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Recent years have witnessed major advances in our understanding of nonequilibrium processes. The Jarzynski
equality, for example, provides a link between equilibrium free energy differences and finite-time nonequilibrium
dynamics. We propose a generalization of this relation to non-Hamiltonian dynamics, relevant for active matter
systems, continuous feedback, and computer simulation. Surprisingly, this relation allows us to calculate the free
energy difference between the desired initial and final equilibrium states using arbitrary dynamics. As a practical
matter, this dissociation between the dynamics and the initial and final states promises to facilitate a range of
techniques for free energy estimation in a single universal expression.

DOI: 10.1103/PhysRevE.93.042129

I. INTRODUCTION

Free energy determination lies at the heart of nearly any
application of statistical mechanics [1,2], the conventional
methods being based on either the calculation of a partition
function or the determination of work in a transition from
one equilibrium state to another [3]. In the latter case, the
Helmholtz free energy Fy(A, B) of the initial equilibrium state
with probability density p}' oc exp —pH 4 is assumed to be
known for a given Hamiltonian H 4 with external parameters
A and inverse temperature § = 1/kgT, where kg denotes
the Boltzmann constant. Then the free energy difference
AFy = [Fy(B,B) — Fyo(A,B)] corresponding to the transition
to another Hamiltonian Hp is estimated from the work as
the external parameters are switched from A to B. To get
an exact relation, the switching protocol is often assumed to
be either very fast, as in free energy perturbation theory, or
adiabatically slow, as in thermodynamic integration theory [3].
A major breakthrough was achieved with the introduction of
the Jarzynski equality (JE) [4-6]

¢ P = (P, (1)

whereby the free energy difference AFj could be calculated
from the exponential average of the work W, for any switching
protocol of arbitrary speed. Here the angular brackets denote
averaging over many repetitions of the switching protocol.
The JE has lead to a plethora of new results in the context
of nonequilibrium thermodynamics and statistical mechanics
[7-14] and there have been recent advances in the ther-
modynamics of control [15-19], prediction [20], self-
replication [21], and information processing [22-29].

Before the introduction of the JE, Bochkov and Kuzovlev
had derived a similar relation (BKR) [30-32]

1= (e, 2)

where, surprisingly, W* is not equal to Wi" — AF,, as one
might expect from the JE [Eq. (1)]. [Note the definitions of Wg“
and W™ given below in Egs. (7) and (8), respectively.] The
apparent discrepancy between Eqs. (1) and (2) was resolved
in [33,34] by showing that these two relations correspond to
two different conventions for defining internal energy, each
leading to its own definition of work. In fact, by considering
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the dynamics under two different time-dependent conservative
forces fy and f1, Ref. [34] presented a unified expression

e*ﬁAFo — <e*ﬂ(W(i,“+W,ex)) (3)
relating the free energy difference AFy to the different
measures of work W(i)n and W™ for the two forces fp and f7,
respectively. The O subscript on A Fj is meant to indicate that
this free energy difference actually depends only on changes
in fo; AFy is insensitive to changes in f;. We note that the
detailed form of Eq. (3) differs from the corresponding formula
presented in Ref. [34], which assumes that the Hamiltonian is
linear in fj.

We point out here the surprising fact that Eq. (3) remains
valid even if the system dynamics during the switching are
not related to the two Hamiltonians H 4 and Hjp. Unlike the
JE, where the dynamics during switching are derived from
a time-dependent Hamiltonian H(¢) : H4 — Hp, connecting
the initial and final Hamiltonians, the combined JE and BKR
formula [Eq. (3)] implies that the intermediate Hamiltonian
‘H(¢) can be independent of them. More specifically, as long as
the system is initiated in the equilibrium condition p}’, the dy-
namics during the switching can be governed by any modified
Hamiltonian H'(¢) = H(t) + H(t), for arbitrary H;(¢).

Detailed studies have revealed the statistical quality of
free energy estimation based on the JE [35-38]. While slow
driving protocols produce an effectively unbiased estimator,
fast driving protocols induce far-from-equilibrium dynamics
that often result in a bias. The convergence of a free energy
estimator with respect to the number of independent samples
is slow whenever the final phase space distribution of the
system at the end of the protocol has a poor overlap with
the final equilibrium distribution pj'. Several strategies have
been employed to improve the convergence of the JE estimator
for fast driving protocols, including modifying the system
dynamics to enhance the overlap between the actual distri-
bution of the system and pj' and employing bidirectional
protocols. However, while some previous studies have ex-
ploited specific forms of non-Hamiltonian dynamics in order to
improve free energy estimation, it has not been clear what the
optimal strategy should be, and a general framework unifying
and extending previous results has been lacking.
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The main contribution of this paper is to introduce a
generalization of the combined JE and BKR [Eq. (3)], given
by Eq. (37) below, that is compatible with non-Hamiltonian
dynamics during switching. In particular, we extend the
former strategy to arbitrary dynamics, whereby the averaging
in Eq. (1) is performed with the same initial equilibrium
condition ,of,q, but the subsequent evolution is determined by
potentially non-Hamiltonian dynamics, completely unrelated
to the Hamiltonians H 4 and H3.

Even though our central result (37) is valid for arbitrary
dynamics, for optimal estimation, the dynamics must be
tailored such that the actual distribution of the system at the
end of the dynamics is the same as the equilibrium distribution
Py Achieving this condition can make it possible to obtain
accurate estimates after as few as one simulated transition.
We derive the equation satisfied by such optimal modified
dynamics and point out its relation to the so-called escorted
dynamics [35]. We emphasize that, whereas the optimal
estimation strategy for a broad class of systems involves the
use of escorted dynamics, it is typically not the case that
one can compute the specific form these dynamics take for
interesting nonequilibrium systems, pointing to the need for a
more general framework such as ours.

The paper is organized as follows. In Sec. II we illustrate
our derivation of the modified JE compatible with arbitrary
dynamics [Eq. (37)] for the simple case of the one-dimensional
Langevin equation with only position-dependent forces. We
first consider the underdamped case and then we describe some
important subtleties of the overdamped limit associated with
different stochastic integration schemes. In Sec. III we give a
general proof of Eq. (37). By construction, our general proof
applies to situations involving many interacting Brownian
particles. We show that, just like the JE, our result applies
even when the dynamics take place in the absence of a
thermal reservoir. In Sec. IV we emphasize how there is
a clear separation between the dynamics and the end-point
Hamiltonians H 4 and H g in our relation. In Sec. V we derive
an expression for optimal dynamics for free energy estimation
based on Eq. (37) and discuss its relation to the so-called
escorted dynamics. We conclude by comparing our result
to some recent studies on work-fluctuation relations in the
absence of detailed balance.

II. ONE-DIMENSIONAL EXAMPLE

Consider the isothermal dynamics of a particle of mass m
constrained to move on a circle of circumference /. Let x and
p denote its position and momentum, respectively, with the
identification x + [/ = x. There are two forces from the heat
reservoir, damping —y p/m and noise &, the latter having the
following statistical properties:

2y ,
(&) =0, (&&) = 780 —1). “4)

In addition, we consider two other forces: fo(x;A) =
—03,V(x;Ap), derived from some potential V(x;Xo) with
external parameter Ao, and fj(x; A), with external parameter
A1, which is not necessarily derivable from a potential. The
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dynamics of the particle are given by

. p
X ==,
m
p=ﬁumw+ﬁumo—y%+&, )

where the dots over the variables x and p denote their time
derivatives.

