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Considerable progress has recently been made with geometrical approaches to understanding and controlling
small out-of-equilibrium systems, but a mathematically rigorous foundation for these methods has been lacking.
Towards this end, we develop a perturbative solution to the Fokker-Planck equation for one-dimensional driven
Brownian motion in the overdamped limit enabled by the spectral properties of the corresponding single-particle
Schrodinger operator. The perturbation theory is in powers of the inverse characteristic timescale of variation
of the fastest varying control parameter, measured in units of the system timescale, which is set by the
smallest eigenvalue of the corresponding Schrodinger operator. It applies to any Brownian system for which
the Schrodinger operator has a confining potential. We use the theory to rigorously derive an exact formula for
a Riemannian “thermodynamic” metric in the space of control parameters of the system. We show that up to
second-order terms in the perturbation theory, optimal dissipation-minimizing driving protocols minimize the
length defined by this metric. We also show that a previously proposed metric is calculable from our exact
formula with corrections that are exponentially suppressed in a characteristic length scale. We illustrate our
formula using the two-dimensional example of a harmonic oscillator with time-dependent spring constant in a
time-dependent electric field. Lastly, we demonstrate that the Riemannian geometric structure of the optimal
control problem is emergent; it derives from the form of the perturbative expansion for the probability density

and persists to all orders of the expansion.
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I. INTRODUCTION

Driven Brownian motion is a paradigmatic model for a
certain class of small (micrometer sized and smaller) stochas-
tic machines [1]. The hallmark of these systems is that
important quantities such as work and efficiency fluctuate, and
are comparable in scale to thermal fluctuations. Their study,
i.e., stochastic thermodynamics [2], has seen remarkable
recent experimental progress [3—23], including the implemen-
tation of microscopic single-particle heat engines [24,25], and
much theoretical activity [26-51].

A fundamental problem in stochastic thermodynamics is to
understand how small systems do useful work while operating
out of equilibrium. A natural framing of this problem is in
terms of a notion of optimality out of equilibrium, whereby a
system is considered optimal if it minimizes irreversible heat
loss to the reservoir on average. Optimal driving protocols can
therefore be computed by minimizing the average dissipation
over protocols. In general, however, this is a nontrivial opti-
mization problem to solve [52].

The introduction of the thermodynamic metric framework
[53,54] simplified the problem for a restricted class of systems
by recasting it in a geometric picture in which the average
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dissipation is proportional to a measure of length in the space
of control parameters of the system. The “length” is defined
by a Riemannian metric on this space. An optimal protocol
between two points in control space is then given by the mini-
mum of this length, which is generally easier to compute than
solutions to the original optimization problem. This frame-
work is a generalization to mesoscale, out-of-equilibrium
systems of geometrical approaches originally developed for
macroscale, endoreversible systems [55-61].

Since its introduction, the thermodynamic metric frame-
work has found success in predicting optimal protocols for
a number of systems, both analytically and numerically
[62-66], and in illuminating their general characteristics,
opening up a window onto the physics of small machines that
operate out of equilibrium.

The concept of a thermodynamic geometry at mesoscopic
length scales emerges independently from various different
assumptions about the dynamics of the stochastic system.
All these approximations have in common a notion of close-
ness to equilibrium. In the original work, the approximations
were linear response plus slow driving [54]. Subsequent
work derived a thermodynamic metric under approxima-
tions of derivative truncation [62], and timescale separation
[66]. Slow driving was also assumed in order to extend
the thermodynamic metric framework to driven discrete-time
systems [67].

©2022 American Physical Society
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In this paper, we provide a rigorous derivation of a thermo-
dynamic metric within the framework of the Fokker-Planck
equation for Brownian motion with time-varying control pa-
rameters. We work in a regime in which the control parameters
vary on a timescale that is much longer than the intrinsic
timescale of the system, which is set by its relaxation time.
The solution to the time-dependent Fokker-Planck equation is
obtained as an expansion in a small dimensionless parameter
v that is the ratio of the relaxation time of the system to
the shortest characteristic timescale of variation among the
control parameters. The expansion is enabled by the spec-
tral properties of the corresponding Schrddinger operator.
The formula for the thermodynamic metric we derive in this
framework is exact and has a generalization to higher dimen-
sions.

In addition, we demonstrate an emergent diffeomorphism
symmetry in the space of control parameters arising from the
expansion in v of the probability density. Every term with n
indices in the corresponding expansion for the average dissi-
pation is a rank n tensor under the diffeomorphism symmetry.

The harmonic potential is a canonical system to study in
stochastic thermodynamics, both experimentally and theoret-
ically [19,24,25,52,62,68—73]. For this reason, we illustrate
our formalism and formulas using the example of a har-
monic oscillator with a time-varying spring constant in a
time-varying electric field.

II. DRIVEN BROWNIAN MOTION

Consider a small system in contact with a reservoir such as
a Brownian particle in a suspension subject to an external po-
tential Vy()(x) that can depend on a possibly time-dependent
control vector A € R¥. The space C of all possible values of
X is a subset of R, The position of the particle is given by
x € R and its probability density p(x;?) evolves according to
a Fokker-Planck equation [74],

9 .
Ep(x;t) = Liy(@)p(x;1), )

where ﬁx(, y(xx), the Fokker-Planck operator, is a second-order
differential operator involving spatial derivatives of the po-
tential. In the overdamped limit, where inertial effects are
neglected, ﬁx(,)(x) takes the form

139 1 9

xr [VM kT } )
where y and B = 1/kgT are the friction coefficient and
inverse temperature, respectively, and kg is Boltzmann’s con-
stant.! Primes denote derivatives with respect to x. Note that
V{(Z)(x) = —F (x;t), where F is the force acting on the system.
We consider natural boundary conditions, requiring p(x;¢) —
0 as x — +£00. p(x;1) satisfies the normalization condition

Ly (x) =

/dx plx;t)=1. 3)

IThe action of £, on p(x;7) is

d , 1 dp(x;t)
;a[VM,)(X)P(X;t)—F E o ]

We use the notation [ dx as shorthand for [ dx throughout
the paper.

