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Stochastic thermodynamics has revolutionized our understanding of heat engines operating in finite
time. Recently, numerous studies have considered the optimal operation of thermodynamic cycles acting
as heat engines with a given profile in thermodynamic space (e.g., P —V space in classical
thermodynamics), with a particular focus on the Carnot engine. In this work, we use the lens of
thermodynamic geometry to explore the full space of thermodynamic cycles with continuously varying
bath temperature in search of optimally shaped cycles acting in the slow-driving regime. We apply
classical isoperimetric inequalities to derive a universal geometric bound on the efficiency of any
irreversible thermodynamic cycle and explicitly construct efficient heat engines operating in finite time
that nearly saturate this bound for a specific model system. Given the bound, these optimal cycles
perform more efficiently than all other thermodynamic cycles operating as heat engines in finite time,
including notable cycles, such as those of Carnot, Stirling, and Otto. For example, in comparison to
recent experiments, this corresponds to orders of magnitude improvement in the efficiency of engines
operating in certain time regimes. Our results suggest novel design principles for future mesoscopic heat
engines and are ripe for experimental investigation.
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Introduction.—Over the past several decades, stochastic
thermodynamics has dramatically improved our under-
standing of nonequilibrium statistical physics [1-7]. A
major focus of study in this area has been the performance
of engines operating in finite time, where both power and
dissipation are finite, often with an emphasis on engines
operating at maximal power [8-24]. A recurring theme
has been the interplay, and often incompatibility, among
high efficiency, high output power, and low dissipation
[13,15,18,22]. To that end, we recently characterized
optimal protocols for the finite-time operation of a
Brownian Carnot engine [22], a colloidal system intro-
duced in Ref. [25], finding minimally dissipative cycles
often came at the expense of reduced power and efficiency.

In this work, we study the implications of this interplay
from a geometric perspective and arrive at a universal
bound on the efficiency of heat engines operating in finite
time. We also numerically construct optimal cycles that
nearly saturate the bound, and we characterize its tightness
for a specific model system and compare them to a variety
of nonoptimal cycles. We find that even natural extensions
of well-known quasistatic cycles (e.g., Carnot engines) to
finite-time cycles perform far less efficiently than the
optimal cycles, demonstrating the utility of our result.

Efficiency of irreversible engines.—Following Ref. [26],
we use a definition of efficiency that directly captures the
irreversibility of a thermodynamic cycle. Specifically, for a
generic thermodynamic engine operated by cyclically
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varying the temperature 7 of a heat bath in contact with
the system and some volumelike mechanical control
variable A, the (average) efficiency is defined as

W §X;di
U  ¢§XpdT’

(1)

n

where X, is the thermodynamic force conjugate to the
control variable v € {T, 1}, defined as

Xr = §=—(logp,), (3)

where H, is the Hamiltonian of the (working) system for a
fixed set A = (7', 1), S is the system entropy, p, is the phase
space distribution of the system at time #, and brackets
denote ensemble averages. Note that U here does not
represent the internal energy, but can be thought of as the
uptake of thermal energy from the heat source, or the
amount of energy that is available for work production
under a given temperature profile [26]. This efficiency is
well defined for any engine with positive work output,
W > 0. Following the first law of thermodynamics and
appealing to the cyclic operation of the engine, the
efficiency may be rewritten as

© 2022 American Physical Society
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where dX = dS — dQ/T is the total infinitesimal entropy
production in the universe. Here, Q is the heat exchange
into the system from the reservoir at a temperature 7.
Following the second law, dX > 0 such that the inequality
follows directly and the unity bound can only be saturated
for quasistatic, reversible engines. This definition of effi-
ciency has gained traction in the study of finite-time heat
engines [21,22,27], and a comparable definition is standard
for monothermal cycles, e.g., in active matter or chemical
transduction contexts [28-31].