An equivalent way to describe the dynamics of the particle is
via the Fokker-Planck equation for the phase-space probability
density p(z,t), with z = (x, p):

ap o
at—ﬁp— v,-J, (6)
where J=[(£,fo+ fi —yp— %Bp),o] denotes the phase
space probability current. If the parameters {Ag,A;} are
held fixed in time, it can be shown that any initial dis-
tribution p(z,0) relaxes to a unique stationary distribution
0*(z) with L£p® = 0 [39]. Note that, if the force f; is zero,
the stationary distribution p* is the equilibrium distribution
0p%4z; Ao, B) o< exp —B'H,,, with respect to the Hamiltonian
Hiy(2) = p*/2m + V(x; ko).

Consider now a switching protocol specified by time-
varying parameters {Ao(?),A1(2)} with 1o(0) = A, Ao(7) = B,
and arbitrary X;(¢). Following Refs. [33,34], we now intro-
duce two different notions of work, inclusive and exclusive.
Inclusive work is applicable to only conservative forces, while
exclusive work is applicable to both conservative and noncon-
servative forces. Inclusive work done by the conservative force
Sfo(x; ) for a given protocol {Ay(#),A(¢)} and over a trajectory

{x(@), p()} is

. . aV(x; A
win = / dt () Y20 . %)
0 Lxa,r00
The exclusive work done by the force fj(x;X;) is
X ()
Wy =/dfpm o filx(#); M(D)], 3

where the circle on the right-hand side denotes Stratonovich
multiplication [40]. According to the Feynman-Kac theorem
[35,41], the solution to the sink equation

g A

-2 = Lg — hg, 9

” g —hg ®
with the initial condition g(z,0) = p®(z,A¢,H) and arbitrary
phase space function h(z,t), is given by the average

g(z,t) = <8(z(t) — z)exp < - / dt/h(t’))> (10)
0

with h(t) = h(z(t),t) and § denoting the Dirac delta function.
While Eq. (10) is true of any #4, if we consider the particular
form

h:ﬂ%%v+ﬂ%ﬁ, (11)

its time integral [drh is equivalent to the sum W =
(W(i)n + W), inunits of (1/8), despite the fact that we have not
used Stratonovich multiplication in the last term of Eq. (11)
(Appendix A). By direct substitution we can show that the
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unnormalized, time-dependent Boltzmann distribution

g(z,f) = e*ﬂHAO(U(Z) (12)

Zy(A,B)
is also a solution of Eq. (9) for the special choice of & given in
Eq. (11). Combining Egs. (10) and (12) and integrating with
respect to z at time ¢ = 7, we get the equation

e P = (e PRI, (13)

which is a special case of our more general result (37) with
AFy = Fy(B,B) — Fo(A, B). Note that our approach, applying
the Feynman-Kac theorem to the original protocol, as opposed
to applying a Crooks-like fluctuation theorem to forward
and reverse trajectories as an intermediate step [7-9,14],
gives a much quicker derivation of Eq. (13) compared to
previous approaches that have been brought to bear on this
one-dimensional example [42].

A. Relation to fluctuation theorem for entropy production

There is a close connection between Eq. (13) and the
integral fluctuation theorem for entropy production in the
framework of stochastic thermodynamics [14],

(2 g0) "
p2(2(0))

where p; and p, are any two normalized distributions and Q
is the heat supplied to the system

0= /dr@ [— p) sf} (15)

Here Q can also be thought of as the exclusive work done by
the reservoir forces [40]. If we consider the forms for p;,

p1(z) = p*(z; B.B), Pz A.B),  (16)

then the fluctuation theorem (14) reduces to Eq. (13). One
just needs to use conservation of energy at the level of each
trajectory

p2(z) =

AHyy = W+ W+ Q, (17)

derivable from the Langevin equation (5).

B. Subtlety in the overdamped limit

Interestingly, our approach leads to a different integral
fluctuation theorem than the entropy production fluctuation
theorem in the overdamped limit, described by the following
dynamics:'

=y o+ H+r &, (18)

often useful in molecular simulations. In this limit, the two def-
initions of work W/ and W{* remain essentially unchanged;
only p/m in Eq. (8) needs to be replaced by x. From the
fluctuation theorem for entropy production (14), valid also in
the overdamped limit, one can show the validity of Eq. (13)

"We have assumed uniform temperature and friction coefficient in
the medium so that there is no anomalous contribution to the entropy
production.
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(Appendix B). However, using the Feynman-Kac approach
described above, one can derive the relation (Appendix C)

e PAR = <exp<— /dt h0d>>, (19)

. 1
hoa = Brody,V — §<f0f1 + ’Eaxfl) (20)

where, unlike the underdamped scenario, the quantity in the
exponent on the right-hand side of Eq. (19) is not equal to
the sum W = ﬁ(Wé“ + W), ie., Egs. (13) and (19) are
not the same. Note that the free energy F; (Ao, 8) in this context
is the configurational free energy

—ﬂF (A,B) — Zc()uo,,B) /dx e PV (ko) (21)

This duality of integral fluctuation theorems, observable only
in the overdamped limit, has been reported before [43], but
only in the context of the Bochkov-Kuzovlev relation (2). In
contrast, our treatment proves the existence of this duality
in the broader context we consider here. Our preliminary
investigation suggests that the duality stems from the effects
of the transformation f; — —f; on the probabilities of
trajectories. We reserve the detailed investigation for a future
study.

We note that, from the perspective of numerical compu-
tation of AFy, it is advantageous to use Eq. (19) instead
of Eq. (13), because the latter involves cancellation of large
integrals, which is numerically costly. The requirement of the
cancellation is easily seen via the Itd representation of the sum
W = (Wi + We):

. 1 1
WZ/dt[?»oaxoV+;<f0f1+—3xf1+f12+€tf1>] (22)

B

The fourth term on the right-hand side is non-negative and its
integral grows with time. Convergence of the right-hand side
of Eq. (13) can be achieved only if this growing integral is
canceled at each power.