Equation (1) can also be written in the form of a continuity
equation as

d d
—pxit) = ——J(x;1), 4
o P 1) oy (1) “)
where J is the probability current,
1 a
Jn === V() + 5 5 | P )

Natural boundary conditions additionally require J(x;t) — 0
as x — =Foo.

We note that Eq. (1) with ﬁx(,) as given in Eq. (2) is
equivalent to the trajectory-level Langevin description,

) 2y
Vx=F(x,t)+‘/Fn(t), (6)

where 1(t) is mean zero §-correlated Gaussian noise: (n(z)) =
0, (n(t)n@")) = 8@ —t’). The dot denotes a derivative with
respect to time.

At all times, the state space admits the existence of a unique
equilibrium distribution pift)(x) such that

Laoy@)psf(x) =0 ™)
and
/dx Py () = 1. )
Py (x) is given by
P == (t) e P, ©)

where Z(t) is the partition function,
Z@t) = / dx e Pt (10)

All distributions approach pi‘(]t)(x) asymptotically with time
when A is frozen, and ,of?t ) satisfies the detailed balance condi-
tion, which requires that the probability current in equilibrium
be zero,

1
y [Vm)(x)—i- 5 o },ow)(x) =0 Vx. (11)

We note that p(,) does not satisfy Eq. (1) except in an
approximate sense. While Eq. (7) is exact, the time derivative

of py{,) is

0
= Piln ) = ZA 3 Prio @) (12)

which is not zero if Ai # 0. The solution to Eq. (1) that we
develop in the following is in the limit of small A. We will
show that the “smallness” of A is quantified by a parameter
v, defined as the ratio of the relaxation time t,, of the system
to the driving timescale t;, which must be chosen such that
v K 1. In this limit, the timescale of driving is so long that
p;?t) is roughly stationary on the system timescale, which is
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set by 74,. Thus, py{,, satisfies Eq. (1) to zeroth order in the
parameter v. We return in detail to these ideas in Sec. II D.
We solve Eq. (1) using the method of Green’s functions.
The difficulty in this program is that the Fokker-Planck opera-
tor has a zero mode, namely, p;‘(’t), and is not self-adjoint. We

map ﬁx(, y onto its corresponding Schrodinger operator, which
is self-adjoint, and leverage the spectral theory of the latter to
construct the Green’s function of /jk(,).

For the purposes of solving Eq. (1), the partial derivative
with respect to time on the left-hand side should be interpreted
as acting at fixed A. We will show in Sec. IID that this
produces a solution that is consistent, in the sense that both
the left-hand side of Eq. (1) and the time derivative of the
solution we find to this equation are O(v).

A. The associated Schridinger operator and Green’s function

The Fokker-Planck operator Ly is not self-adjoint. How-
ever, we can construct a self-adjoint operator H from L, by
making the similarity transformation,

7:[ = eﬂvk“’/zﬁ;,(,)e_ﬂvl“)/z. (13)

We have suppressed the x dependence of the potential and
the operators for notational convenience. 7 and Ly share
eigenvalues, and their eigenfunctions are related by a simple
transformation that we will discuss shortly. 7{ takes the form

. 1 (B B 22
H(x) = )/_,3{ V{E,)( x) — |: Vm)(x)] 2 (14)
It is related to the one-dimensional single-particle
Schrodinger operator H.s as follows:
N | A
Hs = —E’H. (15)
We have
. 2
Hs = T + Ury(x), (16)

where the potential Uy is given by

1 2
ﬂ{[ﬂ w)(x)] _gv;;,)(x)}. (17)

The map we have described between Fokker-Planck opera-
tors and Schrodinger operators is well known [75,76]. We use
it here to apply the spectral theory of the Schrodinger operator
to driven Brownian motion. Any potential for which the spec-
tral decomposition of the Schrodinger operator is known and
possesses certain properties then becomes accessible to us for
the purposes of solving Eq. (1).

As mentioned, the requirements for this approach to be
viable involve conditions on the spectrum of Hs. Natural
boundary conditions on Eq. (1) already require Vj(x) — o0
as x — Fo00. We additionally require V() to be such that U ()
is also confining. That is, Uy ()(x) — oo as x — =£oo. This is
satisfied, for example, if Vj ;) is harmonic, and not satisfied if
it is logarithmic in |x| at large x.

We use E,, and v, to denote the eigenvalues and eigenfunc-
tions of 5. The eigenvalue equation is

s (x) = Epvn(x), n=0,1,.... (18)

Uvi(x) =

For x € R, with the stated boundary condition on Uy, we are
guaranteed that the spectrum of H.s is discrete, nondegenerate
(E,, # E, for m # n), and ordered (E, < E,+ Vn). The fact
that a confining potential confers a discrete nondegenerate
spectrum can be proved rigorously (see Theorem 10.7 in
[77]). From a physical point of view, this is reasonable to
expect because in one spatial dimension a confining poten-
tial has bounded closed orbits which are quantized to give a
discrete nondegenerate spectrum. (Tunneling effects can split
degenerate energy levels separated by a potential barrier.)
The discreteness of the spectrum crucially enables a simple
definition of the Green’s function of 7:15. See [78] for a proof
of nondegeneracy.

It is simple to check® that Ey =0 and that the zeroth
eigenfunction of s is given by

Yolx) = eiﬂvl(t)(x)/Z. (19)

VZ(t)

Note that pw) = 1//0 The v, are real and form a complete
orthonormal basis [78],

/ A Y ()Y () = S 20)

where 3, is the Kronecker delta. This guarantees the repre-
sentation

S —y) =Y Yul)Yn(y) 1)

for the é function.

