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Engineered swift equilibration (ESE) is a class of driving protocols that enforce an equilibrium distribution
with respect to external control parameters at the beginning and end of rapid state transformations of open,
classical nonequilibrium systems. ESE protocols have previously been derived and experimentally realized for
Brownian particles in simple, one-dimensional, time-varying trapping potentials; one recent study considered
ESE in two-dimensional Euclidean configuration space. Here we extend the ESE framework to generic,
overdamped Brownian systems in arbitrary curved configuration space and illustrate our results with specific
examples not amenable to previous techniques. Our approach may be used to impose the necessary dynamics to
control the full temporal configurational distribution in a wide variety of experimentally realizable settings.
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Introduction. In any transformation process, there exists
some intrinsic relaxation time for the final distribution to be
reached. Recently, a number of studies have attempted to ma-
nipulate or eliminate altogether this relaxation time by means
of alternative driving protocols. These strategies are generally
known as shortcuts to adiabaticity, in which one attempts
to rapidly transform from a specified initial distribution to a
target distribution at a specified final time, in either classical
[1–4] or quantum [1–12] settings. In the context of open
classical systems, protocols that shortcut the natural relaxation
timescale of the system go by the name of engineered swift
equilibration (ESE) and focus on enforcing internal thermal
equilibrium at specified initial and final times [13,14]. This
constraint is clearly satisfied when an instantaneous equilib-
rium distribution is maintained at all times during the protocol,
rather than only at the beginning and the end, a strategy
called shortcuts to isothermality, introduced in Ref. [15], on
which we focus. This is achieved by adding external driving
forces: By following a specified driving protocol, a rapidly
transforming system assumes the trajectory of a quasistatic
transformation.

To be more concrete, consider a physical system described
by some time-dependent Hamiltonian H0(λi(t )), where t is
time, and all time dependence is prescribed by parameters
λi(t ). Following standard Boltzmann statistics [16], the equi-
librium probability distribution at a given time is

ρeq(x; λi(t )) = exp(−βH0(x; λi(t )))

Z (λi(t ))
, (1)

where β = (kBT )−1 is the inverse temperature, kB is Boltz-
mann constant, and Z (λi(t )) is the partition function, explic-
itly dependent on parameters λi(t ). If the {λi(t )} are changed
quasistatically, then the system will be well described by
Boltzmann statistics at all times. However, if λi(t ) changes
sufficiently rapidly, then the system deviates from its equi-

librium distribution specified by Eq. (1). The ESE protocols
we consider introduce a modified Hamiltonian H (x, t ) =
H0(x, λi(t )) + H1(x, t ) such that under the full dynamics of
H , the system assumes the internal equilibrium distribution of
H0 alone [Eq. (1)], at all times.

To date, ESE protocols have been successfully derived
for a Brownian particle trapped in a variety of simple
one-dimensional (1D) potentials [15,17] and realized exper-
imentally for a Brownian particle in a 1D harmonic trap [13].
This approach was also recently applied to the Brownian
gyrator [18], a two-dimensional (Euclidean) system in con-
tact with two heat baths that admits nonequilibrium steady
states. In this Letter, we extend the ESE framework to generic
overdamped Brownian systems, including those with arbi-
trarily high-dimensional, non-Euclidean configuration spaces.
We demonstrate the utility of our framework by numerically
finding the ESE forcing for previously unsolved systems. Due
to the wide applicability of overdamped Brownian dynamics,
we expect our results to prove useful to the many physical
contexts where swift, controlled transitions are often highly
desired, such as nanoscale engineering [19,20], thermody-
namic computing [21,22], and manipulating colloidal systems
[23,24], to name just a few.

Theory. We consider a particle undergoing Brownian mo-
tion in the overdamped limit whose dynamics are governed by
the Langevin equation,

γ
dx(t )

dt
= −∇V (x(t ); λi(t )) + η(t ) + Fext (t ), (2)

where x is the position of the particle; γ is the viscosity;
V (x; λi(t )) is the potential acting on the particle parameter-
ized by control parameters λi(t ); η is Gaussian noise with
delta function autocorrelation 〈ηi(t )η j (t ′)〉 = (2γ /β )δi jδ(t −
t ′), where i, j index Euclidean coordinates; and Fext (t ) is an
external force on the particle.
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Following standard procedures [16], this leads to a Fokker-
Planck equation:

∂tρ(x, t ) = ∇ ·
[(∇V (x; λi(t )) − Fext

γ
+ ∇

βγ

)
ρ(x, t )

]
,

(3)

where ρ(x, t ) is the configuration space probability distribu-
tion at a given time. In the absence of an external force, the
steady-state solution is found by setting the left-hand side of
Eq. (3) to zero, yielding the usual Boltzmann distribution, ρeq.

