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Optimal finite-time Brownian Carnot engine
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Recent advances in experimental control of colloidal systems have spurred a revolution in the production
of mesoscale thermodynamic devices. Functional “textbook™ engines, such as the Stirling and Carnot cycles,
have been produced in colloidal systems where they operate far from equilibrium. Simultaneously, significant
theoretical advances have been made in the design and analysis of such devices. Here, we use methods
from thermodynamic geometry to characterize the optimal finite-time nonequilibrium cyclic operation of the
parametric harmonic oscillator in contact with a time-varying heat bath with particular focus on the Brownian
Carnot cycle. We derive the optimally parametrized Carnot cycle, along with two other new cycles and compare
their dissipated energy, efficiency, and steady-state power production against each other and a previously tested
experimental protocol for the Carnot cycle. We demonstrate a 20% improvement in dissipated energy over
previous experimentally tested protocols and a ~50% improvement under other conditions for one of our
engines, whereas our final engine is more efficient and powerful than the others we considered. Our results
provide the means for experimentally realizing optimal mesoscale heat engines.
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Introduction. Since the turn of the millennium, our
understanding of nonequilibrium processes has improved dra-
matically [1-7]. Over the past decade, in particular, powerful
techniques for controlling colloidal mesoscopic systems have
facilitated experimental realizations of finite-time thermody-
namic cycles [8-13]. A major step forward was achieved
by the construction of a mesoscopic Stirling cycle with a
harmonically trapped particle suspended in a temperature-
controlled laser heated fluid [9]. Another significant advance
was achieved by placing an electrically charged colloidal par-
ticle in an electrostatic field with tunable noise in order to
mimic a thermal bath with a continuously varying temperature
[10]. By following alternating adiabatic (constant Shannon
entropy) and isothermal strokes, these authors produced a
mesoscopic colloidal Carnot cycle.

However, although a large class of control protocols, in-
cluding those used in this experiment, reproduce the standard
Carnot cycle when performed quasistatically, the choice of
a specific temporal parametrization significantly impacts the
thermodynamic performance of the engine when operated
in finite time. In this Letter, we connect the versatile ther-
modynamic geometry approach with the colloidal harmonic
oscillator used previously [9,10] and calculate explicit op-
timal protocols for this important model system. We find
improvements in the efficiency, output power, and dissipated
energy in steady-state operation for a wide variety of cycle
durations. Our results may find use in practical development
of mesoscale engines.
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Thermodynamic geometry. Thermodynamic length was
originally introduced as a notion of metric distance between
equilibrium states of a physical system [14—19]. Since their
introduction, thermodynamic length and similar geometric
approaches have found wide-ranging applications in vari-
ous contexts [20] with recent success in optimal control of
nonequilibrium systems [21-32]. We will follow the treatment
introduced in a recent pioneering study [33] that successfully
applied a geometric approach to closed thermodynamic cy-
cles. In particular, we consider a thermodynamic system with
two control parameters A = (T, A) operated cyclically, where
T is the time-varying temperature of an external bath, and A
represents a mechanically varied parameter. The work W and
effective energy intake from the heat source [33] U are given

W——jgdt OH\;. U—fdt(l VT, (1)
= I ts = n o)1y,

where H, is the system Hamiltonian for a given value of A,
p is the phase space density, ¢ subscripts denote values at
a given time ¢, and brackets denote ensemble averages, i.e.,
phase space integrals against p for a given ¢.

This expression for the work is fairly standard, but the
quantity U above may be less familiar (U does not repre-
sent the internal energy of the system). For any quasistatic
reversible process, a change in the entropy of a system must
coincide with an exchange of heat with an external bath by the
amount given by the expression for U. For systems driven out
of equilibrium, the entropy can increase even in the absence
of heat exchange as is the case during a free expansion, for
example. This quantity, which upon performing integration
by parts converts to ¢ T dS in steady-state driving, where
S is the system entropy, then includes contributions at each
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moment from both the actual amount of heat exchanged with
the environment plus the amount of heat that would result
in the extra increase in § during a corresponding reversible
process at temperature 7.