Now, let us consider a finite-time operation such that

¥ > 0 and the system is driven with finite driving rates A.
The thermodynamic forces may be expanded as

X;t = X}d - g/wAw (5)

where summation over repeated indices is implied. Here,
X, is the quasistatic value of X for a given set A and,
following the standard linear response framework, g,, is

given by a correlation function

@w—ﬂA“w@aumnw»y (6)

Using this expansion, the efficiency can be written

_ $Xdh $(X, = guA,)dA i 4 dtA, g, A,
$XrdT ™ §(Xy —gp,A,)dT § Xada
A
=1-— 7
W’ ( )

where A is the dissipated work (or alternatively called the
dissipated availability) through one cycle and W is the
work output for quasistatic driving. Following Refs. [32—
39], we see that the thermodynamic control space is imbued
with a geometric structure by reinterpreting g, as a metric
tensor. Geometric approaches such as this have greatly
facilitated the development of optimal protocols for non-
equilibrium systems [38—47]. With these definitions, the
dissipated work satisfies

. . . T\ 2
A=1 f dih, g, A, > ( f dr,/A,,gWAy) =2 @3

where 7 is the cycle duration and L is the thermodynamic
length of the protocol as defined by the metric. Optimal
driving then yields [26]

LZ
77<'7—1—m )

which gives the optimal geometric efficiency #* for any
closed curve in thermodynamic control space.

The bound, Eq. (9), applies to any generic closed curve,
yielding the best possible efficiency for an optimal tem-
poral parametrization for a given path. We now seek to go
further and find cycles that are maximally efficient over the
space of all possible closed paths in thermodynamic control
space. Fixing the protocol duration and given Eq. (9), to
leading order in 1/7, we must therefore find the curve that
minimizes the quantity £%/W.

Isoperimetric bound on efficiency.—We now note an
important feature of W. It is well known from standard
thermodynamics that the quasistatic work is simply given
by the area contained within the curve of the (quasistatic)
cycle in 4 — X, space, which we will henceforth refer to as
Clausius space in reference to the Clausius curve. We will
refer to the inner region of this curve as C and the boundary
(the Clausius curve) as JC. By means of an appropriate
change of coordinates, the metric g,, may be transformed
for this space, yielding a metric gﬁ,, such that the thermo-
dynamic length is given

e~ f ) (50) Zf)p
f () (),

and the quasistatic work is

Wz//d/lXm:?{ X,dA. (11)
c ac

We define one final quantity of interest: the thermodynamic
area, defined as the integral over of the region with the
proper thermodynamic geometric measure:

A= / A o drx,, (12)

where ¢¢ = det gﬁ,,. The physical interpretation of this
quantity may not be as clear as that of thermodynamic
length, though we will use it as a key ingredient.
Notably, dating to antiquity [48,49], bounds exist relating
the perimeter £(D) and area A(D) of a region D,
known as isoperimetric inequalities. In general, for a
simply-connected two-dimensional region, one has two
inequalities [49]

£2247T.A—2[/AK+}A, (13)

L2> 47 A -

[supp K].A2. (14)
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where K is the Gaussian curvature of the underlying space
and K" (p) = max[K(p), 0] for a point p € D. As a simple
example, we remind the reader of the case of Euclidean
space where K = KT =0 and both inequalities yield
L? > 4z A, which is saturated only for the optimal shape
of a circle. Similar isoperimetrically optimal shapes exist
for other manifolds [49]. Importantly, whenever the curva-
ture is everywhere nonpositive, Eq. (13) yields the familiar
Euclidean bound, though it is only tight for special spaces,
such as when K = 0.

