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Active biological systems reside far from equilibrium, dissipating heat even in their steady state,
thus requiring an extension of conventional equilibrium thermodynamics and statistical mechanics.
In this Letter, we have extended the emerging framework of stochastic thermodynamics to active matter.
In particular, for the active Ornstein-Uhlenbeck model, we have provided consistent definitions of
thermodynamic quantities such as work, energy, heat, entropy, and entropy production at the level of single,
stochastic trajectories and derived related fluctuation relations. We have developed a generalization of the
Clausius inequality, which is valid even in the presence of the non-Hamiltonian dynamics underlying active
matter systems. We have illustrated our results with explicit numerical studies.
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Active matter systems are composed of constitutive
elements that are capable of self-propulsion. Either through
an internal mechanism or by extracting energy from their
environment, these elements exhibit self-induced motion in
the absence of any externally applied force. Examples
include solutions containing single cellular organisms such
as bacteria or protozoa, synthetic colloidal systems, and
vibrated monolayers of granular matter [1–6]. In fact, active
matter models have been used to describe flocking, school-
ing, and herding behavior in animal movement [7–11].
Active systems are attracting growing interest due to their
relevance for understanding live biological systems and their
potential applications to the design of synthetic colloidal
systems with controllable properties [12–18]. Moreover,
they exhibit novel collective properties such as phase
separation in the absence of explicit attractive interactions
[19–26], rectification of random fluctuations [27], and
spontaneous self-organization and pattern formation
[28,29], which make their study of interest in its own right.
Active matter systems constitute a new class of condensed

matter systems that are inherently out of equilibrium and
therebynot describable by the standard,Gibbsian framework.
While the collective behavior of active particles has been
modeled by hydrodynamic equations based on conservation
and symmetry principles [15], and individual active particles
by various Brownian dynamics [18], a systematic framework
for the nonequilibrium thermodynamics and statistical
mechanics of active matter is still in development. Many
of the published studies so far have focused on utilizing
equilibrium thermostatic notions, often based on approxi-
mating active systems by passive systems [30–39]. In this
Letterwe propose an alternative approach based on stochastic
thermodynamics [40,41], which is an emerging framework
for thedescriptionof thermodynamics and statisticalmechan-
ics of stochastic systems far from equilibrium. Stochastic

thermodynamics has enabled us to define thermodynamic
quantities such as energy, work, heat, entropy, and entropy
production at the level of individual realizations of stochastic
dynamics. Moreover, one obtains exact analytical results
for the fluctuations of entropy production in the form of
equalities, as opposed to the inequalities of the second law of
thermodynamics. These equalities aremore popularly known
as fluctuation relations [42–47].
In this Letter, we choose the active Ornstein-Uhlenbeck

process (AOUP), alternatively called the Gaussian colored
noise model, to illustrate our approach [48–54]. Like other
activemattermodels, thismodel is known to exhibitmotility-
induced phase separation (MIPS) [55]. The AOUP model is
different frommany other models of activematter [56–58] in
that there is no explicit internal drive that forces the system
out of equilibrium; the active behavior of the system arises
from the nonequilibrium nature of the forces from the
environment. In particular, the damping and fluctuating
forces from the environment do not satisfy the fluctuation-
dissipation relation (FDR). This fact makes it a challenge to
develop stochastic thermodynamics for the AOUP, as the
usual approaches rely heavily on the equilibrium nature of
the environment. We overcome this challenge by proposing
an exact mathematical mapping of the AOUP, which is an
overdamped Langevin model, to a passive, underdamped
Langevin model with effective reservoir forces that satisfy
the FDR. We derive our generalizations of both the first and
the second laws of thermodynamics in reference to this
mapped system, the latter giving rise to a modified Clausius
inequality. Moreover, we derive both integral and detailed
fluctuation relations for entropy production. These in turn
allow us to make exact and verifiable predictions for the
behavior of the original active matter system.
This Letter is inspired in part by a recent study of the