III. FLUCTUATION THEOREM VALID
FOR GENERAL DYNAMICS

We now derive a fluctuation theorem that is valid even for
general non-Hamiltonian dynamics (37). Consider a system
described by the phase space coordinates z = {x,p} and the
Hamiltonian

2

Ho(2) = ”— + V(x: Ao), (23)

where p is the magnitude of momentum p and iy =
{Ao1,A02, ...} 1s a set of external parameters. For a system
with many particles, all of mass m, we have p = (p1,p2, .. .)
and x = (x1,Xp, . . .) for particles 1, 2, and so on. If we couple
the system to a thermal reservoir of inverse temperature f,
quite generally, we can write down the equation to motion to
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be of the following form:?
X=—,
m

p= -V V(x:Ao) — Fn% + 8, 24)

with (E,) =0 and (E,E]) =2(I'/B)8(t —t'). Here T is
a positive-definite matrix denoting the damping coefficient
matrix and E is the noise vector. The phase space distribution
p(z,t) evolves according to the Fokker-Planck equation

0 n
L~ Fop=—-V,-1. (25)

with J = [(p/m, — VxV(x; ko) — T'p — (T/B)V;)pl. As in
the one-dimensional example, the asymptotic solution is the
Boltzmann distribution

Pz ko, B) = T~ 000 P, (26)

e PPXB) — 7,0, 8) = /dze*ﬁﬁko_ 27)

We now add an arbitrary phase space velocity vector
vy = [f1x(z; A1), f1p(z; A 1)] (28)

to the dynamics of the system with external parameters A; =
{A11,A12, ...}, leading to the modified dynamics

x=2 1,
m

p=fo+f1p—r%+a,, (29)
where we have defined
fo = -V V(x;X). (30)

Such additional phase space velocity vectors arise in many
different contexts: (i) for velocity-dependent feedback control,
with vi = (0, — I'p/m) for some stable matrix I" [44,45];
(ii) for self-propelled active particles, with vi = [0,F(p/m) +
f(r)] for some odd function F and a generic function
f [46]; and (iii) for escorted simulation dynamics, with v| =
Zi ol (z; Ao) for arbitrary, continuous phase space vector
fields u; [35,47]. Note that v, can arise either from real physical
forces, as in cases (i) and (ii) above, or from artificial dynamics
intended to facilitate computer simulation and sampling of a
system, as in case (iii). Note also that v; does not generally
follow from any Hamiltonian. The addition of v, leads to a
modified Fokker-Planck operator

£=£0+£1, ACA1,O=—Vz'(le)’ (31)

leading to a modified stationary distribution p%(z), Lp* =0.
Even when v; has a physical origin, i.e., it is of the form v| =
[0,£1,(z; A1)] for some physical force f;,(z; A1), the stationary
distribution p* may be unknown if the force is not derivable
from a potential.

Consider now initiating the system at the equilibrium
distribution p®4(z; Lo, ) and driving the system according to

2One can use different mass values m; for different particles without
changing the final result.
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some protocol A(t) = {Ao(¢),A(¢)}, as A¢ varies from A to B.
We wish to calculate the free energy difference AFy =
[Fo(B,B) — Fy(A,B)]. At any point along any trajectory z(¢),
the inclusive power by the original conservative forces is
given by

Wi = ko - Vi, V(2(1); Ao) (32)

and the exclusive power by the additional force f;p(z(¢); 1) is
given by

W = fi1p(2(1); 1) © p(1)/m. (33)

However, unlike the one-dimensional case, the average of the
exponential of minus the sum B(W{" + W) does not give
the free energy change A Fj in this general case. We need to
consider additional terms. To see this, let us begin with the
unnormalized distribution

— —BHyy(2)
1) = o, 34
$ED = ZaB” .
By substituting it into the sink equation
g A
i Lg—hg (35)

and requiring that the right-hand side of Eq. (34) is a solution
of Eq. (35), we obtain the following expression for A:

h=B(Wy' + W) = V- vi+ Bfix - ViV, (36)

Finally, applying the Feynman-Kac theorem to the sink
equation (35) with 4 as defined in Eq. (36) and combining
with Eq. (34), we get

eﬂAF0=<exp <—ﬂ(Wé"+W?‘)+ / dr(Vz-vl—ﬂflx-VxV)>>’
37

which is our main result.

Equation (37) generalizes Eq. (13) to the situation where the
additional field v; = (fi4,f,) need not involve solely position-
dependent forces. In particular, Eq. (37) includes as a special
case Brownian dynamics under electromagnetic forces [48].
In this case, surprisingly, the integral in the exponent on the
right-hand side of Eq. (37) drops out, leading to Eq. (13),
as observed in [48]. In a general scenario, both terms in the
integral are nonvanishing. The first term [ dr V, - v; accounts
for the phase space contraction if the additional velocity term
v, is dissipative. In the continuous feedback literature, this
term has been referred to as entropic pumping [45]. The
meaning of the second additional term — f dtfix - V4V is
less transparent, probably because such terms do not appear
to have any physical origin, though they can arise in artificial,
simulation dynamics [35].

Thermally isolated dynamics

Just like the original JE, a feature of Eq. (37) is that it
is valid even when the dynamics during the switching are
thermally isolated [4]. In this case, the system is initiated in the
same equilibrium distribution p®4(z; A, 8), but the subsequent
evolution does not involve the reservoir terms in Eq. (29), i.e.,
the system evolves according to the following dynamics:

%= % t iy, p=fo+fp (38)
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The proof based on the Feynman-Kac theorem still applies
with a modified Fokker-Planck operator [35]. However, the
following derivation provides more insight. We evaluate the
average (exp (— f dt h)) [with h given by Eq. (36)] over many
repetitions of the protocol A(¢) = {Ao(?),A(¢)}. We can rewrite
the integral (1/B) [dth along any phase space trajectory
z(t) as

%/dth

=Q/cnﬂxo-vm-%hp-vp4—nx-VQTuO—(1uﬁvz-vu

d
= /dz(amo —(l/ﬂ)VZ~i>

= Hp(z(7)) — Ha(2z(0)) — /dt(l/ﬂ)Vz -z, (39)
where we have used Eqs. (36), (32), and (33) in the first
line and Eq. (38) in the second line. Note that, because the
evolution of the system takes place in the absence of a thermal
reservoir, the evolution is deterministic: If we know the initial
phase space coordinate z(0), we know the future trajectory
Z(t > 0) for any given protocol {Ay(?),A;(?)}. As a result, the
integral (1/8) [ dt h can be treated as a function of just z(0).
In particular, we can rewrite the average (exp (— [ dr h)) as

<exp (—/dt h>>:fdz(0)peq(z(0);A,ﬁ) exp (— / dt h)

(40)
We can simplify Eq. (40) further:
(- f o)
exp < — BHA(z(0)) — /dt h)
= / dz(0) ZoAB) (41a)
e~ PHe(z(0) )
e~ FHB((®)
= /dZ(T)—Z()(A,ﬂ) (41c)
Zo(B; B)
=" 41d
Zo(A.B) @D
— ¢ PLFoB.B)—Fo(A.p)] (41e)

In Eq. (41a), we have rewritten Eq. (40); in Eq. (41b), we
have used Eq. (39) for the integral f dt h; in Eq. (41c), we
have used the fact that the Jacobian |0z(t)/0z(0)| is given by
exp (f dt V, - 7); and in Egs. (41d) and (41e) we have used the
definitions in Eq. (27). This completes our alternate derivation
of Eq. (37) for thermally isolated dynamics.