For n > 0, the eigenvalues of 7:{,5 satisfy E, > 0. The proof
of this claim is as follows. By left-multiplying Eq. (18) by v,
and integrating with respect to x, we have

B INVEIA 5
E, = /dx[%< ox ) +U)~(l)wn:|' (22)

Writing ¥, (x) = p1.,(x)¥0o(x), where p; , is a smooth function
with n nodes, this is

aplﬂ :
Enzfdx—ﬁw0< ) >0, (23)

with equality holding only for n = 0 since p; o = 1. The sub-
script [ notation will become clear in the next section.
The function p; , satisfies the eigenvalue equation

18 apln A

where 2;(1) is the Kolmogorov backward operator.’ ﬁ;(t ) sat-
isfies the symmetrization relation

=BV /2 pi
= e P/ El(t)

1
;|:_V):(t)(x) 2Enpl,nv (24)

ol (25)

2Schrédinger operators customarily have nonzero zero-point ener-
gies. Here, E; = 0 due to the specific construction of Uy, which
is “shifted” downward by a factor of Vj,,/4y such that the usual
zero-point energy of Eq. (16) is exactly removed.

3This operator is self-adjoint under the measure dm(x) defined by
dm(x) = M,)(x)] ldx.
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Given the structure of the spectrum of Hs, its Green’s
function Gg(x;y) is given by the following standard
definition:

Gs(x;y) = Zi:/f Y (y) (26)
sWXyy) = En n n\y).
n#0
The action of 7:{,5 on Gg is

Hs(0)Gs(x;y) = 8(x — y) — Yo X)) 27)

Note that the right-hand side of Eq. (26) has the form of a
projection. It indicates that s is only invertible in the space
of functions orthogonal to ¥.

# and Hs share eigenfunctions v,. Writing «, for the
eigenvalues of A, these are given by

o, = —2E,, (28)
where ap = 0 and o, < 0. The eigenvalue equation for H is

HOP(x) = oy (x). (29)

The Green’s function Gy of H is given by Eq. (26) with the
replacement E, — o,

1
Gru(;y) =) —Yn(¥n(y). (30)

nt0 "
The action of H on Gy is

Hx)Gr (x5 y) = 8(x — y) — Yo ()Y (). €1V

B. The Green’s function of LAM,)

We use the discussion of the previous section to write the
eigenfunctions of L, and EI(I), and the Green’s function
of ﬁx(;) .

From Egs. (13), (25), and (29), we immediately have the
relations

L)rn(X) = tnprn (), (32a)
L7 (x)p1.0(x) = ot pr n(x), (32b)
where
Pra(x) = Yo(X)Yn(x), (33a)
P (x) = [Yo()] ™ P (x). (33b)

Here, p,, and p; , are called the right and left eigenfunctions,
respectively. Together, they form a biorthogonal system that
diagonalizes L. They are complete,

Sx—=y)= Y pra(¥)pra(¥). (34)
and orthonormal,

f dx Prn(E)Prm () = S 35)

Equation (34) follows from Eq. (21), and Eq. (35) follows
from Eqgs. (20) and (34). The zeroth right eigenfunction is the
equilibrium distribution of £, corresponding to the specific

value of A at time ¢, and the zeroth left eigenfunction is a
constant,

Pro(x¥) = Y5 (x) = pyf) (@), pro@)=1. (36

Due to these last two facts, the right and left eigenfunctions
share the simple relationship

Pr.n = Pr,0Pl,n- (37)

We can now write the Green’s function Gy of ﬁm). Using
the representation given by Eq. (13) for #, and suppressing
the subscript A(¢) for visual clarity, from Eq. (31) we have

VOLLx)e P O Goy(xry) = D Ya)n(). (38)
n#0

By left-multiplying by e =Y ®)/2_ right-multiplying by " /2,
and using Eq. (33), we arrive at

Lx)e P OPGy(x3)e VO =3 p i (0)pra(y), (39)
n#0

from which we identify Gy():

Gr(x;y) = e PHoW2G, (x;y)efYro 02

1
=D —Pn(PLaly). (40)
o

n#t0 "

The action of ljm) on Gy is given by Eq. (39). Using
Egs. (34) and (36), this can be rewritten as

Lrn(®)Grin(x:y) = 8(x —y) — pyfy (). (41)

C. Solution to the Fokker-Planck equation

We can decompose the probability distribution in Eq. (1)
into the sum of p;{, (x) and a correction 8 p(x; 1),

p(x;t) = pyy(X) +8p(x;1). (42)

We must have f dx 8p(x;t) = 0 to preserve normalization.
Using this representation for p(x;7) in Eq. (1), we obtain the
dynamics of §p(x;t),

. d
Lanyx)8p(x;t) = EP(X;Z‘). (43)

In order to apply the method of Green’s functions, we interpret
the right-hand side of Eq. (43) as a source term. From this
follows the solution

9
dp(x;t) = fdy Gx(r)(ﬁ)’)&ﬂ()’ﬂ) 44)

Equation (44) contains the quantity §o on both sides and
can be solved iteratively. Thus we arrive at the solution

o(x;1)
=pyt @)+ [ dX'G (x'X’)3 NANED!
(1) A X )= Pr)
+[dx'G (,//)2 dx'G (//. /)3 gq(’)+...
X Gy (x; x o X G5 x atlol(t)x )
(45)

with the partial time derivative of p;(, given by Eq. (12).
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The form of Eq. 45 is o) = oy, (x)+
> > 8p™(x;1), where the quantities §p™ are corrections
to ,oi%). We observe that the corrections have a recursive
structure, and integrate to zero,

8p(n+l)(x;t) = /dx Gl(,)(x X) 8[0(")()6 1), (463)

fdx Sp"D(x;1)=0, n>0. (46b)

In the above, we have notated p;7,,(x) as p©@(x:1). The

form of Eq. (46a) indicates that §p""*1(x;¢) contains pre-
cisely n + 1 derivatives with respect to time. This motif will
be important in Sec. III A, where we will see that it introduces
geometric structure to the average dissipation.

D. The expansion parameter v

Equation (45) is a derivative expansion. In this section, we
justify this claim.

There are two sources of timescales in this problem: the
eigenvalues of the Fokker-Planck operator, and the time vari-
ation of the control parameters.

The eigenvalues «, of ﬁm) have the physical units of
inverse time, and their absolute values set the various natural
timescales of the system. Calling these timescales 7,,, we have
Ty, = 1/|ot,|. Due to the ordering of the «,, the 7, are also
ordered. The longest natural timescale in the system is 7q,,
known as the relaxation time.