Now suppose that the control parameters λi(t ) are time
dependent and varied too quickly to assume a quasistatic
transition. We seek Fext (t ) such that ρ(x(t ), t ; λi(t )) =
ρeq(x; λi(t )) for all times t . This can only be satisfied if all
explicitly time-dependent terms in Eq. (3) independently can-
cel. Defining P ≡ ρeqFext, this constraint can be written as

∇ · P = −γ ∂tρeq. (4)

We now generalize to systems whose configuration space is an
arbitrary compact Riemannian manifold M with metric g and
write the vector P as a differential 1-form P = Pidxi. Equation
(4) then generalizes to

d†P = −γ ∂tρeq, (5)

where d is the exterior derivative and d† is its Hodge dual,
whose action on a k-form is given: d† = (−1)n(k−1)+1 	 d	,
where 	 is the Hodge star operator and n is the dimension
of the manifold. We now invoke the Hodge decomposition,
which states that, for any k-form Pk on M, there exists a unique
decomposition [25]:

Pk = dAk−1 + d†Bk+1 + Ck, (6)

where Ak−1 and Bk+1 are (k − 1)- and (k + 1)-forms, re-
spectively, and Ck is a harmonic k-form; i.e., 
Ck = 0, and

 = dd† + d†d is the generalized Laplace operator. On a
compact Riemannian manifold, harmonic k-forms also satisfy
dCk = d†Ck = 0 [26]. Therefore, we may write Eq. (4) as

d†P = d†(dA + d†B + C) = d†dA + d†d†B + d†C = 
A,

(7)

where A is a 0-form, B is a 2-form, and C is a harmonic
1-form. Equation (5) thus becomes a generalized Poisson’s
equation:


A = −γ ∂tρeq. (8)

Coupling this with Eq. (6) and taking B = C = 0 for simplic-
ity yields our main result:

Fext = dA

ρeq
. (9)

We now demonstrate the utility of our result by applying it to
multiple physically realizable examples.

Euclidean configuraton space. In d-dimensional Euclidean
space, the Hodge decomposition trivializes to the Helmholtz
decomposition [25]. Our results still hold, though for certain
cases the decomposition may no longer be unique. For this
space, the generalized Laplace operator is simply the standard
Laplace operator. Note that our choice B = C = 0 amounts

to a no-curl gauge: ∇ × P = 0. We may thus define a scalar
potential A that satisfies ∇A = P. This is analogous to stan-
dard electrostatics, where A and P play the roles of the electric
potential and field, respectively [27].

Given the general solution to the Laplace operator for Eu-
clidean space, we have, for d �= 2,

A(x) = −�( d−2
2 )

4π
d
2

∫
dd x′ |x − x′|2−d (−γ ∂tρeq(x′)) (10)

and Fext(x) = ρ−1
eq ∇A. Note that this solution reproduces

Eq. (12) of Ref. [15] for 1D systems. For the special case of
d = 2, the potential is given by

A(x) = 1

2π

∫
d2x′ log |x − x′|(−γ ∂tρeq(x′)). (11)

Spherical configuration space. We now consider topolog-
ically nontrivial configuration spaces. Our first example is
an electric dipole with dipole moment p = pp̂ placed in a
time-varying electric field pointed in the z direction, E =
E (t )ẑ, as shown in Fig. 1(a). The potential energy for this
system is

V (θ, φ, t ) = −pE (t ) cos(θ ), (12)

where cos θ = p̂ · ẑ and φ measures the azimuthal angle about
the z axis. The configuration space of this system is the 2-
sphere, M = S2, for which the Laplace operator is


S2 = 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ ∂2

∂φ2
. (13)

To calculate the required ESE force, we find ρeq(t ), the instan-
taneous Boltzmann distribution for this system:

ρeq(t ) =
[

4π sinh(βpE (t ))

βpE (t )