IV. ARBITRARY DYNAMICS

We want to emphasize that the dynamics during the protocol
Ao(t) can be completely independent of 7, and we will still
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have Eq. (37). Consider an additional field v, of the form

oV(X;Xg) <

p ~
flx = _E + lev flp = 9% + f1p (42)

for any given Ay(#) and arbitrary V; = (f'lx,f'lp). The system
then evolves according to

x=fy p=Fp,-T2 45, 43)
m

without any term related to the Hamiltonian H,,;), and yet we
will still recover the free energy difference A Fy from Eq. (37).
(The reservoir terms I % and &, will be missing in context of
thermally isolated evolution of Sec. IIT A.) This indicates an
interplay between the dynamics and the quantity to average
on the right-hand side of Eq. (37), which keeps the left-hand
side intact. This level of flexibility in choosing the dynamics
seems not to have been appreciated before. Another benefit
of the current approach is that we can quickly derive Eq. (37)
without going into detailed considerations of path integrals
and conjugate processes [14,34,42].

V. OPTIMAL DYNAMICS

The dissociation between the dynamics and the initial
and final equilibrium states promises to facilitate a range of
techniques for free energy estimation in a single universal
expression. Indeed, such an instance has been seen before [35]
for a special class of additional phase space velocity vector v,
referred to as escorted dynamics. In the presence of a single
time-dependent parameter A(¢), the following form of v; was
chosen:

Vi = hou(z; Ao) (44)

and it was shown that with an appropriate choice of u(z; A¢)
it is possible to vastly improve the statistical quality of
the free energy estimator based on Jarzynski-like relations.
The essential idea behind choosing the appropriate dynamics
was to ensure that the distribution of the system under the
modified dynamics p(z; t) evolves close to the time-dependent
equilibrium distribution p®I(z; 1¢(¢)). In fact, an exact equation
was proposed for the optimal choice of u(z; 1) by requiring
that the time-dependent distribution is exactly the same as
p4z; Ap(2)). In this section we consider the case of more
than one time-dependent parameter. We see that the optimal
dynamics for free energy estimation can be recast in a
generalized version of Eq. (44) in an extremely general setting.

In order to obtain the optimal dynamics, such that a
single instantiation is sufficient to yield an accurate estimate
of the free energy difference, we can impose the condition
that p%(z; Lo(2)) is a solution of the modified Fokker-Planck
equation

0 A

” (45)
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[see Egs. (25) and (31)] and then, after some algebra, we get
the following equation® for optimal v, (z,t), denoted by v}:

V.-V — BV; -V, Hy, = —Bho(t) - Vi [Hay — Fo(hos B)].
(46)

In this case, we can obtain a solution of a form similar to
Eq. (44) by considering an additional phase space velocity
field v}, for each external parameter Ag;, i.e., by considering

Vi= oz ko), (47)

with each additional field uj now satisfying the following
equation [under the assumption that all of the X¢;(z) are
nonzero]:

Vo uf = Bu; -V, Hy, = =By, [Hy, — Foos A1 (48)

Equation (48) can be simplified further due to the form of the
Hamiltonian given in Eq. (23). Consider the notation uj =
(u*l‘x,u*fp). We can consistently assume that the momentum
components u;, are zero and get the following equation for
uf (X;A):

Vy-ul — puly - ViV(x; ko) = —B0,,(V — Fp). (49

As may be seen from Egs. (46), (48), and (49), equations
for the optimal dynamics are complicated and they even
involve the free energy itself that we are trying to calculate.
Clearly, it is extremely unlikely that one could derive the
optimal dynamics in all but the simplest cases. Nonetheless,
as for the case of escorted dynamics, the current approach
provides insight into how to choose v; such that free energy
estimation is enhanced. The fact that escorted dynamics are
already sufficiently powerful to provide the optimal dynamics
for estimation might seem to suggest that there would be no
practical benefit to developing tools compatible with a broader
class of dynamics. However, note that we would already need
to know the free energy difference, the very quantity we are
trying to estimate, in order to solve Eq. (46) in nearly any
physical system of interest, which is why our more general
relation (37) promises to be useful for efficient free energy
estimation.

VI. DISCUSSION

The current work should be contrasted with the studies
described in Refs. [42,46,49-57]. In [46] only velocity-
dependent additional forces were considered, whereas in
Refs. [42,49-51] only position-dependent forces were consid-
ered. In [52,53], only those additional forces were considered
for which the steady state distribution was of the Boltzmann
form, which is not the case in the current work. In [54,55], the
authors started with a generic Langevin equation, not derived
from a Hamiltonian, and tried to build a thermodynamic
theory for the dynamics. Their approach was based on the
decomposition of their abstract dynamics into reversible and

3As before, we are assuming isothermal dynamics. However, we
might also consider time-dependent temperature by considering 8 as
a parameter in the set Ag.
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irreversible components. Our approach is complementary to
theirs as we start from a given Hamiltonian and then add
forces that may be nonconservative. Finally, in [56] the authors
propose a speed-up of the calculation of free energy differences
by utilizing the fact that violation of detailed balance can be
used to accelerate the relaxation to steady states [57]. Given
that Eq. (37) is valid even in the absence of detailed balance, it
will be interesting to investigate whether our relation will lead
to yet faster algorithms for calculating changes in free energy.

Another interesting direction for future research concerns
the further generalization of our results to include the deter-
mination of free energy profiles along reaction coordinates,
as opposed to the free energy difference just between two
given equilibrium states. Also, it remains to be seen to what
extent the framework of bidirectional protocols developed for
the Jarzynski relation and its generalization by Hummer and
Szabo [41] may be developed for our relation [58,59]. This
could yield even more efficient approaches for calculating
changes in free energy from limited data or simulations.

In addition to the benefits of more efficient free energy
estimation techniques for physical systems that actually obey
Hamiltonian dynamics, the importance of developing a general
framework compatible with non-Hamiltonian dynamics is
highlighted by a recent example [60] of an active matter,
nonequilibrium system that cannot be handled by the JE, the
combined JE and BKR, or any other previous generalizations
that we are aware of. This particular system consists of a
colloidal particle in contact with an active bath containing
bacteria that themselves dissipate heat and create microscopic
structure in the solution, but other types of active matter sys-
tems have been observed [61,62]. We hope and expect that our
framework will facilitate the study of active matter systems,
as well as systems subject to continuous feedback, which are
not correctly described by any previous generalization of the
JE or the combined JE and BKR.
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APPENDIX A: IRRELEVANCE OF THE STRATONOVICH
SCHEME IN UNDERDAMPED DYNAMICS

Here we show the equivalence of the following stochastic
integrals in the context of underdamped Langevin dynamics:

W§+W?=/d<%%v+ﬁ05) (A1)

%/mhz/ﬁ<M%V+ﬁ£)

The circle on the right-hand side of Eq. (Al) denotes
Stratonovich multiplication [40]. The Itd representation of the

(A2)
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integral (A1) can be obtained through the following steps:

/dt(ioa,\ov + fio 3)
m

=/dt|:)l08,\0V+fl(t)+f1(t+dt)£]

2 m

(A3a)

Z'/df[/.\oaxov-Ffl(I)%—F fl(t+dt)_f'(t)£:|

2 m
(A3b)
~ / di <xoaxov +fi (r)ﬁ)
m
+ / dt [(axfl )tdx "2(8)»1 fl )td)‘]] Z (A3C)

In Eq. (A3a) we have used the definition of Stratonovich
integration, in Eq. (A3b) we have simply rearranged terms, and
in Eq. (A3c) we have used the Taylor expansion of f(t + dt)
to first order in dt; f) is a function of x and A, both of which
depend on time. We have neglected the higher-order terms in
the Taylor expansion for the reasons given below.