In the context of thermodynamic geometry, the bound
readily applies, where now we consider the thermodynamic
length of a closed curve and the thermodynamic area of the
enclosed region. That is,

£22475A—2{//CK+]A, (15)

L2 > 4xA — [supcK].A%. (16)
Henceforth, we will focus on the case when K < 0 and will
relegate the more general case to the Supplemental Material
[50]. In this case, we may assume L> > 41.A. Therefore,

L2 LA LA A /
WoWA~ AW_47TW74JT\/7 (17)

where the overline indicates an area average value. Given
this bound, we may now write for the efficiency a universal
bound

2 4 _C
nSI—%SI— ”\T/g_. (18)

This bound, which we will refer to as an isoperimetric
bound on efficiency, is our first major result and presents
a fundamentally new and purely geometric bound on
the efficiency of nonequilibrium engines. Also, whereas
the previous bound, Eq. (9), was directly applicable to the
optimized parametrization of a specific predetermined
cycle, this bound places constraints on the optimal shape
of a cycle and can only be approached for geometrically
optimized cycle shapes. This therefore introduces a new
optimization principle wherein optimally efficient cycles

must minimize the average value of \/97 over the region
they enclose in Clausius space. In a pioneering study, a
similar bound was recently recovered for the specific case
of the Brownian gyrator [27], though we highlight that
Eq. (18) applies generically.

Construction of optimal cycles.—Given this isoperimet-
ric bound, we now seek to construct optimal cycles that
(nearly) saturate it. This is done by finding shapes that
minimize the ratio £2/.A. Inspired by previous literature
[49], we will use a variational principle. Namely, we seek to
maximize A while holding £? fixed; we do so by means of

a Lagrange multiplier. The relevant functional takes the
form

o fulisi-o(§) 63 o

where & serves as a Lagrange multiplier enforcing a fixed
dissipation for shapes that maximize the corresponding area
[51]. Optimization is found through solving the resulting
Euler-Lagrange equations for X,(7) and A(z) under a cyclic
constraint.

Parametric harmonic oscillator.—We will now illustrate
the utility of this result by studying the parametric
harmonic oscillator. This important model system consists
of a particle of mass m trapped in a harmonic potential with
variable stiffness V/(x) = 1/2k(¢)x* in contact with a heat
bath of variable temperature 7(¢) and subject to viscous
damping {. This system has been studied extensively
[22,25,40,52-56], and its geometry has been well charac-

In this case, the mechanical control variable is k£ and the
corresponding force is X; = —1/2(x?). In the quasistatic
limit, we have X, = —kzT/2k by the equipartition
theorem. Therefore, under the change of variables

1 ©?
mkg T <4 * W)
g;u/ = TC

(T.k) = (P,V) = (X}, k), we find
¢ 2mV m
e @t ©
uw mo omp |
¢ 26V

where we use P and V to suggestively map to pseudo-
pressure and pseudovolume in Clausius space and recap-
ture the usual identity dWW = PdV. We find ¢¢ = m/(4V)
and the Gaussian curvature K = 1/({P) < 0as P < 0such
that Eq. (18) applies. As a result, we have
2 /M
p<1_ IV
T
for any possible thermodynamic cycle.

We now seek to characterize the optimal cycles for
this model system. Following Eq. (19), we consider the

functional
refalyroe(D)(FF 2 (D)
(20)

K, i

<

C 20
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The Euler-Lagrange equations are then found by varying
with respect to P and V (Supplemental Material [50]).
To our knowledge, the resulting Euler-Lagrange equations
are analytically intractable, so we turn to numerics. For
simplicity, we generate cycles from a given set of initial

conditions, P(0), V(0), P(0), and V(0), and a given value
of the Lagrange multiplier £. If we concern ourselves only
with the shape of the curve rather than its particular
parametrization, we could instead parametrize P as a
function of V, such that one of these initial condition
degrees of freedom is redundant. Thus, optimal shapes are
specified by a four-parameter family determined by
P(t=0), V(t=0), dP/dV(t =0), and &.