Thus, the energy irreversibly dissipated over the course of a
full cycle A (alternatively known as the dissipated availability
or work) can be written

A=U-W >0, 2)
where the inequality arises from the second law. The equality

is saturated only for quasistatic driving in which case the
phase space density assumes a Boltzmann form at all times,

oA = e*ﬂ(HA*FA)’ 3)
where Fy is the free energy for a given A and 7 and g8 =
(kgT )~

Following Refs. [21,22,33], we consider the system to
be operating in the slow-driving regime wherein temporal
variations of control parameters are assumed slow relative
to the relaxation timescale of the system. Standard dynamic
linear response then gives the dissipated energy to lowest
order in A,

Ax?gdzA-g.A, 4)

where g is defined as the inverse diffusion tensor, given by
equilibrium time-correlation functions,

gij(t) = :3(0/0 d” (BXi (00X (1)) - )

Here X;(¢) is the time-dependent thermodynamic force con-
jugate to control variable i: X; = —In pp, X = —0H, /0A,,
and 6X = X — (X). The tensor g is symmetric by construc-
tion and can be shown to be positive semidefinite [22,33] as
a consequence of the second law. Because it satisfies these
conditions, one can interpret g as a metric tensor, introducing
a well-defined notion of geometric distance on cycles in con-
trol parameter space. Noncyclical paths can yield a negative
dissipated energy, suggesting that entropy production may be
a more appropriate quantity to study when considering such
processes [22,34]. For an arbitrary closed path ¢ through con-
trol space, we may define the corresponding thermodynamic
length L4 as

Ly= /¢d¢-g~d¢, (©)

which is independent of parametrization. Beyond the thermo-
dynamic length, a different geometric quantity, the thermody-
namic divergence, may be understood as the thermodynamic
cost in dissipated energy of a physical operation. The diver-
gence is defined as

D¢=f/0 g, )

where now ¢ is explicitly parametrized by a time-varying
protocol with ¢ € [0, t] and the divergence depends on this
parametrization. By comparing Eqgs. (4) and (7), we see that
the thermodynamic divergence precisely matches the dissi-
pated energy of a protocol scaled by the protocol duration.
Paths and parametrizations that minimize the thermodynamic
divergence are, therefore, minimally dissipative and thermo-
dynamically optimal in that sense. Between any two points,

such paths are known as geodesics. Moreover, for any given
path in control space that is not a geodesic, there still exists an
optimal parametrization that minimizes the divergence, and,
therefore, the dissipated energy, for a fixed protocol duration.
Explicitly, comparing Egs. (6) and (7), the Cauchy-Schwarz
inequality implies A = D/t > £?/t. This bound is saturated
only for optimal driving protocols where control parameters
are changed in such a way that the quantity ¢ - g - ¢, which we
identity as the instantaneous dissipated power Py;ss 1S constant
over the full protocol duration [21].

Brownian working substance. The parametric harmonic
oscillator is often used as the paradigmatic model of colloidal
thermodynamic systems and has been successfully applied as
the working substance in physical realizations of mesoscopic
heat engines [9,10]. This model system consists of a particle
of mass m in a harmonic trap with time dependent stiffness
k(t) in contact with a heat bath at temperature 7 (¢), evolving
under Langevin dynamics,

mz = =tz —k(H)z+ (), ®)

where z is the position of the particle, ¢ is the friction coeffi-
cient, and n(¢) is Gaussian white noise satisfying

(n(n@") = 2¢ksT8(t — 1), ©)

ensuring that the dynamics satisfy detailed balance. With
these two control variables, the thermodynamic forces can be
expressed as