The first integral in Eq. (A3b) is equal to the integral in
Eq. (A2). In the following, we argue that the other terms
in Eq. (A3c) are negligible. According to the underdamped
Langevin equation (5), the differential dx varies as dt. If we
assume the given protocol 1(#) to be continuous and smooth,
the differential d\, also varies as df. We may conclude that
the whole integrand in the last integral of Eq. (A3b) varies as
dt and therefore the integral is zero. The higher-order terms
in the Taylor expansion of Eq. (A3a) vary as higher powers
of dt and their contributions are zero as well. Combining
Egs. (A2), (A3a), and (A3b), we find that the two integrals in
Egs. (Al) and (A2) are equivalent.

APPENDIX B: DERIVATION OF EQ. (13) FOR
ONE-DIMENSIONAL OVERDAMPED DYNAMICS

Using the overdamped Langevin equation (18), we can
derive the following form of the first law of thermodynamics
valid at the level of each realization x(¢):

AE = Q+ WP+ W, (B1)

where the energy E is equal to the potential energy V'; heat O
is given by Eq. (15), with p/m being replaced by x; and the
two types of work Wi" and W are given by Egs. (7) and (8),
respectively, again with the replacement p/m — x. If we use

PHYSICAL REVIEW E 93, 042129 (2016)

Eq. (B1) in Eq. (14), with p; and p, having the forms

=BV (x;B) —BV(x;A)

Pl X e Py X e (B2)

after some cancellation of terms we arrive at Eq. (13).

APPENDIX C: DERIVATION OF EQ. (19)

The Fokker-Planck equation corresponding to the over-

damped Langevin equation (18) is given by

ap o

a, = £0d = —0yJods

ot
where p(x,1) is the probability density at position x at time 7,
Loq is the overdamped Fokker-Planck operator, and Joq(x,) =
[y='(fo + fi) = (¥B)~'3,]p is the probability current density
at position x at time ¢. (Other symbols have the same meaning
as in the main text.) According to Feynman-Kac theorem, the
solution of the sink equation

ag A

— =Loag — h
ar d8 8
for an arbitrary function %(x,?) and initial condition g(x,0) =
exp [—BV (x,r0)]/Z¢(10(0),B) is given by the expression

g(x,t) = <8(x(t) — x)exp < - / dt h(t)>>,
0

with h(t) = h(x(?),t). Consider now the following expression
of h:

(CI)

(C2)
(C3)

. 1
h = hoa = Bro0s,V — g(f()fl + —3xf1>- (C4)

B

For this particular choice of &, by direct substitution, we can
show that the following expression of g also solves the sink
equation (C2):

e~ BV (xsho)
ZyAp)’
Combining Egs. (C3) and (C5), we get

e BVih) g

m = <8(x(t) — x)exp ( — /0 dt hod(t))>. (C6)

Integrating both sides of this equation with respect to x at time
t =1 we get

B c ZS(B,B) < < /’ )>
pars — SO0 — | dth, . (€T
e Z5A.5) exp | thoa(t) (C7

with AF§ = F§(B,B) — Fj(B,B). Equation (C7) is the same
as Eq. (19).

gx.1) = (€5

ZS(AB) = /dx.

[1] P. M. Chaikin and T. C. Lubensky, Principles of Condensed
Matter Physics (Cambridge University Press, Cambridge, 1995).

[2] D. Chandler, Introduction to Modern Statistical Mechanics
(Oxford University Press, New York, 1987).

[3] Free Energy Calculations—Theory and Applications in Chem-
istry and Biology, edited by C. Chipot and A. Pohorille
(Springer-Verlag, Berlin, 2007).

[4] C. Jarzynski, Nonequilibrium Equality for Free Energy Differ-
ences, Phys. Rev. Lett. 78, 2690 (1997).

[5] C.Jarzynski, Equilibrium free-energy differences from nonequi-
librium measurements: A master-equation approach, Phys. Rev.
E 56, 5018 (1997).

[6] C. Jarzynski, Nonequilibrium work theorem for a system
strongly coupled to a thermal environment, J. Stat. Mech. (2004)
P09005.

[7]1 G. E. Crooks, Nonequilibrium measurements of free energy
differences for microscopically reversible Markovian systems,
J. Stat. Phys. 90, 1481 (1998).

042129-7


http://dx.doi.org/10.1103/PhysRevLett.78.2690
http://dx.doi.org/10.1103/PhysRevLett.78.2690
http://dx.doi.org/10.1103/PhysRevLett.78.2690
http://dx.doi.org/10.1103/PhysRevLett.78.2690
http://dx.doi.org/10.1103/PhysRevE.56.5018
http://dx.doi.org/10.1103/PhysRevE.56.5018
http://dx.doi.org/10.1103/PhysRevE.56.5018
http://dx.doi.org/10.1103/PhysRevE.56.5018
http://dx.doi.org/10.1088/1742-5468/2004/09/P09005
http://dx.doi.org/10.1088/1742-5468/2004/09/P09005
http://dx.doi.org/10.1088/1742-5468/2004/09/P09005
http://dx.doi.org/10.1023/A:1023208217925
http://dx.doi.org/10.1023/A:1023208217925
http://dx.doi.org/10.1023/A:1023208217925
http://dx.doi.org/10.1023/A:1023208217925

DIBYENDU MANDAL AND MICHAEL R. DEWEESE

[8] G. E. Crooks, Entropy production fluctuation theorem and
the nonequilibrium work relation for free energy differences,
Phys. Rev. E 60, 2721 (1999).

[9] G.E. Crooks, Path-ensemble averages in systems driven far from
equilibrium, Phys. Rev. E 61, 2361 (2000).

[10] T. Hatano and S.-I. Sasa, Steady-State Thermodynamics of
Langevin Systems, Phys. Rev. Lett. 86, 3463 (2001).

[11] T. Speck and U. Seifert, Integral fluctuation theorem for the
housekeeping heat, J. Phys. A: Math. Gen. 38, 581 (2005).

[12] U. Seifert, Entropy Production Along a Stochastic Trajectory
and An Integral Fluctuation Theorem, Phys. Rev. Lett. 95,
040602 (2005).

[13] M. Esposito and C. Van den Broeck, Three Detailed Fluctuation
Theorems, Phys. Rev. Lett. 104, 090601 (2010).

[14] U. Seifert, Stochastic thermodynamics, fluctuation theorems,
and molecular machines, Rep. Prog. Phys. 75, 126001 (2012).

[15] D. A. Sivak and G. E. Crooks, Thermodynamic Metrics and
Optimal Paths, Phys. Rev. Lett. 108, 190602 (2012).

[16] P.R. Zulkowski, D. A. Sivak, G. E. Crooks, and M. R. DeWeese,
Geometry of thermodynamic control, Phys. Rev. E 86, 041148
(2012).