Each external parameter A; has a characteristic timescale
T,, associated with its time evolution. We denote the shortest
of these timescales as 7, = min; 7y,.

Now let us examine the total time variation of p(x;1),

%p(x; = —p(x t)+ZA GoPwn. @D
In the first term on the right-hand side of Eq. (47), the time
derivative acts at fixed A and the time evolution is gener-
ated by the Fokker-Planck operator, i.e., by Eq. (1). The
second term describes the time variation resulting from the
time dependence of the external control parameters, which is
not determined by the Fokker-Planck operator.* Note that if
we replace p(x;t) by pf?t)(x) in Eq. (47), the first term on
the right-hand side evaluates to zero, exactly consistent with
Eq. (12).

In this work, we consider the scenario in which the dy-
namics of A is very slow compared to the dynamics generated
by the Fokker-Planck operator. This means the longest nat-
ural timescale t,, must be shorter than the shortest control
timescale Ty :

T > Ty, (48)

Equation (48) naturally gives rise to a dimensionless small
parameter v, defined as follows: v = 1, /7y < 1. It is the
smallness of this parameter that justifies our usage of Eq. (1)

“We will see in a later section that this time variation is determined
by another principle, namely, the minimization of the average heat
produced in the reservoir over the course of driving.

to approximate the true dynamics of p(x;¢), which is given by
the left-hand side of Eq. (47).

In Eq. (45), derivatives with respect to time act (through
Gy and pi?,)) only on A(¢), and so we can rescale time in A
space by v by defining the variable 7 = vt. Making the repa-
rameterization ¢ — 7 in Eq. (45), we arrive at an expansion for
p(x;t) in the manifestly dimensionless small parameter v,

px; 1)
eq

. 9p
= Pyl () + v / dx' Gy (x; x') “’)( )

90y
/dx Gy (x;x” )— dx' Gy (x5 x) x(t)( N4
(49)

What is happening here is that there is a separation of
timescales between the laboratory and the control space. In
the latter, time must be measured in units of 7. However, the
overall timescale of the problem is set by t,,, which is fixed
by the shape of the potential. Therefore, when expanding the
density p(x;t), it is necessary to measure T,in units of T,.
This is why time in control space is scaled by v.

The condition given by Eq. (48) imposes a constraint on
the dynamics of the spectrum of £, which we now discuss.
In general, the «, are functions of all the control parameters
A; due to the fact that the spectrum of fjk(r) depends on Vy),
which is a function of A. The time derivative of «,, is

do, . 0wy,
— = rAi—, 50
dt Z oA 0

where the variation of «, with respect to A; is given by the
Hellmann-Feynman theorem [79],

8an_ AH(x)
= [ ui ™ — -

fd VR )3Ux(t)(x)

(5D
For every i € (1,...,k), Eq. (51) is finite and fully deter-
mined by the form of the potential U . Therefore, Eq. (43),
which can equivalently be written as max; |A;| < |o], to-
gether with Eq. (50), implies that the quantities |&,| must be
small Vn. We can explicitly check that this condition holds.
Note that

didy.  do
_drdr dh 2
= aar - Var oW (52)

and so )li is of the order of v. Together with Eq. (52), Eq. (50)
implies that |a,| is also O(v). That is, the condition given by
Eq. (48) forces the spectrum of LA',M,) to change slowly over
the course of driving.

Due to the fact that derivatives with respect to time in
Eq. (49) act only on A(¢), Eq. (52) also implies that the time
derivative of Eq. (49) is O(v), which is consistent with the
time dependence of Eq. (47) on A.

The last point we must address in this timescale analysis
is the fact that v itself is a function of time. Clearly, in order
for the expansion in Eq. (49) to be stable, we require the time
variation of v to be small. We can check that Eq. (48) indeed
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enforces this. Using Eq. (52), we find that
— =0(v?). (53)

In fact, the nth time derivative of v for n > 1 is of the order
of v+,

Thus as long as the control timescale is chosen such that
the slowness condition given by Eq. (48) is satisfied, the
procedure we have presented for solving Eq. (1) is consistent,
and Eq. (49) describes the time evolution of p(x;17).

In the next section, we derive a formula for the thermo-
dynamic metric using Eq. (45). We note that in all previous
work [54,62,66] in which the thermodynamic metric has been
derived, it is assumed that the timescale of driving is slow
with respect to the longest natural timescale of the system. The
analysis just given explains why this assumption is necessary:
without it, the Fokker-Planck equation is not a good descriptor
of the driven Brownian system.

Lastly, we note that other authors have previously made use
of eigenfunction expansions of p(x;¢) to calculate the average
dissipation for driven Brownian systems with a single slowly
varying control parameter [80,81]. We will calculate the av-
erage dissipation in the next section. The authors recognized
that their methods must correspond to a perturbative approach
to solving Eq. (1) as we have presented here, but this idea was
not fully developed. In particular, the precise conditions under
which the spectral structure of ﬁk(,) permits a perturbative
expansion of p(x;¢) in v and the relative importance of the
various timescales in the problem were not studied, and t;
was not identified.

III. THE THERMODYNAMIC METRIC

Writing a driving protocol for a system involves specifying
a functional form for the time dependence of the control vec-
tor . We say a driving protocol A is optimal if it minimizes
the functional for the average heat (AQ)[A] produced in the
reservoir over the course of driving [54],

A" = argmin (AQ)[A]. (54)
A
We are interested in the scenario where the system is driven
between two fixed values of A over a fixed time period 2. Note
that we must have Q > ;.

The average heat transferred to the reservoir over the
course of driving is given by the formula [82]

Q
(AQ)[A] = —/O dr/dxvg(,)(x)J(x;z)

@ V/2 v
=/ df/dxp(x;t)< 0™ ;‘(,)(x)>'
° Y vB
(55)

In the second equality, we have replaced J (x; ¢) with the right-
hand side of Eq. (5) and integrated by parts. Note that the
quantity in parentheses in Eq. (55) is, up to a constant factor
4/B, the Schrodinger potential U, ;) at inverse temperature 2.