]−1

exp βpE (t ) cos θ, (14)

such that the governing equation is given by 
S2 A = −γ ∂tρeq.
In the high-temperature limit, one may find an explicit ex-
pression for A (see supplemental materials Sec. SM.1 [28]);
however, finding a closed-form expression is, in general,
intractable. Instead, we employ a series expansion in the
spherical harmonics, Y m

� (θ, φ). The spherical harmonics are
the eigenfunctions of the spherical Laplace operator, i.e.,

S2Y m

� (θ, φ) = −�(� + 1)Y m
� (θ, φ), such that if we write

ρeq = ∑
�,m c�,m(t )Y m

� (θ, φ), then by the orthogonality and
completeness of the spherical harmonics, we have

A = γ

∞∑
�=0

�∑
m=−�

∂t c�,m(t )

�(� + 1)
Y m

� (θ, φ). (15)

Note that c�,m may likewise be computed:

c�,m(t ) =
∫

�

ρeq(θ, φ, t )Y m∗
� (θ, φ)d�. (16)

Due to the azimuthal symmetry of ρeq(θ, φ, t ), only m = 0
terms will be nonzero, simplifying our analysis. Finally, Fext

is found by taking P = dA ⇒ Fext = ρ−1
eq (∇S2 )A.

We now simulate the system for specified functions E (t ).
The dynamics of this system are governed by a set of Langevin
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FIG. 1. Simulations demonstrate that ESE protocols produce densities closely tracking the equilibrium distribution in configuration space
corresponding to the control parameters at each moment in time. (a) Schematic diagram of the ensemble considered in subplots [(b) and (c)].
An ensemble of electric dipoles are placed in a uniform, time-varying electric field. Due to these constraints, the state of a dipole is specified
by a polar coordinate θ and an azimuthal angle φ such that the system’s configuration space is a (2D) sphere. (b) The electric field is varied
sigmoidally in time, as shown in the inset. In the top panel, we show the average values of θ over the entire ensemble for a system undergoing
Langevin dynamics (dashed blue), ESE dynamics (solid orange), and for a Boltzmann distibution for the given electric field E (t ), denoted
ρeq (dotted green). The three lower panels are the corresponding full distributions for θ at all times. (c) Same as panel b for the sinusoidally
varying electric field shown in the inset. (d) Schematic diagram of the ensemble considered in subplot (e). An ensemble of two coupled
pendula with time-varying coupling constant. The state of a coupled pendulum is specified by the two angular coordinates of the pendula,
θ1, θ2 ∈ [−π, π ), such that the full system’s configuration space is a torus. (e) The probability distributions of an ensemble of coupled pairs of
pendula undergoing Langevin dynamics (top) and ESE dynamics (middle) plotted against the instantaneous Boltzmann distribution (bottom)
for a coupling constant that changes from zero at small times to a negative value. See supplemental material for a movie of this process [28].

equations:

m(θ̈ − sin θ cos θφ̇2) = −γ θ̇ − pE cos θ + ηθ + Fext,θ ,

(17)

m(sin θφ̈ + 2 cos θ θ̇ φ̇) = −γ sin θφ̇ + ηφ + Fext,φ. (18)

Note that, though we do not explicitly enforce the over-
damped limit in Eqs. (17) and (18), we will effectively do
so by means of parameter choices in our simulations. For
a specified E (t ), we numerically solve Eqs. (15) and (16)
to find the ESE force (truncating above � = 5) and then
simulate the Langevin dynamics in both the presence and
absence of this force for an “ensemble” of 104 dipoles. In
units of β = m = p = 1, we simulate with γ = 20. Due to
the noise terms in Eqs. (17) and (18), these are stochas-
tic differential equations, which we simulate by means of a

first-order Euler-Maruyama algorithm [29] with step size of
dt = 0.01 time units. Given the promotion of configuration
space to a non-Euclidean manifold, the relation for the noise
term is modified [30,31]: 〈ηi(t )η j (t ′)〉 = (2γ /β )gi jδ(t − t ′),
where gi j is the inverse metric of the manifold. For the (unit)
sphere, the inverse metric is gθθ = 1, gφφ = 1/ sin θ , and all
other entries are zero. Therefore, following the standard Euler-
Maruyama treatment, we take ηθdt = √

2γ dt/βN (0, 1) and
ηφdt = √

2γ dt csc θ/βN (0, 1), where N (0, 1) is the Nor-
mal distribution with zero mean and unit variance. To deal
with the spherical-polar coordinate singularities at θ = 0 and
θ = π , we temporarily rotate to a different local coordinate
system and numerically integrate a single time step whenever
0 < θ < π/10 or 9π/10 < θ < π (see Ref. [28]).

