Neural Computation (VS 265), Problem Set 3

Due date: October 6, 3:30pm
Fall 2022

General guidelines:

e We are grading problem sets anonymously. Include your student ID in the submission, but do
not include your name.

e You may work in small groups of 2-3. Note that you are responsible for writing up and submitting
your submission individually.

e You are expected to attach any code you used for this assignment but will be evaluated primarily on
the writeup.

e A link to download the problem set datasets can be found on the course website.

Part 1: PCA and linear Hebbian learning

As discussed in class, a linear neuron undergoing Hebbian learning via Oja’s rule will learn to represent
the first principal component of the data. Sanger’s rule extends this to multiple units - and hence multiple
principal components - by serially subtracting out the previously learned components from the input. Here
we will explore the consequences of these learning rules for capturing the structure contained in different
types of data.
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i. Gaussian dataset. Train a network consisting of two linear neurons, using Sanger’s rule, on the
simple 2D Gaussian dataset. Visualize the solution learned by the network by superimposing the weight
vectors on a scatterplot of the data points. Make an animation showing the evolution of the weight
vectors starting from random initial conditions (or alternatively, plot the solution at different stages of
learning - initial condition, partway through learning, and fully converged).

ii. Non-Gaussian dataset. Now train the network on the non-Gaussian dataset and visualize the learned
solution similar to above. Visualize how well this network captures the structure of the data by synthe-
sizing a new dataset using the learned vectors. How do the two distributions compare?



iii. Faces dataset. Finally, train a network of five units on the dataset of face images and show the learned
weight vectors as a set of five images.

a) Examine how the network’s 5-D representation captures these images by picking a random subset
of images and showing the original, the network encoding, and the reconstruction from these five
components.

b) Visualize the structure learned by the network by synthesizing images from the learned weight vectors.

Part 2: Winner-take-all learning

One way of learning non-Gaussian structure in data — for example, when there are distinct clusters cor-
responding to different objects — is via a simple competitive learning rule such as winner-take-all (WTA)
learning.

i. Train a WTA network (as discussed in class) on the simple 2D dataset in ii. above, and visualize the
learned solution superimposed on a scatter plot of the data. Show the learned solution for networks
containing different numbers of neurons - e.g., 3, 4 and 5 neurons.

ii. Next train a WTA network on the faces dataset as in iii. above and visualize the learned weight vectors
as a set of images. For this dataset you will want to use more neurons - for example, 10, 20 and 40.

iii. Once again, visualize how well the network represents any given face by showing the original, network
encoding, and reconstruction for a random subset of images in the faces dataset.

Part 3: Foldiak’s sparse coding model

WTA learning corresponds to a simple form of clustering called ‘k-means’. It is useful when the data contain
well-defined clusters, and you know how to set k, but otherwise it is a very lossy representation as it forces
any given data point to be represented by its closest weight vector. One possible improvement would be to
allow a data point to be represented by a linear combination of a small number of weight vectors, rather
than just one. This is the idea behind sparse coding.

In 1990 Peter Foldiak proposed a simple neural network model for sparse coding that combines Hebbian
learning, thresholding and lateral inhibition to learn a sparse encoding of data. Here we will utilize, for
illustrative purposes, a toy dataset consisting of 8 x 8 pixel images containing a small number of randomly
placed vertical and horizontal bars:
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Clearly it would be impossible to capture the structure of this dataset with WTA learning since there are
many different ways the bars could be combined to generate an image that don’t coalesce into a small number
of clusters. Yet, the structure is still very simple in that any given image can be described by a small number
of bars.

i. Implement Foldiak’s network dynamics and learning rules for feedforward and lateral connections and
train the network on the bars dataset. Obviously it makes the most sense here to use a network of 16
neurons. Plot the learned feedforward weights as a set of images, and the learned lateral connection
weights as 16 x 16 matrix. Also plot the learned thresholds (biases) as a bar chart.



ii. (Optional) How would linear Hebbian learning handle this dataset? Try training your network from
part 1 on the bars data and examine the solution and its ability to properly represent the data.