AOUP [49], in which the authors studied entropy production
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of the AOUP based on its path-integral representation. The
entropy production in this context involves the time reversal
of a stochastic process with nonconservative forces, which is
still a debated issue [59,60]. Our work introduces a particular
microscopic outlook to the resolution of this issue through an
explicit model of an effective heat bath. This leads to an
expression for entropy production [Eq. (9)] that is different
from that found in Ref. [49]. In particular, we find that it is
nonzero and positive even for anAOUP in a simple harmonic
potential,whereas the authors inRef. [49] report zero average
entropy production in such cases. The crucial difference
between our treatment and theirs lies in the very definition of
entropy production along a trajectory: In our definition
[Eq. (8)] we consider the time reversal of the dynamics in
addition to the reversal of trajectories, in accordance with
the framework of stochastic thermodynamics [41,61]; in
Ref. [49] the time reversal of the dynamics had not been
considered [see Eq. (9) in Ref. [49]]. Moreover, we have
considered a time-dependent scenario in which the potential
energy of the system may vary with time—leading to a
renormalized potential energy in the underdamped dynam-
ics, different from the original one—a case not considered in
the earlier study. The fact that other authors have obtained
different results for the AOUP model [49] suggests further
study is needed to determine definitively whether the
results we present here are consistent with everymicroscopic
system described by the AOUP.
Consider a suspension of N active colloidal particles

with xi denoting the position of the ith particle. In the
absence of the medium, the dynamics of the particles are
governed by the possibly time-dependent potentialΦðX; tÞ,
where X ¼ ðx1;x2;…;xNÞ refers to the configuration
space of the whole system. There are two forces from
the medium: a damping force, − _xi=μ for particle i, and a
Gaussian random force, vi=μ, the latter having the follow-
ing properties [62]:

hviai ¼ 0; hviað0ÞvjbðtÞi ¼ δijδab
D
τ
e−jtj=τ; ð1Þ

for all i, j, a, and b. Here, the angular brackets h…i denote
the noise average (i.e., the average with respect to many
realizations of the random forces vi); via denotes the ath
component of vi; δxy denotes the Kronecker delta function;
τ is the persistence time of the noise; and D is the diffusion
coefficient. Equation (1) implies, in particular, that the
random forces felt by different particles in different
directions are independent of each other. The Langevin
equation of the ith particle is given by

_xi ¼ −μ∇iΦþ vi; ð2aÞ
τ _vi ¼ −vi þ

ffiffiffiffiffiffiffi
2D

p
ηi; ð2bÞ

where ηi denotes a Gaussian random noise with the
properties hηiai ¼ 0 and hηiað0ÞηjbðtÞi ¼ δijδabδðtÞ with
δðtÞ denoting the Dirac delta distribution.

Because the noise force vi=μ has exponential memory
whereas the damping force− _xi=μ is memoryless, the model
violates the FDR, and we have to conclude that the medium
is out of equilibrium. As pointed out in Ref. [49], in the limit
of vanishing persistence time (τ → 0) the model reduces to
an equilibrium model satisfying the FDR with respect to
temperature T ≡D=ðkBμÞ where kB is the Boltzmann
constant. Motivated by this observation, we replace D in
the following discussion by μkBT. We also use the nota-
tion β ¼ 1=kBT.
As remarked in the introduction, in the absence of the

FDR we cannot utilize the framework of stochastic thermo-
dynamics as is. In particular, we cannot interpret the heat
given to themediumdivided byT to be the change in entropy
of the medium for finite persistence time τ. Fortunately, it is
possible to overcome this challenge due to a surprising
property of the fluctuations of this active matter system: the
overdamped AOUP can be mapped exactly to an under-
damped Langevin process where the new, effective medium
(reservoir) is in equilibrium. The effective underdamped
process is given by (Sec. I in the SupplementalMaterial [63])

_xi ¼
pi

m
; ð3aÞ

_pi ¼ −∇iΨ −
pi

μm
þ

ffiffiffiffiffiffi
2

μβ

s
ηi − μðP · ∇Þ∇iΦ; ð3bÞ

where pi is the auxiliary momentum of particle i; m ¼ τ=μ
is the effective mass; Ψ ¼ Φþ μmð∂=∂tÞΦ is an effective
potential; and P¼ðp1;p2;…;pNÞ andX ¼ ðx1;x2;…;xNÞ,
respectively, refer to the phase-space momenta and coor-
dinates of thewhole system.Also, we have used∇i to denote
the gradient with respect to xi and ∇ ¼ ð∇1;∇2;…;∇NÞ to
denote the spatial gradient in the phase space of the whole
system. The damping and the noise terms, −pi=μm andffiffiffiffiffiffiffiffiffiffi
2=μβ