Generically, it is unclear whether these conditions will be
sufficient to specify a smooth closed curve [48,49,57]. In
general, the isoperimetrically optimal curves will consist of
stable smooth curves that have constant geodesic curvature
at (nearly) all points [48,49,57]. In our case, the numerical
solutions yield curves of constant geodesic curvature that
are typically nonclosed but instead consist of “near-miss”
cycloids [50], which has been observed previously while
seeking optimal cycles [56]. However, as we are interested
only in cyclic engines, we will construct cycles that traverse
a single optimal period by truncating the curve when it is at
the nearest point on the curve whose tangent curve is
parallel to the original tangent curve. We then connect these
two points by a straight line, thus closing the cycle. For
small cycles, the resulting kink is imperceptible whereas it
becomes more noticeable for larger cycles, as can be seen in
Figs. 1 and 2. Similarly, the efficiencies are impacted more
significantly for larger deviations from smooth curves.
Truly optimal curves would consist of fully smooth closed
curves of constant geodesic curvature, which may only be
realizable in specific regions of the Clausius space. By
choosing to work with specific initial conditions, we allow
for the construction of near optimal cycles at all points of
Clausius space at the cost of having to introduce small,
finite sections of nonoptimality. As we will see, these
“optimal” cycles still prove remarkably close to saturating
the bound and strongly outperform all other cycles we
consider.

For example, consider the Brownian Carnot cycle,
whose shape is given in Fig. 1. Setting { = 7.51 ugs™!
and m = 0.545 pg (based on experimental parameters
used in Ref. [25]), and choosing the extremal values of
P and V shown, Eq. (17) implies that its greatest possible
efficiency is

L? 4z A
1-7)7=""=958x10*s> 176 x 107> s = ——,
(I —mr =35 W
demonstrating that the performance of the Carnot cycle is a
factor of 55 times larger than the optimal value for these
parameter settings. In contrast, by constructing a series of
(nearly) optimally shaped cycles with identical values of W

— Optimal

a) 2.0
( ) - Carnot

0.0 0.0

0 50 100 150 200 250 0 20 40 60 80 100
1% (pN pm™) v (pN pm™)
FIG. 1. (a) A Brownian Carnot cycle (dashed purple) and three

isoperimetrically optimal cycles (blue) with identical values of W

and \/¢¢ using mass and damping values from Ref. [25]. The
optimal cycles have a 55x increase in performance relative to the
Carnot cycle. (b) Same as (a), but in a more underdamped regime.

and /g%, we instead find the bound is approached to within
three-hundredths of one percent. The shapes of these cycles
are displayed in Fig. 1(a).

We next consider a slightly underdamped parameter
regime, setting m = 80.9 mg and ¢ = 15.0 mgs~'. In this
regime, various Carnot engine cycles (for given limits on
hot and cold bath temperature) perform somewhat better,
but they still do not come close to saturating it. Intriguingly,
in contrast to the previous regime, optimally constructed
shapes now appear much closer to Carnot-like cycles than
those previously constructed, as in Fig 1(b). Now, we find
that optimal engines seemingly remain close to adiabats for
a significant duration of the cycle, albeit with a rapid (and
smooth) turnaround at corners. This is replicated for other
choices of maximal temperature and stiffness as shown in
Fig. 1(b). We also show optimal cycles for a variety of
values of m/{ in the Supplemental Material [50].

We can further evaluate our bound by comparing it to
generic cycles in Clausius space. In particular, in Fig. 3, we

plot the value of \/E against £2/WV for 15000 randomly
constructed cycles, as well as 1000 randomly selected
Carnot, Stirling, Otto, and hybrid Carnot-geodesic (intro-
duced in Ref. [22]) cycles (see Ref. [50] for a review of

(a)

1.0
0.8
ég
2 06
s 04
0.2
0.0 0.0
0 50 100 150 200 250 300 0
V (pN pm!)
FIG. 2. (a)Optimally constructed cycles with quasistatic output

work of 6 (blue) and 120 pNum (orange) for experimental
parameters used in Ref. [25]. (b) Same as (a) for underdamped
parameters; adiabats shown in dotted lines.
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FIG. 3. Optimally constructed cycles strongly outperform

Carnot and all other cycles tested. Optimal (blue circles), hybrid
(orange squares), Stirling (green diamonds), Otto (red upwards
triangle), Carnot (purple downwards triangle), and randomly
constructed (gray X’s) plotted against the bound Eq. (17) (black
dotted line).

these various cycles and for details of how Fig. 3 is
constructed). We also plot 500 optimally constructed
cycles. As is easily observed, the optimal cycles nearly

saturate the bound for a large parameter regime of /¢¢
whereas other cycles are far less efficient. The data are
surprisingly structured: for a fixed shape, we find

L2/W~ (\/¢€)?, an interesting empirical finding.
Cycles that saturate the bound must therefore not maintain
the same cyclical shape for different average values of \/7 ,
but instead change so as to remain optimal, as was shown
in Fig. 2.