[17] P.R. Zulkowski and M. R. DeWeese, Optimal finite-time erasure
of a classical bit, Phys. Rev. E 89, 052140 (2014).

[18] P. R. Zulkowski and M. R. DeWeese, Optimal protocols for
slowly driven quantum systems, Phys. Rev. E92,032113 (2015).

[19] P. R. Zulkowski and M. R. DeWeese, Optimal control of
overdamped systems, Phys. Rev. E 92, 032117 (2015).

[20] S. Still, D. A. Sivak, A. J. Bell, and G. E. Crooks, Thermody-
namics of Prediction, Phys. Rev. Lett. 109, 120604 (2012).

[21] J. L. England, Statistical physics of self-replication, J. Chem.
Phys. 139, 121923 (2013).

[22] T. Sagawa and M. Ueda, Generalized Jarzynski Equality Under
Nonequilibrium Feedback Control, Phys. Rev. Lett. 104, 090602
(2010).

[23] J. M. Horowitz and S. Vaikuntanathan, Nonequilibrium detailed
fluctuation theorem for repeated discrete feedback, Phys. Rev.
E 82, 061120 (2010).

[24] T. Sagawa and M. Ueda, Fluctuation Theorem with Information
Exchange: Role of Correlations in Stochastic Thermodynamics,
Phys. Rev. Lett. 109, 180602 (2012).

[25] D. Mandal and C. Jarzynski, Work and information processing
in a solvable model of Maxwell’s demon, Proc. Natl. Acad. Sci.
USA 109, 11641 (2012).

[26] S. Deffner and C. Jarzynski, Information Processing and the
Second Law of Thermodynamics: An Inclusive, Hamiltonian
Approach, Phys. Rev. X 3, 041003 (2013).

[27] S. Ito and T. Sagawa, Information Thermodynamics on Causal
Networks, Phys. Rev. Lett. 111, 180603 (2013).

[28] J. M. Horowitz and M. Esposito, Thermodynamics with Con-
tinuous Information Flow, Phys. Rev. X 4, 031015 (2014).

[29] J. M. R. Parrondo, J. M. Horowitz, and T. Sagawa, Thermody-
namics of information, Nat. Phys. 11, 131 (2015).

[30] G. N. Bochkov and Y. E. Kuzovlev, General theory of thermal
fluctuations in nonlinear systems, Sov. Phys. JETP 45, 125
1977).

[31] G. N. Bochkov and Y. E. Kuzovlev, Nonlinear fluctuation-
dissipation relations and stochastic models in nonequilib-
rium thermodynamics. 1. Generalized fluctuation-dissipation
theorem, Physica A 106, 443 (1981).

PHYSICAL REVIEW E 93, 042129 (2016)

[32] G. N. Bochkov and Y. E. Kuzovlev, Nonlinear fluctuation-
dissipation relations and stochastic models in nonequilibrium
thermodynamics. II. Kinetic potential and variational princi-
ples for nonlinear irreversible processes, Physica A 106, 480
(1981).

[33] C. Jarzynski, Comparison of far-from-equilibrium work rela-
tions, C. R. Phys. 8, 495 (2007).

[34] J. Horowitz and C. Jarzynski, Comparison of work fluctuation
relations, J. Stat. Mech. (2007) P11002.

[35] S. Vaikuntanathan and C. Jarzynski, Escorted Free Energy
Simulations: Improving Convergence by Reducing Dissipation,
Phys. Rev. Lett. 100, 190601 (2008).

[36] S. X. Sun, Equilibrium free energies from path sampling of
nonequilibrium trajectories, J. Chem. Phys. 118, 5769 (2003).

[37] H. Oberhofer, C. Dellago, and P. L. Geissler, Biased sampling
of nonequilibrium trajectories: Can fast switching simulations
outperform conventional free energy calculation methods?
J. Phys. Chem. B 109, 6902 (2005).

[38] A. Sudrez, R. Silbey, and I. Oppenheim, Phase transition in the
Jarzynski estimator of free energy difference, Phys. Rev. E 85,
051108 (2012).

[39] H. Risken, The Fokker-Planck Equation (Springer, Berlin,
1984).

[40] K. Sekimoto, Stochastic Energetics (Springer, Heidelberg,
2010).

[41] G. Hummer and A. Szabo, Free energy reconstruction from
nonequilibrium single-molecule pulling experiments, Proc.
Natl. Acad. Sci. USA 98, 3658 (2001).

[42] R. Spinney and 1. Ford, in Nonequilibrium Statistical Physics
of Small Systems: Fluctuation Relations and Beyond, edited by
R. Klages, W. Just, and C. Jarzynski (Wiley-VCH, Weinheim,
2012).

[43] F. Liu, H.-C. Xie, and Z.-H. Lu, Generalized integral fluctu-
ation relation with feedback control for diffusion processes,
Commun. Theor. Phys. 62, 571 (2014).

[44] K. Y. Kim and H. Qian, Entropy Production of Brownian
Molecules with Inertia, Phys. Rev. Lett. 93, 120602 (2004).

[45] K. H. Kim and H. Qian, Fluctuation theorems for a molecular
refrigerator, Phys. Rev. E 75, 022102 (2007).

[46] C. Ganguly and D. Chaudhuri, Stochastic thermodynamics of
active Brownian particles, Phys. Rev. E 88, 032102 (2013).

[47] M. A. Miller and W. P. Reinhardt, Efficient free energy
calculations by variationally optimized metric scaling: Concepts
and applications to the volume dependence of cluster free
energies and solid-solid phase transitions, J. Chem. Phys. 113,
7035 (2000).

[48] P. Pradhan and U. Seifert, Nonexistence of classical diamag-
netism and nonequilibrium fluctuation theorems for charged
particles on a curved surface, Europhys. Lett. 89, 37001 (2010).

[49] V. Chernyak, M. Chertkov, and C. Jarzynski, Path-integral
analysis of fluctuation theorems for general Langevin processes,
J. Stat. Mech. (2006) PO8001.

[50] A. Imparato and L. Peliti, Fluctuation relations for a driven
Brownian particle, Phys. Rev. E 74, 026106 (2006).

[51] J. Kurchan, Non-equilibrium work relations, J. Stat. Mech.
(2007) P0O7005.

[52] P.Pradhan, Nonequilibrium fluctuation theorems in the presence
of a time-reversal symmetry-breaking field and nonconservative
forces, Phys. Rev. E 81, 021122 (2010).