X= (@ /m+ k) + b (20,/20), —1/22), (10)

where p is the momentum of the particle. Following methods
similar to Ref. [22], we arrive at our first major result, the full
metric tensor for this thermodynamic space (see the Supple-
mental Material [35] for a detailed derivation),

g =P / dt (5X,(1)8%;(0))
0
4 _%(2“'%) klz(l‘i‘/%) ij

Optimal Brownian Carnot engine. The Carnot engine is a
four-stroke engine consisting of alternating isothermal steps
in contact with a heat bath of either a hot temperature 7, or a
cold temperature T, < T, and adiabatic steps during which no
heat is exchanged with a bath. Consistent with the second law,
all engines acting between two heat baths at these tempera-
tures cannot have a higher thermodynamic efficiency than the
Carnot engine with Carnot thermodynamic efficiency given
by nc = 1 — T, /T;,. However, the classical Carnot engine op-
erates quasistatically and, therefore, performs only a finite
amount of work over an arbitrarily long cycle period, thus,
delivering no power. Accordingly, finite-time, nonzero-power
thermodynamics of this engine have been a topic of significant
interest [30,37-51].

Recently, a laser trapped colloidal particle in contact with a
time-varying (effective) heat bath was used to experimentally
produce a Carnot engine with the Brownian working sub-
stance described in the previous section. Isothermal expansion
and compression arise from changes in k(¢) for a fixed tem-
perature 7. Adiabatic paths were achieved by holding fixed
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FIG. 1. Shape and temporal parametrizations of a previously tested Brownian Carnot cycle, the optimized Brownian Carnot cycle, and an
optimal geodesic cycle matched to the Carnot cycle. (a) The stiffness (top) and temperature (bottom) for three heat engines as a function of
time: an experimentally tested Brownian Carnot cycle [10] (solid black), the optimally parametrized Brownian Carnot cycle (dashed orange),
and the optimal cycle employing geodesics between adjacent pairs of corners of the previous Carnot cycles (dotted blue). Horizontal axes are
shared between subplots. (b) The functional form in control parameter space of the Carnot cycle (solid black) and the optimal geodesic cycle
(dotted blue). Orange circles (blue triangles) denote points along the optimal Carnot (geodesic) cycle parametrization at 25 equal duration
intervals in time. (c) Same as in (b) for the Clausius diagram of stiffness k against its conjugate thermodynamic force in the quasistatic limit

X, = x%/2 = kT /2k.

T? /k, an adiabatic invariant for this system, which maintains
a constant value of Shannon entropy [52]. A portrait of the
Carnot cycle in (7, k) space is plotted in Fig. 1(b).

Considering the metric given in Eq. (11), we now construct
the optimal parametrization for the Carnot engine. For isother-
mal steps, the dissipated power can be obtained by setting
T = 0 in the integrand of Eq. (4), which gives

_mk_BTE<1+§_2> (12)
T 4c k2 km)

The optimal trajectory in k is then found through the corre-
sponding Euler-Lagrange equation,

2mk \ .- 3¢ 2m>«2
( ¢ ¢ ) (k ¢ (1)

Pdiss,iso

which can be solved numerically for given initial and final val-
ues of k. The total thermodynamic cost of such an isothermal
step is given by the integral of Eq. (12) for the solution & of
Eq. (13) over the duration of the protocol.

For adiabatic steps, the key constraint is that o« = T2 /k
be held fixed. Under this constraint, the dissipated power is
given by

kptaT?
Pt = e, (14)
leading to the Euler-Lagrange equation,
. 372
T = —, 15
T (15)

which is analytically solvable. For a generic adiabatic pro-
tocol of duration t that transitions from initial stiffness k;
and temperature T; = Jok; at time r =0 to a final stiff-
ness k; and temperature Ty = ,/aky at time t =7, the
protocol is

Than (1) = Tty (16)
adiab - [\/Tf_[ +(ﬁ_ \/T—f)tlza
Kigian (1) = Toaian (1) /e, o))

leading to a (constant) energetic cost of

ksca(\/Ty — VT;)?
T,'Tf‘l,'2 '