In the following, we calculate (AQ) using the
approximation

pit) = pify@) +8p V(i) +8pPin). (56)

with the corrections 8§p"(x;¢) and 8p®(x;t) given by the
second and third terms on the right-hand side of Eq. (45),
respectively:

/ ’ 0 e /
810(1)()(;[) = fdx Gx(,)(x;x )Eplt(]t)(x ), (57a)

@ , oo Dy
80P (x50) = [ d¥ Guoi) 5800 (5TH)

We show that one of the contributions to (AQ) coming
from 8p® contains an integral over a symmetric positive
definite matrix in the space of control parameters C, and
we identify this as the thermodynamic metric for systems
described by Eq. (1) with the stated conditions on V; ) and
Ux ). We discuss the emergence of this geometric structure in
(AQ) and show that it persists to all orders in the expansion
of p(x;t) [Eq. (45)].

A. Calculation of (AQ) and derivation of
thermodynamic metric

We drop the subscript A(¢) for visual clarity.
It is useful to rewrite Eq. (55) in the equivalent form

Q
(AQ)[A] = # /0 dt / dx p(x;1)ePV@2ePV® - (58)

The first contribution to {(AQ) from Eq. (56) corresponds to
approximating p(x;?) by p®(x), and it evaluates to zero,

1 Q
(AQ)y = _2/ dt/dx 0%(x) eﬂV(x)a)%e—ﬂV(x) =0.
yB= Jo
(59)
This is easily seen by using Eq. (9) to replace e #¥® and
applying the normalization condition given by Eq. (8).

To calculate the next two terms of (AQ), we will make use
of the following identity:

fdx G(x; x)efV 2o PV
=yp / dxll = BV IL)G(sx).  (60)
This is derived by integrating the left-hand side by parts twice,
evaluating the resulting double derivative over the product
G(x;x")ePY ™ and integrating by parts again. The boundary

terms in Eq. (60) vanish.
The second contribution to (AQ) is

1 Q
(AQ), = —zf dt/dx Sp W (xs1) eV 2e PV,
yB* Jo
(61)

By replacing § 0" with Eq. (57a), applying Eq. (60) and then
Eq. (41), we have

Q
(AQ), = l/ dt|:/dx/ B,pgq(x/)/dx
B Jo

= ﬂvoc)]ﬁ(x)c(x;x/)}
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Q
- —l/ dt/dx/ 3 (xHBV (x)
B Jo

Q
+%/ dtfdx’ a,p“’(x’)fdx BV (x)p*(x).
’ 62)

The second term in Eq. (62) is zero due to Eq. (8), which
implies 0; f dx p®(x) = 9,1 = 0. The first term can be written
in terms of the difference in entropy, AS®/, between pi‘go)(x)

and p, (g, (x). We recall the definition of the entropy $°¢ of an
equilibrium distribution:

Sty == [ dx s oroepty@. 63

the time derivative of which is f dx BV (x)d;p%(x). All loga-
rithms are base e. Thus we have

1 Q
(40) =7 /0 di 98¢ = ﬁAS“’. (64)

If we truncate the approximation of p(x;¢) at §p"(x;1), we
reproduce the quasistatic Clausius equality for diffusive sys-
tems [28,67,83],

B(AQ)[A] + AS* = 0. (65)
The third contribution to (AQ) is

1 Q
(AQ), = ?/ dt/dx 3pP(x;1) eV W3z PV,
14 0

(66)
Similar to the calculation of (AQ);, we use Eq. (57b) to
replace 8, apply Eq. (60), and then Eq. (41). This gives

Q
(AQ), = — é/ dt [/dx” 3,8p (" H)BV (x")
0

- / dx" 8,8p " (x";1) f dx ,oeq(x),BV(x)i|.
(67)

The second term in Eq. (67) is zero due to Eq. (46b). Writing
—BV(x") =log p®1(x") 4+ log Z, the first term can be rewrit-
ten as

l Q
(AQ), = _E/ dt/dx” sp M (") 9, log p*d(x")
0
1 Q
_E/ dt (8,1ogZ) | dx” 8pV(x";1)
0

Q
- / dt / dx" 3 [8p V(" )V ()] (68)
0

We evaluate the three terms in Eq. (68) in reverse order.

The third term is the integral of a total time derivative and
depends only on the initial and final values of A and A. It can
be written as

AIA (), A(2)] — A[L(0), A(0)] = AA, (69)

where the function A is given by

: / ’ apizt) ’
_ ZX,’ f/ dxdx Vx(,)(x)Gl(,)(x;x )T(x ) (70)

The second term in Eq. (68) evaluates to zero due to Eq. (46b).
Lastly, the integral with respect to x” in the first term in
Eq. (68) can be rewritten as a quadratic form,

_/dx” 8p V(x5 1) 0, log pyf, (") = i, (71)

where the elements of the matrix {(A) are given by the formula

Gij = —/dx’dx” {,om)(x”)[ - log Px(,)(x//)]Gx(n(x/;x”)

8 /
|:8A log ,ow)(x )i| } (72)

¢(X) is clearly symmetric. We now prove that it is also
positive definite. In terms of ¥y and Gs, Eq. (72) takes the
following simple form:

gy =2 / d'dx" M‘)(x”) Gs(';x") —812‘;()6/). (73)
Ai J

Consider the quadratic form XTCX. Using Egs. (26) and (28)
in Eq. (73), we have

A= Z

n#O

2
[22/@@ Yn(x) ‘”O(x)} > 0.
(74)

The last inequality is due to the fact that —o,-o > 0. Thus,
the eigenvalues of {(A) are positive. £(A) therefore induces a
Riemannian metric on the space C, and can be identified as the
thermodynamic metric [54] for driven Brownian systems de-
scribed by Eq. (1) with confining Schrodinger potentials. We
note that Eq. (72) contains all the timescales in the problem
since Gy contains a sum over all the eigenvalues of £, ).

