into how to evaluate efficiency when the full dimensionality of the neuronal tuning curves

(and the encoded sensory space) is unknown. Specifically, starting with each of the example

neuronal populations illustrated in Fig 3C, we took a set of 1-D samples through each popula-

tion, determining the 1-D tuning curves that would be obtained by holding either s1 or s2
constant and measuring neuronal spike rate as a function of the other variable. We then sum-

marized each of these 1-D tuning curves by their overall gain (maximum response) and tuning

sharpness (inverse of full width at half maximum response). In practice, experimenters may try

to identify the tuning preference for each neuron along one dimension before characterizing
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Fig 3. Example 2-D stimulus probability distributions and the resulting optimal encoding populations. A) Each

row represents a different example probability distribution over two stimulus dimensions (s1 and s2). For each panel,

the probabilities are defined over a lattice ranging from -1 to 1 (cropped to the central 65% to remove boundary

artifacts). Top: uniform over s2 and Gaussian distributed over s1 (μ = 0, σ = 0.25). Upper middle: isotropic bivariate

Gaussian (μ = 0, σ = 0.25 in both dimensions). Lower middle: bivariate generalized Gaussian (μ = 0, σs1 = 0.75, σs2 =

0.25, power = 1.1). Bottom: Gaussian distributed over s1, with a σ that varies non-linearly with s2 (this distribution is

non-separable). B) For each probability distribution, we show a down-sampled and scaled visualization of the inverse

density mapping function. The direction and length of the arrows illustrate how density will be mapped from sensory

space into the stimulus space. C) For each probability distribution, we show an example neuronal population that has

been warped to optimally encode the stimulus. For these visualizations, we chose a population of neurons with

isotropic bivariate Gaussian tuning curves (σ = 0.05) tiling the space on a hexagonal lattice (spacing� 0.2). Though

these choices for the population are arbitrary, varying them does not change the qualitative properties of the warped

populations. Circular domain boundaries were used for the bottom three examples. To account for the uniform

probability in panel A (top row), the population illustrated in panel C (top row) was defined with a square rather than

a circular domain boundary. D) On the right side of each population, a pair of 1-D samples are illustrated. For each

sample, s2 is held constant and the tuning curves are visualized over s1. Neurons with a maximum normalized response

of less than 0.2 within the sample are not visualized. The distribution of Fisher information in each 2-D population is

shown in S2 Fig).

https://doi.org/10.1371/journal.pcbi.1008146.g003
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Fig 4. Analysis of how lower-dimensional measurements of tuning curve properties (1-D gain and tuning width) relate to the

higher-dimensional stimulus probability. Four example neuronal populations are shown, which correspond to the probability

distributions and optimized mappings in Fig 3 (re-plotted in the top row). We simulated a set of 1-D experiments by selecting a single

value for either s1 or s2 and measuring the response gain (maximum response) and tuning sharpness (inverse of the full width half

maximum) of a set of neurons within this ‘slice’ (σ pre-warping was 0.05). This method simulates what the measured neuronal gain and

tuning bandwidth would be in an experiment in which one stimulus feature was held constant and the other was varied. (A-D) For each

of the illustrated populations, these panels plot the 1-D tuning sharpness as a function of probability, for a sample of neurons (400-700

neurons). Samples that were drawn by holding s1 constant are shown in red, and samples drawn by holding s2 constant are in black.

(E-H) These panels plot the 1-D response gain as a function of stimulus probability, as in the panels above. (I,J) We repeated these

simulations 500 times for randomly generated 2-D stimulus probability distributions and calculated the correlation between gain/

tuning and probability. Each probability distribution was a zero-centered, bivariate Gaussian with a random orientation and major/

minor σ drawn uniformly from 0.1-0.4. For each simulation, the tuning curves were modeled as isotropic Gaussians with σ drawn

uniformly from 0.03-0.07. A random 1-D slice was selected, and 25 neurons were sampled. P-values indicate the results of a Wilcoxon

signed rank test determining whether the median correlation was significantly different from zero.

https://doi.org/10.1371/journal.pcbi.1008146.g004
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the tuning for another (for example, identifying the preferred stimulus orientation of a visual

neuron before characterizing its tuning curve for spatial frequency).