’P;iss,adiab = (18)
The total Carnot cycle consists of alternating isothermal and
adiabatic processes connecting four points in (7, k) space.
Following Ref. [10], we order the four strokes as: (1) isother-
mal compression at T;, (2) adiabatic compression between
T. and T, (3) isothermal expansion at 7;, and (4) adia-
batic expansion between 7;, and 7. In order to allocate
the optimal amount of time to each stroke of the cycle,
we note that for any optimally-parametrized process ¢*, the
dissipated energy is given Ay = Dy /T = £%¢* /T, such that
Piss. ¢+ = £2./t%. This must be true of both the full cycle

and each optimized stroke such that £?/t? = L2 /7> =
Li]ti =L/t = i =71L;/Liox Where t; and L; are the
duration and thermodynamic length, respectively, of the ith
stroke (), 7; = 7).

Optimal geodesic engine. The Carnot engine is significant
in reversible thermodynamics as the paradigmatic model of a
heat engine with maximal efficiency under various conditions,
such as for specified hot and cold heat baths and considering
only inward heat flows when assessing the thermodynamic
cost. As discussed previously, its path in control space fol-
lows a prescribed shape set by the well-known quasistatic
cycle. However, in this geometric framework, there is (at
least) one well-defined minimal dissipation path connecting
any two points in control space: a geodesic. Given the exis-
tence of geodesic protocols that are less dissipative than the
corresponding strokes of the Carnot cycle, we next construct
an engine consisting only of geodesics that connect adjacent
pairs of the four corners of the Carnot cycle. The shape of
such an engine is depicted in Fig. 1(b). The two adiabatic
strokes are, in fact, exactly geodesic and are unchanged for
this cycle, although the geodesic paths corresponding to the
isothermal strokes now involve variations in temperature. In-
dividual strokes again may be pieced together according each
stroke a duration proportional to its thermodynamic length as
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Overdamped parameters (based on experiments of [10])
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FIG. 2. Performance of various engines considered in the main text as a function of protocol duration 7. We numerically simulate the
system under cyclic operation of the control parameters for protocol duration T and plot the performance of each engine after reaching steady
state. In all plots, results of simulations of an engine following the experimental protocol used in Ref. [10] are shown with black squares and
a straight black linear interpolation, the optimal Carnot cycle with orange circles and dashed orange linear interpolation, the optimal geodesic
cycle with blue triangles and blue dotted linear interpolation, and a hybrid cycle consisting of the optimized Carnot cycle with the cold
isothermal compression step replaced by the corresponding geodesic path with green diamonds and dashed linear interpolation. (a) Average
power. (b) Average efficiency. (c) Average dissipated energy. (d) Dissipated energy scaled relative to that of experimental protocol. Material
parameters, i.e., m, ¢, T, Tj, and k, are chosen based on those used in the experiment of Ref. [10]. Observe the dissipation is minimized for
the geodesic engine, although this engine is less efficient and less powerful than the optimized Carnot and hybrid engines; the hybrid engine
is both most efficient and powerful for all protocol durations considered. (e)—(h) Same as (a)—(d) for different material parameters for which
the contrasting performance between different cycles is clearer (seethe Supplemental Material in Ref. [35] for details of material parameter
values). Horizontal axes of (a), (c), (e), and (g) are the same as each subfigure below them, (b), (d), (f), and (h), respectively.

required for optimally parametrized processes, leading to the
parametrization of the cycle depicted in Fig. 1(a).