p
ηi, respectively, satisfy the FDR with respect to

temperature T. In the following we interpret them to be
forces from the effective, equilibrium reservoir. The non-
equilibrium nature of this mapped dynamics arise from the
momentum-dependent forceFi;m ≡ −μðP · ∇Þ∇iΦ. In some
sense,we havedecomposed the forces of the nonequilibrium
medium into those of an underlying equilibrium reservoir
and explicit forces. We now develop the results of stochastic
thermodynamics around this model.
To begin, we consider the first law of thermodynamics—

namely, conservation of energy. The total energy of the
system is given byE¼ð1=2ÞP2=mþΨ, kinetic plus potential
energy. A trajectory Γ over the interval ½0; t� is defined
to be the sequence of points Γ ¼ fX0∶t;P0∶tg ¼
fXðt0Þ;Pðt0Þj0 ≤ t0 ≤ tg. Work done on the system along
any Γ is given by [64]:

W½Γ� ¼
Z

t

0

dt0
�∂Ψ
∂t0 − μðP · ∇Þ∇Φ∘ P

m

�
; ð4Þ
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where the first term denotes the thermodynamic work
corresponding to the conservative force, −∇iΨ, and the
second term denotes the mechanical work done by the
nonconservative force, Fi;m. Here, the circle (∘) denotes
Stratonovich multiplication [65], the necessity of which
follows from the chain rule of derivatives [64,66]. The heat
given to the reservoir over Γ is the amount of work done
against the reservoir forces:

Qres½Γ� ¼ −
Z

t

0

dt0
XN
i¼1

 
−
pi

τ
þ

ffiffiffiffiffiffi
2

μβ

s
ηi

!
∘piðt0Þ

m
: ð5Þ

The consistency of these definitions can be seen through the
following relation, the first law of thermodynamics for the
current system (Sec. II in the Supplemental Material [63]):

EðtÞ − Eð0Þ ¼ W½Γ� −Qres½Γ�; ð6Þ

which holds true at the level of individual stochastic
trajectories, not just on the average.
We now consider the second law of thermodynamics. Let

ρðX;P; tÞ be the phase space probability density of the
system at any time t. If the system is at ½XðtÞ;PðtÞ� at
time t, following the developments in stochastic thermo-
dynamics we can define the stochastic entropy sðtÞ at
time t to be sðtÞ ¼ − ln ρðtÞ with ρðtÞ≡ ρ½XðtÞ;PðtÞ; t�
[46]. The average entropy of the system HðtÞ at any
time t is given by the average of sðtÞ with respect to
ρðX;P; tÞ, which is also the Shannon information
HðtÞ ¼ −

R
dXdPρðX;P; tÞ ln ρðX;P; tÞ. The change in

entropy of the reservoir over the interval ½0; t�, on the
other hand, is given by the Clausius formula βQres½Γ�,
because the reservoir is in equilibrium [Eq. (5)]. Unlike the
usual second law of thermodynamics for passive systems,
however, the total entropy production over ½0; t� is not just
the sumof the change in the stochastic entropy of the system,
Δs, and the Clausius entropy change of themedium,Qres=T.
To see this we need to first define the time reversal of the
mapped process in Eq. (3) (Sec. III in the Supplemental
Material [63]):

_xi ¼
pi

m
; ð7aÞ

_pi ¼ −∇iΨ −
pi

μm
þ

ffiffiffiffiffiffi
2

μβ

s
ηi þ μðP · ∇Þ∇iΦ; ð7bÞ

obtained by keeping the reservoir terms unchanged and
replacing t and P by −t and −P, respectively, in the rest of
the terms. We also need to consider the time reversal of the
phase space trajectory Γ, given by Γr ¼ fXr

0∶t;P
r
0∶tg with

Xrðt0Þ ¼ Xðt − t0Þ and Prðt0Þ ¼ −Pðt − t0Þ. Next, we need
to consider PðΓÞ, the probability of Γ in process (3) and
PrðΓrÞ, the probability of the time-reversed trajectory Γr in
the time-reversed process [Eq. (7)]. If there is any explicit
time dependence inΨ andΦ, the time dependence has to be

reversed as well in the time-reversed process. Because
entropy production is a measure of time-reversal symmetry
breaking, entropy production Σ½Γ� along Γ is given by

Σ½Γ�≡ kB ln
P½Γ�
Pr½Γr� : ð8Þ

UsingEqs. (3) and (7), we can derive an explicit path integral
expression (Sec. IV in the Supplemental Material [63]):