First, we asked whether measurements of 1-D tuning sharpness bear a consistent relation-

ship to 2-D stimulus probability. Based on data from several neurophysiological studies, previ-

ous work found consistent evidence that neurons encoding more likely stimuli are more

sharply tuned, however, only 1-D stimulus probabilities were considered [15]. Does the encod-

ing of a higher dimensional stimulus space affect this prediction? In Fig 4A–4D we plot the

1-D tuning for a sample of neurons from each example population in Fig 3, as a function of

the stimulus probability (p(s), which is the joint probability of s1 and s2). While there is some

variability, we can see that 1-D tuning generally follows a trend of having broadly tuned neu-

rons encode low probability values, and sharply tuned neurons encode high probability values.

The one exception is when s2 is uniformly distributed and s1 is not (Fig 4A, red circles). In this

case, neurons are predicted to maintain a relatively constant bandwidth of tuning in s2 (reflect-

ing the uniform distribution) even when the joint probability of s1 and s2 is variable. However

in practice it may be rare to encounter natural stimulus features that truly follow a uniform

probability distribution.

In a follow up analysis, we generated 500 random stimulus probability distributions by ran-

domly varying the aspect ratio and orientation of a bivariate Gaussian distribution. We then

sampled 25 neurons from an optimal encoding population for each random distribution and

calculated the tuning sharpness along a single stimulus dimension. We calculated the correla-

tion between the stimulus probability density (p(s)) and the tuning sharpness associated with

each neuron. Fig 4I shows a histogram of these correlations, which tended to be greater than

zero, and typically close to one (median = 0.99). A Wilcoxon signed rank test indicated that

the median was significantly greater than 0 (p� 0.001). The results of this simulation suggest

that the correlation between tuning sharpness and probability is a general property across

a range of stimulus distributions. Repeated runs of this simulation always produced similar

results.

A separate insight arises when considering the prediction that efficient neuronal encoding

populations have uniform gain. Previous work has examined the uniform gain prediction in

1-D by examining the maximum spike rate of neurons sampled from several different brain

regions [15]. The authors found substantial variability of gain within populations that nomi-

nally encode the same stimulus feature, seeming to violate the uniform gain prediction. This

discrepancy might suggest that gain is affected by other factors that do not relate to coding effi-

ciency. It has also been pointed out that applying alternative tiling constraints yields a predic-

tion that gain and probability should be positively correlated [30]. We wondered whether the

observed variability in response gain might be expected from our simulation. For example, the

right-most column in Fig 3 shows several 1-D samples through each 2-D population. If neuro-

nal preferences for stimulus feature s1 are measured empirically by varying s1 and holding

stimulus feature s2 constant (as is often done in neurophysiological experiments), the resulting

1-D tuning curves would appear as illustrated in the insets. It is clear from these insets that the

resulting data can appear as if neuronal gain is variable within this population, even though we

know it is not. This apparent variability occurs simply because some neurons’ peak responses

to s1 lie along different values of s2, and vice versa. In Fig 4E–4H, we plot the 1-D response

gain obtained by taking a set of 1-D samples through each example population. Similar to the

empirical physiological results, we see that the predicted response gain varies between neurons,

and this variability bears no consistent relationship to probability [15].

In a follow up analysis, we again varied the aspect ratio and orientation of a bivariate Gauss-

ian probability distribution and now measured the linear correlation between probability and

gain. The results suggest no consistent relationship between 1-D response gain and stimulus
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probability encoded by individual neurons (Fig 4J). The median correlation value was -0.01.