It becomes necessary now to distinguish between covariant
and contravariant quantities; therefore, from this point onward
in the discussion, we will write control variables with raised
indices, as A

We can explicitly check that ¢(L) transforms correctly un-
der a change of coordinates. Using the representation given by
Eq. (73), it is simple to see that under a continuous, invertible
transformation (diffeomorphism) A — ¢(A), the elements of
the new metric £(¢) in ¢ space are given by

. CYSYY
G =Y Gz (75)
" 9 3¢

This transformation law for the metric holds due to the two
partial derivatives with respect to A’ and A/ in Eq. (73), which
in turn derive from the two partial derivatives with respect
to time in 8p® (x;¢). Therefore, even though Eq. (55) has
no geometric structure in general that we can discover, the
specific form of §p® (x;t) introduces geometric structure in
the average dissipation. We will see shortly that this emergent
structure persists in Eq. (55) to all orders in v.

We emphasize that Eq. (72) is distinct from the formula
for a thermodynamic metric given in Eq. (12) in [54], which
was the first work to derive a thermodynamic metric for
mesoscopic systems with time-varying relaxation times. As
mentioned previously, this formula was derived in the linear
response regime with a slow driving assumption. Evaluating
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it involves computing an integral with respect to time over the
linear response function, which is the average two-point time
correlation function of deviations of the conjugate forces from
their equilibrium values.

Gathering the contributions from Egs. (59), (64), (69), and
(71), we have the following formula for the average heat up to
terms of the order of v? in Eq. (45):

Q
B(AO)A] =0 — AS“ + / dt A eMAE)" + BAA.
0
(76)

To minimize Eq. (76) over protocols, we can define the
action

Q
S[A)] = ,3AA+2/ dt %i(t);(k)i(t)T. (77)
0

The equations of motion follow by setting the variation % of
S with respect to A’ to zero, subject to the constraints §A'(0) =

SAI(Q) = 0 Vi. These constraints imply §A(0) = §A(RQ) = 0,
and therefore only the second term in Eq. (77) contributes

to the equations of motion. These are the Euler-Lagrange
equations of the Lagrangian L = %XT&:

d - G
_ Ad ) = 22U 5
dt(zg:;pjx>_;,\ TV pe(,....k). (78

Opening out the time derivative on the left-hand side of
Eq. (78), a straightforward calculation shows that it is equiva-
lent to

WY T =0, pe(l,... k), (79)

iJj

where Ffj is the Christoffel symbol of the second kind,

1 8é-mi ag-m 8{1
I’ =— p( 22y 20 2 ) 80
Y 22m2§ <8x-1 + axi  9xm (80)
Equations (79) are also the equations of motion of the

Lagrangian L = \/XI;XT in the arc-length parametrization
[84]. In other words, these are geodesic equations of the
control parameter space C.

Due to the spectral properties of Hs, Eq. (74) also indicates

that the quadratic form XTCX is always finite. Therefore, if
Vi) 1s such that U, ¢ is confining, and the perturbative expan-
sion given by Eq. (45) holds over the time period €2, we are
guaranteed that £(A) exists and is well defined over the course
of driving. Then, up to terms of the order of v in Eq. (45),
optimal protocols A°?" are geodesics in C with respect to the
length measure defined by £(1).

We note that in a specific optimal problem, the invari-
ance of the geodesic equations to reparameterizations of C
is broken by the boundary conditions, in which the identities
of the control parameters, along with their initial and final
values, are specified. For example, in the next section, we
consider the harmonic potential Vj)(x) = kx?/2 4+ Ex with
time-dependent electric field £ and spring constant «. The
choice of these two control parameters breaks the diffeomor-
phism invariance of Eq. (79) for this problem instance.

The diffeomorphism invariance of the geodesic equations
suggests that it is appropriate to write Vj() in such a way
that all components of A have matching units. One way to
do this is to introduce a fixed length scale £ and rescale x
as x — x/{£. For example, in the harmonic potential defined
previously, the control parameters x and E have different
units. Rescaling x by £, we can instead write Vj)(x/€) =
(ZZK)(x/£)2/2+ (LE)x/L. The new control vector is A =
(£, LE), both components of which have units of energy.
Applying diffeomorphisms that may scramble the two control
parameters now makes sense. We can choose £ to be such that
BLE = 1 or, equivalently, such that f£%«x = 1.

We end this section with a note on higher-order terms in the
average heat production. By calculations analogous to those
for (AQ),, it is straightforward to establish that for any w >
2, the contribution to Eq. (55) from 8™ (x;1) takes the form

)Llw =(w) (81)

111’

BAQ). =ﬂAAw+/ i ¥ i
0

where A,, is a term that depends only on the values of A and A
at times 0 and €2, and £ is an object with w indices. [In the
notation of Eq. (81), the quantity A defined in Eq. (70) is A,,
and the thermodynamic metric ¢ is £®.] Due to the fact that
8p™)(x;t) contains exactly w derivatives with respect to time,
under a reparametenzatlon A— ¢(X) ™ obeys the trans-
formation law = u i = i u i o Bn Al 9y Al and
is therefore a rank-w tensor. Thus, if the condltions for the
existence of Eq. (45) are met, geometric structure is emergent
in Eq. (55) at all orders in v.

Up to terms of the order of v* in p(x;t), the
Lagranglan of the optimal control problem is given by L™ =
B i ; like Eq. (70), the AA,, for
w = 3do not partlclpate 1n the Euler-Lagrange equations for
A‘)pt. Predictions of optimal protocols can be refined beyond
the solutions of Eq. (79) by including terms of the order of
w = 3 and higher in L™, The E“’—and therefore L*’—can
easily be expressed in terms of pi‘é) and Gy ). For example,

the elements of £

)\‘lu :«(w)

are given by

. dlog pyt, (x)
"f?,z = —/dxdx —B)f"(t) Gri(x;x")

0 ” log px(t)(x,,)
m[/dx G5 x )PA(,)( )T .
(82)

We leave the study of possible interpretations of ™ for w >
3 and the development of solutions of the Euler-Lagrange
equations of L™ for w > 3 to future work.