Discussion.—In this work, we have applied the classical
isoperimetric inequalities to thermodynamic spaces, yield-
ing a novel universal bound on the efficiency of any closed
thermodynamic cycle for a generic system. We have then
constructed optimal cycles that nearly saturate this bound
for the specific model system of the parametric harmonic
oscillator. Importantly, this bound, although not always
tight, nevertheless strongly constrains the efficiency of
thermodynamic cycles and introduces new design princi-
ples for the design of efficient finite-time heat engines. We
emphasize that all results are independent of temporal
parametrization and depend only on the shape of cycles.

This derivation ultimately arises from thermodynamic
geometry, which is a perturbative solution to first order in
response theory. Our bound is therefore only approximate
in nature and does not technically constrain the efficiency
of engines acting beyond slow driving. However, it is
unlikely such engines would prove less dissipative and
more efficient than their slower-driven counterparts, such
that one would expect the bound to still apply, but not be as
tight. A more interesting question is whether there are
higher order or even nonperturbative bounds that constrain
the efficiency of all finite time cycles. Such bounds have
been found for the fluctuations of the more traditional
definition of efficiency about its mean [58—60]. Similarly,
one should ask if the efficiency of optimal engines in

our framework would still outperform others, such as the
Carnot or Stirling engine, even when far away from linear
response where our results are not guaranteed to apply. We
leave the detailed study of the question to future work, but
there does exist anecdotal evidence that engines designed in
linear response prove more efficient, even when operating
far from equilibrium [22,26].

Also, although the main focus of this work was in
optimizing the average efficiency of thermodynamic
cycles, given that our optimal cycles were designed to
be minimally dissipative for a fixed thermodynamic area,
they should also have a high output power, though they
may not be optimally powerful cycles. A recurring theme in
the literature is the set of tradeoffs between high output
power, high efficiency, low dissipation, and minimal
fluctuations about the means of stochastic thermodynamic
quantities [17,20,23,24,26,46,60,61]. Studying this inter-
play further and designing optimal cycles achieving differ-
ent objectives is of interest for future work. Similarly, we
focused on the problem of finding optimal, unconstrained
cycles in thermodynamic space, such that control param-
eters, the temperature of the heat bath and mechanical
controls, are allowed to vary continuously in time.
Although this regime has been studied extensively
[13,21-23,26] and is experimentally accessible [25], it is
a distinct and worthwhile question to address the problem
of constructing optimal, finite-time engines under other
more constrained control settings where such smooth
variations may not be possible.

In addition and more generally, isoperimetric inequalities
have been a significant direction of study in mathematics,
and we expect them to have important implications in
thermodynamic geometry. We are encouraged by their
recent application to the Brownian gyrator [27] and
adiabatic thermal engines operating between two heat
baths [24], but we anticipate there remains a great deal
to be learned by their application in various thermodynamic
settings. In particular, whereas ultimately our bound relied
on the introduction of thermodynamic area, isoperimetric
inequalities for manifolds with density [50,62—64] could
lead to further strict bounds on dissipation directly given a
work output.

Finally, although our main focus here was on classical
thermal systems, thermodynamic geometry is equally
applicable to quantum settings and this bound likewise
should constrain the efficiency of quantum heat engines, a
major focus of current research [18,46,65-68].

Conclusion.—Here, we have used classical geometric
results in concert with geometric approaches to thermody-
namics to place a bound on the efficiency of any irrevers-
ible heat engine and study it in the specific case of the
parametric harmonic oscillator. This bound applies irre-
spective of the system details or dynamics and it suggests
new design principles for construction of efficient engines
at microscopic scales.