Engine performance. We now calculate the performance
of the various engines described in the previous section and
compare them against a previously studied experimental cycle
[10], which we use as a benchmark. To mimic the experiment,
we pin the four corners of the Carnot cycle at (Tp, ko) =
(300 K, 2 pN um™1), (Ty, ki) = (300 K, 6.5 pN um~1),
(T», ky) = (600/T0/13 K, 20 pN pum™), (T, k3) =
(600,/T0/13 K, 80/13pN um~!), and  (T(z), k(1)) =
(To, ko). Following standard methods starting from Eq. (8),
we can derive an equivalent Fokker-Planck equation for
the evolution of the probability density over phase space.
Integrating across various covariances [35], we arrive at the
coupled differential equations governing the evolution of (z),

(pz), and (p?),

d , 2
S =), (19)
d 2
o (pe) = LR S 20)
t m
d
S =2 () =2 () + kT, Q)
t m

Given that our model system only encounters a harmonic
potential if we assume the system starts in a Gaussian form, it
will remain Gaussian for the duration of the protocol, such that

these covariances encode the entire phase space distribution
of the Brownian oscillator. Therefore, numerically solving
these equations for given control parameters k(¢) and 7 (¢) and
allowing the system to come to its steady state, we are able to
fully simulate the system and evaluate various performance
metrics of the engine. We use simulations of the experimental
protocol of Ref. [10] as a benchmark. We do this rather than
use the actual experimental results to allow for the evaluation
of a greater range of protocol durations and for more detailed
(simulated) data than was experimentally measured. We val-
idate our numerical simulations by direct comparison to the
experiment in the Supplemental Materials [35].

In Fig. 2(a), we plot the power output P = W/t as a func-
tion of cycle duration t. As expected, for short times W is
negative such that no work is extracted from the cycle and
the power is large in magnitude and negative for each of the
engines, resulting in a maximum positive value for the power
at a finite value of cycle duration. We observe a noticeable
benefit to the use of the optimized Carnot engine, although
the optimal geodesic engine actually leads to a reduction in
power.

To better understand this, we plot the dissipated energy A
for these protocols in Figs. 2(c) and 2(d). We note a >20%
decrease in the dissipated work per cycle for both the optimal
Carnot engine as well as the geodesic engine compared to
the previously tested experimental protocol. For these exper-
imental parameters, the thermodynamic length of the optimal
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Carnot cycle is only 0.0003% greater than that of the geodesic
cycle such that its benefit is difficult to observe in these fig-
ures. We, therefore, also simulate for a different set of material
values where the benefits are clearer, now demonstrating a
~50% decrease in dissipated work for the optimal geodesic
engine; these results are plotted in Figs. 2(e)-2(h). This sec-
ond set of material parameters corresponds to using a ball of
millimeter radius and density comparable to gold, which may
not be achievable with current experimental technology but
serves to illustrate the differences between the various cycles
in a significantly more underdamped regime. See the Supple-
mental Material in Ref. [35] for further simulation details. We
can compute the efficiency of all of these engines, displayed
in Figs. 2(b) and 2(f) as a function of cycle duration. Here we
define efficiency not as the ratio of work output to heat input,
but as the ratio of work output to total effective thermal energy
uptake [33],

n=— - (22)

where WV is the net work extracted from a quasistatic cycle
with p, = pj at all times; Eq. (22) holds to lowest nontrivial
order in driving rates. As stated previously, this definition
is more appropriate for engines of time-variable heat baths
and has a universal maximum value of one for any reversible
engine. As expected, we observe that both optimized proto-
cols yield a superior efficiency relative to the experimental
protocol in the long time limit as well as for earlier times in
most cases. Interestingly, the optimal Carnot cycle is more ef-
ficient than the optimal geodesic cycle. This surprising result,
along with the comparable result found for the powers, may
be understood by recognizing that the cost function for this
optimization scheme is only the availability A, and indeed we
see the geodesic cycle produces the smallest total availability.
In fact, for slowly driven cycles, the optimal geodesic cycle
yields the minimum possible value of A for any cycle passing
through the four corners of the Carnot cycle in a given time.
However, the efficiency and power depend not only on the dis-
sipated energy, but also on the total possible energy accessible
to the engine in the most ideal conditions, namely, WW. This,
therefore, introduces a further figure of merit of an engine: for
slowly driven systems, the most efficient engine will minimize
the ratio A/WW. Thus, although the (optimal) Carnot engine
produces a larger dissipated energy, it is more efficient.