B. Relationship of ¢ to previously proposed formula for a
thermodynamic metric

In [63], the authors propose an approximate formula for a
thermodynamic metric involving only pj{, . Call this metric .

Using the notation IT;{,, to refer to the cumulative distribution
function

1,00 = [ vl o) (83)
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the elements of y are given by

vB |3
= [ o gl | 5

The advantage of this formula is that it is entirely local in x,
depending only on ,of?t) and not on G, which is nonlocal
in x and contains all the natural timescales of the system.
In the case of a harmonic potential, it can be checked by
explicit calculation that ¢ and y are identical. For more general
potentials, we show that in a certain limit, Eq. (72) can be
written as Eq. (84) plus correction terms.

For this part of the discussion only, we restrict ourselves to
potentials of the form

m)(w] (84)

m
V() = g() + ) aix', (85)
i=1
where m > 4is even, and a,, > 0. The a; are functions of A(7).
g(x) is any function of x and A that is finite in the limit |x| —
0o. At large x, this potential is dominated by the x™ term. In
fact, it contains a natural length scale x( defined as the value
of x at which the ratio Vy)(x0)/auxg' is of the order of 1. For
such a potential, it is the case that

d
; BVaiy(x)/2 _—_
i, SR =0 69
and integrals over x of the quantity in the limit converge.
This can be established using the asymptotic expansion of

T )~ [ dye P

e . e —Bamxy'
/ dye Pm" ~ —— [+0( )] (87)
X0 ) X0

The first term in the expansion can be verified by differentiat-
ing both sides of Eq. (87) with respect to xo.

In the following, we drop the subscript A(#) for brevity. We
use the notation ;‘l;“ and Xlt‘j” to denote Egs. (72) and (84) with
all integrals evaluated between —x( and xo.

Using 0, I1¢(x) = p®(x), Eq. (72) can be rewritten as

X0 821—qu 1" G R/ azl—leq /
= f dx'dx" () GOt 0D (88)
1 —x0 or;0x" pw)(x/) dx;ox’

Integrating by parts twice, this is

%o AT (x") ATI9(x")
X0 __ / " A/
;= - / dx'dx T O, x )—ax_,- . (89)

%
where
. 3% G(';x")
O, x")= —————. (90)
Ax'0x" peq(x/)
For potentials of the form given by Eq. (85), the boundary
terms in Eq. (89) are exponentially suppressed in xo, that is,
they are of the order of e, Opening out the derivatives
in ©, we find that it satisfies the differential equation
aG(x';x")

/38 - p(NOW, x") = L(x )T. on

Applying Eq. (41), this is

a
@[ﬂeq(x’)(@(ﬂ, X +yBI —x)=0.  (92)

The solution to this differential equation is a family of func-
tions &y (x”) parametrized by x’. We choose to work with &
evaluated at x’ = xj, henceforth notated simply as A(x"):

h(x") = p“(x0)O(xo, x") + y B 8(xo —x").  (93)

In terms of A, Eq. (90) can be written as

O, x") = [—By 8(x" —x") + h(x")]. (94)

pe ( 0,
Substituting this in Eq. (89), we find

G = 0+ AT, (95)
where
X0 OT1% (X' QTI¢ (X"
A% = - f dv'dyr LY 0D ST
—Xo 1Y q(X ) 8)\1 3)\,
(96)

Once again using the asymptotic expansion given by Eq. (87),
it can be shown that Af}’ is of the order of e~#%*%'. We note that
it is necessary to evaluate the function %, at x’ > x to arrive
at this conclusion; otherwise it is not clear how to estimate the
size of Af}’ Therefore, we finally arrive at

LY = x4 Oe P, 97)

From Eq. (97), we see that in the limit |xy| — oo, all cor-
rection terms go to zero, and we have £;; — x;; — 0. However,
this limit is not physically valid—it is simple to check that
as xop — 00, Eq. (1) is trivialized to 0 = 0. Thus, for general
potentials, we cannot expect the two formulas ¢ and x to be
equivalent. As previously mentioned, the quadratic potential is
an interesting exception for which it can be explicitly checked
that both ¢ and y evaluate to the same quantity.

The calculation leading to Eq. (95) is a proof of the for-
mula given by Eq. (84) for polynomial potentials. In [63],
the class of potentials for which Eq. (84) converges was not
established. We further note that we expect a relation similar
to Eq. (97) to hold for potentials that grow faster than Eq. (85);
for example, V(x) = ¢’ with b > 0. The specifics of the
asymptotic analysis proving this point will differ from what is
presented here.

IV. THE HARMONIC OSCILLATOR
IN AN ELECTRIC FIELD

We calculate ¢ for a one-dimensional system of charge ¢
in a harmonic potential with time-dependent spring constant
k (¢) and subject to an external electric field E(¢). The control
vector is A(¢) = [«(t), E(¢)], where k > 0 and E € R. The
potential is

1 1 5
Vi (x) = —/cx —qgEx = —/c(x —9) — 29 . (98)
In the second equality, we have defined the new variable 6 =
E /k. The electric field can be interpreted as an offset in the

center of the harmonic trap.
The Fokker-Planck operator for this system is

2

Ly(x) = Box2

;{K(t)—i-/c(t)[x—e(t)] 0 } (99)

034130-9



WADIA, ZARCONE, AND DeWEESE

PHYSICAL REVIEW E 105, 034130 (2022)

The eigenfunctions 1, of the corresponding Schrodinger op-
erator are given by the Hermite functions [74]. Using H, to
denote the nth Hermite polynomial, the right and left eigen-
functions are

- “/ —3Bea=07 g [,/ (x—@)i| (100a)
A/2"n!