Σ½Γ�
kB

¼ Δsþ βQres½Γ� þ μ2β

2

Z
ðdP · ∇Þ2Φ: ð9Þ

It is easy to prove that the average ofΣðΓÞ is non-negative as
required by the second law of thermodynamics. This follows
from the fact that the average of Σ can be written as
hΣi=kB ¼PΓP½Γ� ln ½P½Γ�=PrðΓrÞ�, which takes the form
of a relative entropy with the known property that it is
never negative [67]. In fact, we can derive the following
expression for the average entropy production (Sec. V in the
Supplemental Material [63]):

hΣiðtÞ ¼ kBΔH þ hQresi
T

þ kBμ
Z

t

0

dt0h∇2Φi ≥ 0: ð10Þ

This is the central result of our Letter. It expresses the second
law of thermodynamics as a modified Clausius inequality.
Each quantity in the inequality can be calculated even for the
original dynamics as the mapped system is mathematically
equivalent to the AOUP. The inequality therefore constitutes
a prediction for the original system.
The difference between the usual Clausius inequality and

our generalization in Eq. (10) is embodied by the last term
kBμ

R
t
0 d�t0h∇2Φi. Even though this term arises from the

momentum-dependent force Fi;m, it is not the average work
done by Fi;m as can be seen from Eq. (4). If the reservoir
terms are taken out from Eq. (3), due toFi;m, the dynamics is
still not Hamiltonian and the phase space volume is not
conserved under the dynamics. The last term inEq. (10) is the
integral of the average phase space contraction rate due to
Fi;m (Sec. VI in the Supplemental Material [63]). For
deterministic thermostats, this is interpreted as the entropy
production [68–72]. Moreover, recent developments in
stochastic thermodynamics have demonstrated that the usual
Clausius inequality has to be modified in the presence of
feedback control [73–84]. The momentum-dependent force
Fi;m can be seen as a spatially inhomogeneous feedback
cooling operation. The last term in Eq. (10) refers to the extra
contribution to entropy production from the feedback con-
troller. Towards the end of this Letter we will demonstrate
that it is crucial to include this extra term. In its absence the
inequality may not be satisfied. Mathematically, the appear-
ance of force-divergence terms in fluctuation relations and
consequent inequalities should be expected whenever the
“conjugate” process involves a reversal of forces [85].
A major contribution from stochastic thermodynamics is

the surprising result that the inequalities of the second law
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can be replaced by exact equalities, called the fluctuation
relations. These are in a sense more refined versions of
the inequalities because the latter can be derived by the
application of Jensen’s inequality. We can derive the
following integral fluctuation relation for entropy produc-
tion in our active matter system:

he−Σ=kBi ¼
X
Γ
P½Γ�e−Σ½Γ�=kB ¼

X
Γr

Pr½Γr� ¼ 1; ð11Þ

where the second relation follows from the definition of
entropy production [Eq. (8)] and the third relation follows
from the normalization ofPr½Γr�. Equation (11) is our second
main result. ThemodifiedClausius inequality hΣi≥0 follows
from the application of Jensen’s inequality to Eq. (11). In fact,
there is amore detailed equality underlying Eq. (11) (Sec. VII
in the Supplemental Material [63]):

PðΣ ¼ σÞ ¼ eσ=kBPrðΣr ¼ −σÞ; ð12Þ
where PðΣ ¼ σÞ denotes the probability density of Σ ¼ σ in
the process described by Eq. (3) and PrðΣr ¼ σÞ denotes the
same quantity for the reverse process [Eq. (7)]. We have to
assume that the initial condition for the reverse process is
obtained from the final condition of the first process by
reversing the sign of the momenta. Equation (12) is the
detailed fluctuation relation for entropy production.
There are three qualitatively different fluctuation rela-

tions (both integral and detailed) in stochastic thermody-
namics for passive, overdamped dynamics: that of total
entropy production, excess entropy production, and house-
keeping heat. We have already extended the relation for
total entropy production to the AOUP. For the sake of
completeness we will address the latter two cases in the
following, starting with the excess entropy production. Let
the steady state distribution of the dynamics in Eq. (3) in the
absence of any time dependence of Φ be ρsðX;P;αÞ,
where α represents fixed, external parameters of the
system. The excess entropy production along any trajectory
Γ between two nonequilibrium steady states is given by
−Δ ln ρs þ