In fact, given that VWV is a monotonic function of the area
enclosed by the cycle plotted in Fig. 1(b), the geodesic cor-
responding to the hot isothermal expansion acts to decrease
the value of W as it bows downward into the the cycle,
whereas, the equivalent for cold isothermal compression acts
to increase W. This intuition suggests that we form a more
efficient cycle than any considered above by starting with the
optimized Carnot cycle and replacing only the cold isothermal
compression with the corresponding geodesic path. We plot
the shape of this cycle in comparison to others we consider in
Fig. 3. Indeed, of all the cycles we considered, this hybrid
cycle produces the most efficient engine in terms of both
A/W and power (Fig. 2). See the Supplemental Material in
Ref. [35] for further comparisons of all simulated cycles to
the experimental results of Ref. [10]. All of the optimized cy-

Experiment  Opt. Carnot Geodesic

fualalata?s
F D'D

Q;EDD O

Hybrid

FIG. 3. The thermodynamic cycles and parametrizations we con-
sider. Closed curves represent the bath temperature (7°) vs trap
stiffness (k) for each engine. Markers are placed at 20 points along
each cycle separated by equal time intervals. Colors and marker
shapes correspond to the conventions in previous figures.

cles statistically significantly outperform the experimentally
measured Carnot cycle.

Discussion. Here we have considered the optimal temporal
parametrization for the Brownian Carnot cycle, and we have
derived two new finite-time thermodynamic cycles that incor-
porate geodesics connecting consecutive pairs of corners of
the Carnot cycle. We have demonstrated that each of these
three new engines is less dissipative than the experimentally
tested temporal parametrization of the Brownian Carnot cycle
[10] with our hybrid engine being the most efficient among
those studied. A clear next step would be to carry out a similar
procedure for other thermodynamic engines and refrigerators,
such as those corresponding to the Stirling and Otto cycles.

Although the treatment of thermodynamic length is highly
accurate for slowly driven cycles in the Supplemental Mate-
rial in Ref. [35], contributions from higher order corrections
have been reported in the literature [53] and have been used,
for example, to give stronger bounds on free energy esti-
mates of thermodynamic processes [54]. Likewise, lessons
from studies of finite-time processes that shortcut relaxation
timescales could further facilitate the development of optimal
cyclic engines [55-65]; such questions have been studied for
overdamped dynamics [66,67]

Finally, although we were able to construct a novel and
minimally dissipative cycle connecting each of the four pairs
of adjacent corners of the Carnot cycle with geodesics, it was
less efficient than the corresponding Carnot cycle. Recogniz-
ing that we could simultaneously reduce the availability A
and increase the work W by incorporating a geodesic path in
place of the cold isothermal compression while retaining the
other three strokes of the optimized Carnot cycle, we obtained
our hybrid cycle, which is the most efficient of the engines we
considered. We found this more efficient cycle by assembling
strokes that were obtained by minimizing only dissipation,
but it may be possible to derive maximally efficient cycles
more directly. Importantly, for slow driving, the form of
efficiency we considered here [Eq. (22)] is a purely geometric
quantity, such that its optimization suggests a new design
principle for the shape of a cycle, beyond just its optimal
temporal parametrization or introducing geodesics between
pairs of points. We will pursue this further in future work.

Conclusion. In this Letter, we have characterized the ther-
modynamic geometry of the colloidal harmonic oscillator
system and used these results to derive explicit protocols for
optimal Carnot-like cycles. Using similar methods, one could
construct optimal parametrizations and introduce geodesics
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to minimize dissipation for any chosen cycle of the model
working system studied. Future work may be directed to-
wards higher order corrections to our results, application of
our results to the study of further cycles, and the develop-
ment of fundamentally new and more efficient nonequilibrium
thermodynamic cycles. We hope our results will facilitate the
design and construction of optimal thermal machines at the
mesoscale.
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