In Fig. 1 we plot both the mean value and the full probabil-
ity distribution of θ (t ) for both the standard Langevin and ESE
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dynamics for two representative, temporally varying electric
fields, as described below. Due to the azimuthal symmetry of
the problem, the distribution over the azimuthal angle φ is not
affected by any temporal change in E (t ).

In Fig. 1(b), we consider a sigmoidally varying electric
field, E (t ) ∼ E0 + (
E )S(t − tc), where

S(t ) = (1 + e−t )−1 (19)

is the logistic function, 
E = 10 is the amplitude of the
change of the electric field, and tc is the transition time. For E0

small, θ is primarily distributed about π/2, which corresponds
to the equator. We note that for pE0 
 kBT , the dipoles have
no preferred direction, so they should be uniformly distributed
throughout configuration space. However, the distribution ap-
pears nonuniform as a function of θ . This is an artifact of
our coordinate system: There is more phase-space area at
θ = π/2 (the equator) than elsewhere, such that the proba-
bility as a function of θ should be nonuniform. For t � tc, we
find that, on average, θ < π/2. This is physically sensible:
The electric field is strong and directed along the z axis such
that the dipoles will tend to align with it. However, another
artifact of our coordinate system is the absence of probability
density at the pole at θ = 0. For t ∼ tc, in the absence of
the ESE force, the system remains out of equilibrium for a
finite period of time before eventually relaxing to the new
equilibrium. However, when the ESE force is introduced, the
system remains close to the equilibrium distribution at all
times.

In Fig 1(c), we consider a sinusoidal electric field, E (t ) ∼
E sin(t ). In this case, we see that the constantly changing field
never allows the standard Langevin system to fully equili-
brate; instead, the system oscillates with an approximate π/2
phase shift at a significantly smaller amplitude. Conversely,
the ESE dynamics converge close to the equilibrium distri-
bution at all points in time. For this case, we point out one
subtlety: Due to the periodicity of the drive, there exists a
nonequilibrium periodic steady-state distribution over θ in the
absence of ESE forcing, to which the Langevin dynamics
converge [32,33]. However, reaching this steady state is not
the goal of our ESE protocol. Rather, we seek to track the in-
stantaneous Boltzmann distribution for the temporally varying
external control parameters at all times, even in this periodic
case.

Toroidal configuration space. Next, we consider toroidal
configuration space, as exemplified by a system of two pen-
dula, each of mass m and unit length suspended vertically, and
coupled to each other with a time-varying coupling constant
κ (t ), as illustrated in Fig. 1(d). The potential may be modeled
as

V (θ1, θ2, t ) � −[mgcos θ1 + mgcos θ2 − κ (t ) cos(θ1 − θ2)],

(20)

where θ1 and θ2 are angles of the respective pendula with
respect to the z axis. Given the periodicity in θi, the configura-
tion space of this system is the 2-torus, M = T 2 = [0, 2π ] ×
[0, 2π ]. The Laplace operator for this manifold is


T 2 = ∂2

∂θ2
1

+ ∂2

∂θ2
2

, (21)

where one must recall the periodicity of the coordinates:
θi ∼ θi + 2πn for n ∈ Z. We again employ a series expansion
to solve Eq. (4). In this case, we carry out a 2D Fourier series.
Considering that 
T 2 exp i(m1θ1 + m2θ2) = −(m2

1 + m2
2 )

exp i(m1θ1 + m2θ2), we may write ρeq = ∑
m1,m2

cm1,m2 (t )
exp i(m1θ1 + m2θ2) and deduce that

A = γ
∑

m1,m2

∂t cm1,m2 (t )

m2
1 + m2

2

ei(m1θ1+m2θ2 ). (22)

We again simulate this dynamical system for a given κ (t ). The
governing Langevin equations are now

mθ̈1/2 = − γ θ̇1/2 − mg sin θ1/2

+ κ (t ) sin(θ1/2 − θ2/1) + ηθ1/2 + Fext,θ1/2 . (23)