R
t
0 dt

0 _Z∘∇Z ln ρs, with Zðt0Þ ¼ ½Xðt0Þ;Pðt0Þ�.
The first term denotes the change in stochastic entropy
of the system and the second term the generalized work
done against the generalized (nonequilibrium) force
−kBT∇Z ln ρs in units of kBT, which is also called the
excess heat Qres;ex (in units of kBT). The excess entropy
production can also be written as −

R
t
0 dt

0 _α · ∇α ln ρs. The
corresponding integral fluctuation relation

he
R

t

0
dt0 _α·∇α ln ρsi ¼ 1 ð13Þ

is a consequence of theMarkovian nature of the dynamics as
shown in Ref. [44]. By applying Jensen’s inequality we get

ΔHs þ βhQres;exi ≥ 0; ð14Þ
which can be a stricter bound for ΔH compared to that of
Eq. (10). Unlike total entropy production, there is generally

no detailed fluctuation relation for excess entropy produc-
tion because the steady state distribution ρs is generally not
time-reversal symmetric, ρsðX;−PÞ ≠ ρsðX;PÞ [86]. The
concept of housekeeping heat for the current system is
ambiguous due to the momentum-dependent force Fi;m.
It has been recently shown that such systems have many
different notions of housekeeping heat each with its own
fluctuation relation and consequent inequality [87]. Given
this ambiguity, we reserve a detailed discussion of the
relevant results for a future study.
We now illustrate our results with a simple case study.

Consider a single active particle in a one-dimensional simple
harmonic potential,Φ ¼ x2=2, where we have set the spring
constant to one. For simplicity, we assume the other param-
eters, μ, τ,T, and the constant kB, to be unity as well. In Fig. 1
we have plotted the probability distribution of entropy
production Σ over 0.5 units of time in the steady state of
the system.We see that it is possible to have negative entropy
production over individual trajectories, but the average over
sufficiently many trajectories is always non-negative. In
particular, the average entropy production in the current case
turns out to be hΣi ¼ 0.250� 0.005. This is in contrast to the
entropy production formula proposed in Ref. [49], which
predicts the entropy production in the current scenario to be
zero. To show the importance of the phase space contraction
term in entropy production, the last term in Eq. (10), we
have also measured the incomplete entropy production
Σ0 ¼ ΔsþQres=T. In this case we find hΣ0i ¼ −0.250�
0.005. The negativity of the average implies that the usual
Clausius inequality is not satisfied even for an AOUP in one
dimension with a simple harmonic potential.
A popular approach to analyzing the AOUP is to use a

perturbative expansion in τ [34,49]. In contrast, our results are
applicable for all values of τ. In particular, the expression for

FIG. 1. Numerical distribution of entropy production Σ of a
single active particle in a one-dimensional simple harmonic
potential, Φ ¼ x2=2. We have used temperature units to set
kB ¼ 1. We see that entropy production can be negative for
individual realizations. However, the average entropy production
is positive, as shown by the blue, solid vertical line and the
associated numerical value. Moreover, the integral fluctuation
relation for entropy production [Eq. (11)] is satisfied.
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entropy production [Eq. (10)] is valid nomatter how large the
value of τ. To demonstrate this, we have considered in detail
the same example as above. We have derived an exact
analytical expression for the average steady state entropy
production rate, hωðτÞis ≡ limt→∞hΣtis=t, as a function of τ
given by hωðτÞis ¼ τ=ð1þ τÞ. [We have assumed the param-
eters k (spring constant), μ, and T, and the constant kB to be
unity.]We have tested this formula by numerically integrating
the equation of motion, as demonstrated in Fig. 2. As
expected, we see that hωðτÞis is zero for τ ¼ 0, because
the system is in equilibrium in this case. Somewhat counter-
intuitively, the hωðτÞis approaches a finite value 1 (more
generally μkBT if no special values for μ and T and special
temperature unit are considered) as τ tends to infinity. This
means that larger τ does not imply a larger entropy production
rate (farther from equilibrium) when τ becomes large com-
pared to the relaxation time scale of the system.
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Note added.—While the Letter was in review we became
aware of Refs. [88,89], the first one dealing with the
dynamics of harmonically confined beads in an active bath
and the second one dealing with the Clausius relation for
active matter. We have discussed the stochastic thermody-
namics of the model in Ref. [88] in Sec. VIII of our
Supplemental Material [63]. This discussion is consistent
with that in the second reference [89].
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