While this median was significantly different from zero as determined by a Wilcoxon signed

rank test (p = 0.001), correlation values above 0.5 were highly unlikely. This observation sug-

gests that in order to test predictions for any systematic patterns of gain (e.g., uniformity,

correlation with probability), a more exhaustive knowledge of the stimulus features being

encoded may be necessary, even if those features are statistically independent. This knowledge

may be prohibitive in practice for neuronal populations that robustly encode a large number

of stimulus dimensions, but could be used as a guideline for lower-level populations. At the

least, future empirical work can determine gain by varying several features of a stimulus and

characterizing the a multidimensional tuning curve.

Viewing 2-D populations also allows for new observations and predictions about efficient

populations in higher dimensions. In addition to heterogeneity of 1-D tuning width, we see

that the predicted efficient populations vary substantially in bandwidth around their peak in s1
and s2. For example, in each population, there are some neurons that are sharply tuned for s1,

but weakly tuned for s2 (very broad tuning curves), and vice versa. Thus, we predict that opti-

mal populations may contain a combination of neurons jointly tuned for each dimension, in

addition to some tuned just for one dimension.

Finally, we observed that neurons in these optimal populations can exhibit heterogeneity

of separability. That is to say, in many cases the efficient population contains some tuning

curves that are largely separable in their tuning for s1 and s2 (i.e., the preferred value of one

variable does not change much as the other is varied) and others that are not. Additionally,

non-separable tuning curves may arise in the efficient population regardless of whether the

input distribution is itself separable. For example, the bivariate Gaussian stimulus distribu-

tion in Fig 3 (upper middle row) is separable in s1 and s2, but produces a number of non-

separable neurons (i.e., their tuning over s1 varies as a function of s2). The presence of both

separable and non-separable curves in the efficient population is interesting when consider-

ing the problem of decoding the population responses. For sub-populations of neurons that

have separable tuning curves, a single variable value can be decoded from their response

without considering the value of the other stimulus dimension(s). This is because variations

in the irrelevant stimuli only modulate the magnitude of each neuron’s response [40]. Fur-

thermore, if we make the observation that for many of the probability distributions we have

tested the non-separable tuning curves tend to appear predominantly in regions of lower

probability, and if we assume the decoding population employs a simple independent read-

out method, in this scheme it appears that not only are low probability regions of the stimu-

lus space coded with less precision (tuning curves are broader), but they also may be decoded

less accurately.

Discussion

Notable theoretical advances in neuroscience have come from applying the efficient coding

framework to signals derived from the natural environment (e.g., natural images, videos and

sounds), which tend to be non-uniformly distributed. In several cases, this approach produces

predictions about the distribution of neural resources that have been confirmed with physio-

logical measures (e.g., [14, 15, 36, 41, 42]). Early theoretical work considered how single neu-

rons or uniform/homogeneous populations encode sensory variables [33, 36, 43, 44]. Some of

these original models explicitly considered the case of multidimensional stimuli [26]. More

recent studies, motivated by the observation of substantial variability in the tuning functions

of neurons in the same population, have investigated how heterogeneous populations of tun-

ing curves can efficiently encode 1-D stimuli [8, 9, 12, 30]. However the added complexity of
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multidimensional stimuli has made it difficult to generalize these heterogeneous population

models to higher dimensions.

Here we have addressed this gap by providing a theoretical prediction for how neural

resources should be allocated in the context of a heterogeneous population that is used to

simultaneously encode an arbitrary number of stimuli. In particular, we present a closed-form

solution for the optimal neuronal tiling density. This solution suggests that regions in stimulus

space that are more likely should be represented by a proportionally larger number of neurons,

which are each proportionally more selective. This result is a natural extension of previous

work on the neural coding problem, which considered heterogeneous populations of tuning

curves that respond to 1-D stimuli [8, 9]. Our results also suggest that each neuron should

exhibit the same maximum response. The key intuition behind this result is that each neuron

in the optimal population is equally likely to fire a spike under natural conditions (that is,

when the presented stimuli come from the environmental probability distribution).