042129-8


http://dx.doi.org/10.1103/PhysRevE.60.2721
http://dx.doi.org/10.1103/PhysRevE.60.2721
http://dx.doi.org/10.1103/PhysRevE.60.2721
http://dx.doi.org/10.1103/PhysRevE.60.2721
http://dx.doi.org/10.1103/PhysRevE.61.2361
http://dx.doi.org/10.1103/PhysRevE.61.2361
http://dx.doi.org/10.1103/PhysRevE.61.2361
http://dx.doi.org/10.1103/PhysRevE.61.2361
http://dx.doi.org/10.1103/PhysRevLett.86.3463
http://dx.doi.org/10.1103/PhysRevLett.86.3463
http://dx.doi.org/10.1103/PhysRevLett.86.3463
http://dx.doi.org/10.1103/PhysRevLett.86.3463
http://dx.doi.org/10.1088/0305-4470/38/34/L03
http://dx.doi.org/10.1088/0305-4470/38/34/L03
http://dx.doi.org/10.1088/0305-4470/38/34/L03
http://dx.doi.org/10.1088/0305-4470/38/34/L03
http://dx.doi.org/10.1103/PhysRevLett.95.040602
http://dx.doi.org/10.1103/PhysRevLett.95.040602
http://dx.doi.org/10.1103/PhysRevLett.95.040602
http://dx.doi.org/10.1103/PhysRevLett.95.040602
http://dx.doi.org/10.1103/PhysRevLett.104.090601
http://dx.doi.org/10.1103/PhysRevLett.104.090601
http://dx.doi.org/10.1103/PhysRevLett.104.090601
http://dx.doi.org/10.1103/PhysRevLett.104.090601
http://dx.doi.org/10.1088/0034-4885/75/12/126001
http://dx.doi.org/10.1088/0034-4885/75/12/126001
http://dx.doi.org/10.1088/0034-4885/75/12/126001
http://dx.doi.org/10.1088/0034-4885/75/12/126001
http://dx.doi.org/10.1103/PhysRevLett.108.190602
http://dx.doi.org/10.1103/PhysRevLett.108.190602
http://dx.doi.org/10.1103/PhysRevLett.108.190602
http://dx.doi.org/10.1103/PhysRevLett.108.190602
http://dx.doi.org/10.1103/PhysRevE.86.041148
http://dx.doi.org/10.1103/PhysRevE.86.041148
http://dx.doi.org/10.1103/PhysRevE.86.041148
http://dx.doi.org/10.1103/PhysRevE.86.041148
http://dx.doi.org/10.1103/PhysRevE.89.052140
http://dx.doi.org/10.1103/PhysRevE.89.052140
http://dx.doi.org/10.1103/PhysRevE.89.052140
http://dx.doi.org/10.1103/PhysRevE.89.052140
http://dx.doi.org/10.1103/PhysRevE.92.032113
http://dx.doi.org/10.1103/PhysRevE.92.032113
http://dx.doi.org/10.1103/PhysRevE.92.032113
http://dx.doi.org/10.1103/PhysRevE.92.032113
http://dx.doi.org/10.1103/PhysRevE.92.032117
http://dx.doi.org/10.1103/PhysRevE.92.032117
http://dx.doi.org/10.1103/PhysRevE.92.032117
http://dx.doi.org/10.1103/PhysRevE.92.032117
http://dx.doi.org/10.1103/PhysRevLett.109.120604
http://dx.doi.org/10.1103/PhysRevLett.109.120604
http://dx.doi.org/10.1103/PhysRevLett.109.120604
http://dx.doi.org/10.1103/PhysRevLett.109.120604
http://dx.doi.org/10.1063/1.4818538
http://dx.doi.org/10.1063/1.4818538
http://dx.doi.org/10.1063/1.4818538
http://dx.doi.org/10.1063/1.4818538
http://dx.doi.org/10.1103/PhysRevLett.104.090602
http://dx.doi.org/10.1103/PhysRevLett.104.090602
http://dx.doi.org/10.1103/PhysRevLett.104.090602
http://dx.doi.org/10.1103/PhysRevLett.104.090602
http://dx.doi.org/10.1103/PhysRevE.82.061120
http://dx.doi.org/10.1103/PhysRevE.82.061120
http://dx.doi.org/10.1103/PhysRevE.82.061120
http://dx.doi.org/10.1103/PhysRevE.82.061120
http://dx.doi.org/10.1103/PhysRevLett.109.180602
http://dx.doi.org/10.1103/PhysRevLett.109.180602
http://dx.doi.org/10.1103/PhysRevLett.109.180602
http://dx.doi.org/10.1103/PhysRevLett.109.180602
http://dx.doi.org/10.1073/pnas.1204263109
http://dx.doi.org/10.1073/pnas.1204263109
http://dx.doi.org/10.1073/pnas.1204263109
http://dx.doi.org/10.1073/pnas.1204263109
http://dx.doi.org/10.1103/PhysRevX.3.041003
http://dx.doi.org/10.1103/PhysRevX.3.041003
http://dx.doi.org/10.1103/PhysRevX.3.041003
http://dx.doi.org/10.1103/PhysRevX.3.041003
http://dx.doi.org/10.1103/PhysRevLett.111.180603
http://dx.doi.org/10.1103/PhysRevLett.111.180603
http://dx.doi.org/10.1103/PhysRevLett.111.180603
http://dx.doi.org/10.1103/PhysRevLett.111.180603
http://dx.doi.org/10.1103/PhysRevX.4.031015
http://dx.doi.org/10.1103/PhysRevX.4.031015
http://dx.doi.org/10.1103/PhysRevX.4.031015
http://dx.doi.org/10.1103/PhysRevX.4.031015
http://dx.doi.org/10.1038/nphys3230
http://dx.doi.org/10.1038/nphys3230
http://dx.doi.org/10.1038/nphys3230
http://dx.doi.org/10.1038/nphys3230
http://dx.doi.org/10.1016/0378-4371(81)90122-9
http://dx.doi.org/10.1016/0378-4371(81)90122-9
http://dx.doi.org/10.1016/0378-4371(81)90122-9
http://dx.doi.org/10.1016/0378-4371(81)90122-9
http://dx.doi.org/10.1016/0378-4371(81)90123-0
http://dx.doi.org/10.1016/0378-4371(81)90123-0
http://dx.doi.org/10.1016/0378-4371(81)90123-0
http://dx.doi.org/10.1016/0378-4371(81)90123-0
http://dx.doi.org/10.1016/j.crhy.2007.04.010
http://dx.doi.org/10.1016/j.crhy.2007.04.010
http://dx.doi.org/10.1016/j.crhy.2007.04.010
http://dx.doi.org/10.1016/j.crhy.2007.04.010
http://dx.doi.org/10.1088/1742-5468/2007/11/P11002
http://dx.doi.org/10.1088/1742-5468/2007/11/P11002
http://dx.doi.org/10.1088/1742-5468/2007/11/P11002
http://dx.doi.org/10.1103/PhysRevLett.100.190601
http://dx.doi.org/10.1103/PhysRevLett.100.190601
http://dx.doi.org/10.1103/PhysRevLett.100.190601
http://dx.doi.org/10.1103/PhysRevLett.100.190601
http://dx.doi.org/10.1063/1.1555845
http://dx.doi.org/10.1063/1.1555845
http://dx.doi.org/10.1063/1.1555845
http://dx.doi.org/10.1063/1.1555845
http://dx.doi.org/10.1021/jp044556a
http://dx.doi.org/10.1021/jp044556a
http://dx.doi.org/10.1021/jp044556a
http://dx.doi.org/10.1021/jp044556a
http://dx.doi.org/10.1103/PhysRevE.85.051108
http://dx.doi.org/10.1103/PhysRevE.85.051108
http://dx.doi.org/10.1103/PhysRevE.85.051108
http://dx.doi.org/10.1103/PhysRevE.85.051108
http://dx.doi.org/10.1073/pnas.071034098
http://dx.doi.org/10.1073/pnas.071034098
http://dx.doi.org/10.1073/pnas.071034098
http://dx.doi.org/10.1073/pnas.071034098
http://dx.doi.org/10.1088/0253-6102/62/4/14
http://dx.doi.org/10.1088/0253-6102/62/4/14
http://dx.doi.org/10.1088/0253-6102/62/4/14
http://dx.doi.org/10.1088/0253-6102/62/4/14
http://dx.doi.org/10.1103/PhysRevLett.93.120602
http://dx.doi.org/10.1103/PhysRevLett.93.120602
http://dx.doi.org/10.1103/PhysRevLett.93.120602
http://dx.doi.org/10.1103/PhysRevLett.93.120602
http://dx.doi.org/10.1103/PhysRevE.75.022102
http://dx.doi.org/10.1103/PhysRevE.75.022102
http://dx.doi.org/10.1103/PhysRevE.75.022102
http://dx.doi.org/10.1103/PhysRevE.75.022102
http://dx.doi.org/10.1103/PhysRevE.88.032102
http://dx.doi.org/10.1103/PhysRevE.88.032102
http://dx.doi.org/10.1103/PhysRevE.88.032102
http://dx.doi.org/10.1103/PhysRevE.88.032102
http://dx.doi.org/10.1063/1.1313537
http://dx.doi.org/10.1063/1.1313537
http://dx.doi.org/10.1063/1.1313537
http://dx.doi.org/10.1063/1.1313537
http://dx.doi.org/10.1209/0295-5075/89/37001
http://dx.doi.org/10.1209/0295-5075/89/37001
http://dx.doi.org/10.1209/0295-5075/89/37001
http://dx.doi.org/10.1209/0295-5075/89/37001
http://dx.doi.org/10.1088/1742-5468/2006/08/P08001
http://dx.doi.org/10.1088/1742-5468/2006/08/P08001
http://dx.doi.org/10.1088/1742-5468/2006/08/P08001
http://dx.doi.org/10.1103/PhysRevE.74.026106
http://dx.doi.org/10.1103/PhysRevE.74.026106
http://dx.doi.org/10.1103/PhysRevE.74.026106
http://dx.doi.org/10.1103/PhysRevE.74.026106
http://dx.doi.org/10.1088/1742-5468/2007/07/P07005
http://dx.doi.org/10.1088/1742-5468/2007/07/P07005
http://dx.doi.org/10.1088/1742-5468/2007/07/P07005
http://dx.doi.org/10.1103/PhysRevE.81.021122
http://dx.doi.org/10.1103/PhysRevE.81.021122
http://dx.doi.org/10.1103/PhysRevE.81.021122
http://dx.doi.org/10.1103/PhysRevE.81.021122