230601-5



PHYSICAL REVIEW LETTERS 128, 230601 (2022)

The authors thank Jamie Simon, Adrianne Zhong, Mart{
Perarnau-Llobet, and Aaron Slipper for many useful dis-
cussions and thank Gentaro Watanabe and Yuki Minami for
comments on the manuscript. The authors also acknowl-
edge the attendees of the 2021 Telluride Information
Engines Workshop for useful comments at preliminary
stages of this work. A. G. F. is supported by the NSF GRFP
under Grant No. DGE 1752814. This work was supported
in part by the U.S. Army Research Laboratory and the U.S.
Army Research Office under Contract No. W911NF-20-
1-0151.

*adamfrim@berkeley.edu
Tdeweese@berkeley.edu
[1] C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).
[2] K. Sekimoto, Prog. Theor. Phys. Suppl. 130, 17 (1998).
[3] G.E. Crooks, Phys. Rev. E 60, 2721 (1999).
[4] U. Seifert, Phys. Rev. Lett. 95, 040602 (2005).
[5] M. Esposito and C. Van den Broeck, Phys. Rev. Lett. 104,
090601 (2010).
6] T. Sagawa and M. Ueda, Phys. Rev. Lett. 104, 090602 (2010).
7] U. Seifert, Rep. Prog. Phys. 75, 126001 (2012).
8] F. L. Curzon and B. Ahlborn, Am. J. Phys. 43, 22 (1975).
9] C. Van den Broeck, Phys. Rev. Lett. 95, 190602 (2005).
[10] T. Schmiedl and U. Seifert, Europhys. Lett. 81, 20003
(2008).
[11] M. Esposito, K. Lindenberg, and C. Van den Broeck, Phys.
Rev. Lett. 102, 130602 (2009).
[12] M. Esposito, R. Kawai, K. Lindenberg, and C. Van den
Broeck, Phys. Rev. Lett. 105, 150603 (2010).
[13] K. Brandner, K. Saito, and U. Seifert, Phys. Rev. X 5,
031019 (2015).
[14] K. Proesmans, B. Cleuren, and C. Van den Broeck, Phys.
Rev. Lett. 116, 220601 (2016).
[15] N. Shiraishi, K. Saito, and H. Tasaki, Phys. Rev. Lett. 117,
190601 (2016).
[16] Y.-H. Ma, D. Xu, H. Dong, and C.-P. Sun, Phys. Rev. E 98,
022133 (2018).
[17] Y.-H. Ma, D. Xu, H. Dong, and C.-P. Sun, Phys. Rev. E 98,
042112 (2018).
[18] P. Abiuso and M. Perarnau-Llobet, Phys. Rev. Lett. 124,
110606 (2020).
[19] Y.-H. Ma, R.-X. Zhai, J. Chen, C.P. Sun, and H. Dong,
Phys. Rev. Lett. 125, 210601 (2020).
[20] H.J.D. Miller and M. Mehboudi, Phys. Rev. Lett. 125,
260602 (2020).
[21] O. Movilla Miangolarra, R. Fu, A. Taghvaei, Y. Chen, and
T. T. Georgiou, Phys. Rev. E 103, 062103 (2021).
[22] A.G. Frim and M. R. DeWeese, Phys. Rev. E 105, L052103
(2022).
[23] G. Watanabe and Y. Minami, Phys. Rev. Research 4,
L.012008 (2022).
[24] P. Terrén Alonso, P. Abiuso, M. Perarnau-Llobet, and L.
Arrachea, PRX Quantum 3, 010326 (2022).
[25] 1. A. Martinez, E. Rolddn, L. Dinis, D. Petrov, J. M. R.
Parrondo, and R. A. Rica, Nat. Phys. 12, 67 (2016).
[26] K. Brandner and K. Saito, Phys. Rev. Lett. 124, 040602
(2020).

[
[
[
[

[27] O. Movilla Miangolarra, A. Taghvaei, R. Fu, Y. Chen, and
T. T. Georgiou, Phys. Rev. E 104, 044101 (2021).