1 Bk
PrLa(x) = WH |: — = 9):|

prn(x)

(100b)
|

;KK - /dx/dy\l ﬁk(‘ 0)2( 1
a0y, [,/ﬂ (x—9)i| [\/ - 9)}

y 1 [Bk
—e

T en 2
o kn2'n!\ 2w

Transforming to the variables x' = /Bk/2(x—0),y =
VBK/2(y — 0), and using § — x> = —{H>(x'), this is

1 Y 1 1 1 —x / / ?
6= 57 X | [ 44 oo |

(103)
Applying the orthogonality property
/dx’ ~"fq (H,(x) = S 2" n\/7, (104)
we have
4
S = yPER (105)

Similarly, the elements ¢y, and s are proportional to the
product

1 a1
/ dx’ e_XZZHz(x’)Hn(x/) / dy' e—”EH1 G)H,(y), (106)
which evaluates to zero for all . Finally,

2By 1 T
oo = — n%eo: P [/ dx EHI (x")H, (x )] = By.
(107)

Gathering elements, we have

‘ @H™ 0
=y 0 ,3 .

As mentioned in the previous section, the same result is ob-
tained by evaluating Eq. (84) for this system. Equation (108) is
also identical to the result obtained by evaluating the formula
for a thermodynamic metric given in [54] for a harmonic
potential with time-varying spring constant and trap center.

We can now calculate optimal protocols for the harmonic
oscillator. For the metric given by Eq. (108), Eq. (71) takes
the form

Q w2 Q )
/dty<4g+ﬂ9) fdty(u2+ﬁ92). (109)
0 0

In the second equality above, we have made the change of
variables, u = +/k. This is a diffeomorphism for ¥ > 0. From

(108)

The corresponding eigenvalues are —«kn/y. The equilib-
rium distribution at any given time ¢ is a normalized Gaussian
distribution with mean 6 and variance 1/ 8k,

,3 2
Pl = | g

We proceed to calculate the four elements, beginning with

S = Giew:

ﬁ(x—G)2 1
2 )(E

(101)

ﬂ(y—9)2>

(102)

(

Eq. (109) it is clear that the potential given by Eq. (98)
gives rise to a flat geometry in (u, ) space. However, the
protocols have a nontrivial structure in the physical control
parameter space («, ) due to the existence of the forbidden
region k < 0. The Euler-Lagrange equations corresponding
to Eq. (109) are i = 6 = 0. The solutions are straight lines in
the (u, 6) plane. Given initial and final values of the physical
parameters—«g and ko, and similarly for —the protocol that
minimizes Eq. (71) is

S 90l + 6y,
KOpl(t) — <\/_ \/_t + \/_>

The optimal protocol demands a constant rate of change for 6
and \/k.

In this example, we can explicitly check the consistency
conditions of Sec. IID. To do so, it is convenient to rescale
the optimal control problem so that all control parameters are
dimensionless. This is easily done by first rescaling x — x/¢,
where the length measure £ is defined by 6%k = 1 = E{p,
as discussed at the end of Sec. III A, and then multiplying
the potential [Eq. (98)] by B. These rescalings do not disturb
the optimal control problem. We have the following optimal
protocols for the dimensionless control parameters (ji, 6) =

(VBK2, E [ib):

6°P(t) =

0 (r) =

(110a)

(110b)

— b
2D+ b, (111a)

,ELOPt(t) — %t + fo.

(111b)
These are of precisely the same form as Eq. (110). In terms of
the dimensionless control parameters, the eigenvalues of the
Fokker-Planck operator for the harmonic oscillator are given
by —ji?n/ By . Therefore, under the optimal protocol, the re-
laxation time of the Brownian system is z,, = €%y /(1°")*.

Without loss of generality, we can assume /1% > P,
For ease of notation in what follows, we write the difference
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fo — it as Afi. The longest driving timescale set by the
optimal protocol is then given by 7, = 1/ = Q/Af.
Therefore, we have

T, Pl A/ZL_O 1
no (e Q@ \Q)

v can be made small by choosing €2, the duration of the
protocol, to be sufficiently long.

From Eq. (111), we see that fi°" is of the order of 1/Q.
The rate of change of the spectrum of the Fokker-Planck
operator also goes as 1/Q2. To see this, note that |a;| =
1/74,. Differentiating this with respect to time, we find |¢;| =
2[°P oP/ B2y = O(1/Q) since fi° is O(1/82). Thus, both
the control parameters and the spectrum of the Fokker-Planck
operator vary appreciably only on the timescale of the control
parameters, and are roughly constant on the timescale of the
system if €2 is chosen to be large.

Lastly, differentiating Eq. (112) with respect to time, we
find that ¥ is of the order of 1/Q2, i.e., O(v?), and is therefore
suppressed on the control timescale.

(112)

V. SUMMARY AND FUTURE WORK

We have developed a precise perturbative solution to
Eq. (1) and used it to calculate the heat generated in the en-
vironment when the external parameters of a small stochastic
system are varied in time. In so doing, we rigorously derived
a formula for the thermodynamic metric and all correction
terms at the same order in the perturbation theory.

Both [54] and [63] propose formulas for thermodynamic
metrics but do not establish the class of potentials for which
those formulas are valid. The formula we have derived, given
by Eq. (72), holds for potentials Vj() such that both Vj,
and the associated Schrodinger potential Uy are confining.
We have shown that for a subset of such potentials, namely,

those in Eq. (85), the formula given by Eq. (84) of [63] is
approximately valid.

We found that the expansion in v has an emergent local
diffeomorphism symmetry not present in the original formula,
given by Eq. (55), for average heat production. Every term of
this expansion transforms as a tensor of this diffeomorphism
symmetry. Restricting to the symmetric 2-tensor (metric) in
the expansion, we explicitly worked out the equations for
an optimal protocol. These equations of motion describe
geodesics in the space of control parameters.

In future work, it would be interesting to study the physical
interpretation of the tensors &’ for w > 3, and to develop
methods of calculating A°"" when these tensors are retained
in the Lagrangian. Additional directions for future research
include extending the perturbation theory to underdamped
systems and to higher spatial dimensions. For the latter, much
of the formalism developed here will be applicable, but it
will be necessary to study the spectral properties of the
Schrodinger operator in higher dimensions.

In this paper, we derived a formula for the thermodynamic
metric corresponding to the confining potential Uy,. This
invites the following question: given a metric, what is the
class of potentials that give rise to it? This may be espe-
cially interesting and tractable in the case of two-dimensional
Riemannian geometries.
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