NONEQUILIBRIUM WORK ENERGY RELATION FOR NON- ...

[53] M. J. de Oliveira, Irreversible models with Boltzmann-Gibbs
probability distribution and entropy production, J. Stat. Mech.
(2011) P12012.

[54] L. Yin and P. Ao, Existence and construction of dynamical
potential in nonequilibrium processes without detailed balance,
J. Phys. A: Math. Gen. 39, 8593 (2006).

[55] Y. Tang, R. Yuan, and P. Ao, Work relations connect-
ing nonequilibrium steady states without detailed balance,
Phys. Rev. E 91, 042108 (2015).

[56] M. Ohzeki and A. Ichiki, Langevin dynamics neglect-
ing detailed balance condition, Phys. Rev. E 92, 012105

(2015).

[57] A. Ichiki and M. Ohzeki, Violation of detailed balance
accelerates relaxation, Phys. Rev. E 88, 020101
(2013).

PHYSICAL REVIEW E 93, 042129 (2016)

[58] M. R. Shirts, E. Bair, G. Hooker, and V. Pande, Equilib-
rium Free Energies from Nonequilibrium Measurements Using
Maximum-Likelihood Methods, Phys. Rev. Lett. 91, 140601
(2003).

[59] D. D. L. Minh and A. B. Adib, Optimized Free Energies from
Bidirectional Single-Molecule Force Spectroscopy, Phys. Rev.
Lett. 100, 180602 (2008).

[60] A. Argun, A.-R. Moradi, E. Pince, G. B. Bagci, and G. Volpe,
Experimental evidence of the failure of Jarzynski equality in
active baths, arXiv:1601.01123v1.

[61] S. Ramaswamy, The mechanics and statistics of active matter,
Annu. Rev. Condens. Matter Phys. 1, 323 (2010).

[62] M. C. Marcetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool, J.
Prost, M. Rao, and R. A. Simha, Hydrodynamics of soft active
matter, Rev. Mod. Phys. 85, 1143 (2012).

042129-9


http://dx.doi.org/10.1088/1742-5468/2011/12/P12012
http://dx.doi.org/10.1088/1742-5468/2011/12/P12012
http://dx.doi.org/10.1088/1742-5468/2011/12/P12012
http://dx.doi.org/10.1088/0305-4470/39/27/003
http://dx.doi.org/10.1088/0305-4470/39/27/003
http://dx.doi.org/10.1088/0305-4470/39/27/003
http://dx.doi.org/10.1088/0305-4470/39/27/003
http://dx.doi.org/10.1103/PhysRevE.91.042108
http://dx.doi.org/10.1103/PhysRevE.91.042108
http://dx.doi.org/10.1103/PhysRevE.91.042108
http://dx.doi.org/10.1103/PhysRevE.91.042108
http://dx.doi.org/10.1103/PhysRevE.92.012105
http://dx.doi.org/10.1103/PhysRevE.92.012105
http://dx.doi.org/10.1103/PhysRevE.92.012105
http://dx.doi.org/10.1103/PhysRevE.92.012105
http://dx.doi.org/10.1103/PhysRevE.88.020101
http://dx.doi.org/10.1103/PhysRevE.88.020101
http://dx.doi.org/10.1103/PhysRevE.88.020101
http://dx.doi.org/10.1103/PhysRevE.88.020101
http://dx.doi.org/10.1103/PhysRevLett.91.140601
http://dx.doi.org/10.1103/PhysRevLett.91.140601
http://dx.doi.org/10.1103/PhysRevLett.91.140601
http://dx.doi.org/10.1103/PhysRevLett.91.140601
http://dx.doi.org/10.1103/PhysRevLett.100.180602
http://dx.doi.org/10.1103/PhysRevLett.100.180602
http://dx.doi.org/10.1103/PhysRevLett.100.180602
http://dx.doi.org/10.1103/PhysRevLett.100.180602
http://arxiv.org/abs/arXiv:1601.01123v1
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104101
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104101
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104101
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104101
http://dx.doi.org/10.1103/RevModPhys.85.1143
http://dx.doi.org/10.1103/RevModPhys.85.1143
http://dx.doi.org/10.1103/RevModPhys.85.1143
http://dx.doi.org/10.1103/RevModPhys.85.1143