The import of any theoretical model often hinges on its ability to be verified experimen-

tally. The prediction that neural resources simultaneously encoding multiple dimensions

should be distributed proportionally to the joint environmental distribution could be experi-

mentally verified or falsified with a combination of empirical measurements of multidimen-

sional tuning curves and environmental statistics. Interestingly, considering the case of

multidimensional stimuli revealed that the prediction that the response gain should be con-

stant throughout such a population will likely be difficult to test experimentally. Testing that

prediction would require exhaustive knowledge of all features being coded by the population,

in order to rule out the possibility that observed non-uniform gain may be the result of warp-

ing along an uncontrolled stimulus dimension. Thus, we have shown that predictions made

by efficient coding models can be deceptively simple, and that it is important to consider

how unmodeled features of biological function (i.e., multidimensional tuning) may manifest

themselves during experimental observation. In addition to these explicit predictions, this

work makes it possible to ask questions about the computational benefit of utilizing an opti-

mal multidimensional population as opposed to multiple one dimensional populations when

performing downstream tasks such as decoding. For example, in [9] the density of the encod-

ing population implicitly encodes a prior distribution during the decoding process. So the

use of two 1-D populations instead of a 2-D population would encode the best separable

approximation of the true joint probability distribution, which would presumably be subop-

timal. The extent to which separable approximations affect decoding performance would be

an interesting avenue for future research.

Like all optimization frameworks, ours makes several assumptions, fixing certain aspects of

the model based on some features of biological networks and allowing others to vary during

the optimization step. For example, in the current framework, the optimal mapping between

input stimulus space and the sensory representation is independent of the initial pattern of

tuning curves, so long as they meet the assumptions laid out in the model. It is important to

note that related population coding formulations (whether they choose different features to

vary or adopt different constraints) can make quite different predictions about the allocation

of neural resources. This highlights that there are multiple paths to achieving coding efficiency

even in the framework presented here [12, 30]. Other approaches such as sparse coding and

independent components analysis address a similar class of questions about optimality in

higher dimensions. Critically, our extension to multidimensional heterogenous populations

allows for more direct comparisons with these and other coding schemes for higher dimen-

sional signals. The availability of more datasets characterizing neuronal responses across

multiple stimulus dimensions should eventually answer the questions of what real neuronal

systems are optimized for and what constraints they operate under.
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Supporting information

S1 Fig. Importance of assumptions about displacement field and gain function when

parameterizing heterogeneous neuronal populations. The parameterization is illustrated as

in Fig 2, however the displacement field and gain functions (C,E) now vary substantially within

the bandwidth of individual neuronal tuning curves. When this is the case, the approximation

of Fisher information is no longer accurate (G).

(TIF)

S2 Fig. Recovering stimulus distribution from efficient populations. For each example

probability distribution from Fig 3 (A) and numerically optimized population (B), the mea-

sured Fisher information associated with the population is plotted as the determinant of the

Fisher information matrix (C,D) (Eq (29)). Each panel is scaled to the maximum, which is

indicated in the bottom right. The Fisher information pattern reflects the shapes and distribu-

tion of the tuning functions, which here are warped from a population of bivariate Gaussians

on a hexagonal sampling lattice (σ = 0.05). In (C), neurons were relatively sparsely spaced as

illustrated in (B), resulting in irregularities in the measured Fisher information (spacing�
0.20). In (D), this spacing was decreased by a factor of 2 to illustrate the smooth Fisher infor-

mation. Because the determinant of the Fisher information matrix is proportionate to the

squared probability of the stimulus, the results in (D) can be used to estimate the stimulus

probability from the neuronal population directly (E). The panels illustrate that the numeric

optimization results in a population in which the 2-D Fisher information is allocated appropri-

ately for the input stimulus probability. In all panels, the stimulus space is cropped to +/- 0.65

to remove boundary artifacts resulting from the numeric optimization.

(TIF)
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