As with the last example, the dynamics are not confined to
the overdamped limit. For a specified κ (t ), we numerically
solve the ESE force Fext(t ) by means of the Fourier series
expansion (truncating above m1 = m2 = 10) and then simu-
late the Langevin dynamics in both the presence and absence
of this force. In units of β = m = g = 1, we again simu-
late for γ = 20 and employ an Euler-Maruyama algorithm
with time step dt = 0.01. Conveniently, the noise terms for
this system do not have any geometric corrections, such that
ηθ1 dt = ηθ2 dt = √

2γ dt/βN (0, 1). For our simulations, we
choose κ (t ) ∼ −κ0S(t ), where S(t ) is defined by (19) so that
the pendula are initially uncoupled but after some critical time
tc they are anticoupled. In Fig. 1(e), we display the resulting
probability distribution for the coordinates (θ1, θ2) at several
times near tc. In the absence of the ESE force (top row), equi-
libration happens over a finite amount of time as the system
relaxes to its new anticoupled distribution. However, when the
ESE force is added (second row), the resulting distribution
agrees well with the calculated equilibrium distribution ρeq(t )
corresponding to the control parameter values at each moment
in time (bottom row).

Discussion. In previous studies, the notions of optimality
and control often refer to specific protocols designed to min-
imize excess work or some other performance index when
changing between two equilibria or nonequilibrium steady
states in finite time [19,20,34–38]. The ESE framework may
also be considered a control strategy, though ESE seeks only
to minimize time to equilibration throughout the protocol
without any constraints or penalties on the work required
to do so. Prior work has analyzed the relation between the
duration τ of a protocol and the energy dissipated in carrying
out a drive, concluding that for a variety of model systems,
the energy dissipated is proportional to 1/τ [15,21,39–41].
We may conjecture that the type of ESE protocols we have
derived here will behave similarly, with dissipated energy
scaling as τrelax/τ , where τrelax is the intrinsic viscous relax-
ation timescale for the overdamped system in consideration.

In principle, provided a smooth trajectory of control pa-
rameters, ESE should allow for arbitrarily rapid equilibrium
switching of ensemble distributions. However, the difficulty
of realizing the required forces in a laboratory setting would
presumably preclude such a situation. In addition, the theory
itself breaks down in such a limit due to higher-order effects
ignored in a basic Langevin treatment, such as a finite char-
acteristic timescale of the noise correlations. Nonetheless, for
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the range of timescales for which Eq. (2) applies, ESE yields
a method to achieve controlled, swift equilibration.

Our ESE protocol ensures a high degree of control through-
out the drive. Not only do we enforce the mean, or the
mean and variance (or any finite combination of moments) of
the probability distribution, we dictate the entire probability
distribution at all times during the protocol. In fact, follow-
ing Ref. [25], if a scalar field integrates to zero over a full
compact manifold, then it may be written as the divergence
of a vector field. Importantly, by integrating the left-hand
side of Eq. (4) over any phase-space manifold M, we see
that∫

M
(−γ ∂tρeq)dV = −γ

d

dt

∫
M

ρeqdV = −γ
d

dt
(1) = 0,

(24)

following conservation of probability. We conclude that for
any arbitrary time-dependent potential described by some
smooth set of coordinates, there will always be a correspond-
ing ESE force that can enforce swift equilibration.

Finally, we note further degrees of freedom in the ESE
condition defined by Eq. (7): The differential form d†P =

A allows for an alternative, arbitrary choice of a harmonic
1-form C and a 2-form B by using Eq. (6). For a given
trajectory specified by ρeq(t ), these choices lead to a class
of inequivalent, though perhaps nonconservative [22], driving

forces—where now we must use the full form of Eq. (6)
ρeqF = dA + d†B + C—each of which enforces swift equi-
libration. These additional degrees of freedom, which are
inaccessible in low-dimensional Euclidean spaces and there-
fore have not been observed in past studies, afford greater
flexibility in constructing appropriate forces for practical lab-
oratory applications.

Conclusion. In this Letter, we have successfully extended
the ESE protocol to systems with nontrivial configuration
space topology. We hope our results will be useful for design-
ing optimal strategies for manipulating a thermalized system
of multiple canonical position variables swiftly through con-
trolled parameter changes. Our methods can be used to
calculate the necessary auxiliary forces to impose internal
equilibrium dynamics in experimental settings, though the
derivation we present here is only valid for the overdamped
limit. In future work, it will be interesting to generalize our
framework to include underdamped systems.
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