[28] P. Pietzonka, A.C. Barato, and U. Seifert, J. Stat. Mech.
(2016) 124004.

[29] P. Pietzonka, E. Fodor, C. Lohrmann, M. E. Cates, and U.
Seifert, Phys. Rev. X 9, 041032 (2019).

[30] T. Ekeh, M. E. Cates, and E. Fodor, Phys. Rev. E 102,
010101(R) (2020).

[31] J. S. Lee, J.-M. Park, and H. Park, Phys. Rev. E 102, 032116
(2020).

[32] F. Weinhold, J. Chem. Phys. 63, 2479 (1975).

[33] G. Ruppeiner, Phys. Rev. A 20, 1608 (1979).

[34] P. Salamon and R.S. Berry, Phys. Rev. Lett. 51, 1127
(1983).

[35] P. Salamon, J. Nulton, and E. Thrig, J. Chem. Phys. 80, 436
(1984).

[36] E. Schlogl,
(1985).

[37] G. Ruppeiner, Rev. Mod. Phys. 67, 605 (1995).

[38] G.E. Crooks, Phys. Rev. Lett. 99, 100602 (2007).

[39] D. A. Sivak and G. E. Crooks, Phys. Rev. Lett. 108, 190602
(2012).

[40] P.R. Zulkowski, D.A. Sivak, G.E. Crooks, and M.R.
DeWeese, Phys. Rev. E 86, 041148 (2012).

[41] P.R. Zulkowski and M.R. DeWeese, Phys. Rev. E 89,
052140 (2014).

[42] P.R. Zulkowski, D. A. Sivak, and M. R. DeWeese, PLoS
One 8, 82754 (2013).

[43] P.R. Zulkowski and M.R. DeWeese, Phys. Rev. E 92,
032113 (2015).

[44] P.R. Zulkowski and M.R. DeWeese, Phys. Rev. E 92,
032117 (2015).

[45] G. M. Rotskoff and G. E. Crooks, Phys. Rev. E 92, 060102
(R) (2015).

[46] P. Abiuso, H.J.D. Miller, M. Perarnau-Llobet, and M.
Scandi, Entropy 22, 1076 (2020).

[47] S. Blaber and D. A. Sivak, J. Chem. Phys. 153, 244119
(2020).

[48] L. E. Payne, SIAM Rev. 9, 453 (1967).

[49] R. Osserman, Bull. Am. Math. Soc. 84, 1182 (1978).

[50] See  Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.128.230601 for further
details on derivations, numerical methods, isoperimetric
bounds for arbitrary curvatures, and the potential future
thermodynamic uses for manifolds with density.

[51] The dissipation ¢(dX;,dA)-g - (dX,,d) is geometrically
denoted the energy of the curve and optimization with
respect to its value held fixed still optimizes the ratio £2/.4
while simultaneously outputting an optimal, arclength para-
metrization of the resultant curve.

[52] T. Schmiedl and U. Seifert, Phys. Rev. Lett. 98, 108301
(2007).

[53] V. Blickle and C. Bechinger, Nat. Phys. 8, 143 (2012).

[54] 1. A. Martinez, E. Roldan, L. Dinis, D. Petrov, and R. A.
Rica, Phys. Rev. Lett. 114, 120601 (2015).

[55] I. A. Martinez, E. Roldédn, L. Dinis, and R. A. Rica, Soft
Matter 13, 22 (2017).

[56] Y. Huang and P.S. Krishnaprasad, Discrete Contin. Dyn.
Syst.—S 13, 1243 (2020).

[57] M. Ritoré, Commun. Anal. Geom. 9, 1093 (2001).

Z. Phys. B Condens. Matter 59, 449

230601-6


https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1143/PTPS.130.17
https://doi.org/10.1103/PhysRevE.60.2721
https://doi.org/10.1103/PhysRevLett.95.040602
https://doi.org/10.1103/PhysRevLett.104.090601
https://doi.org/10.1103/PhysRevLett.104.090601
https://doi.org/10.1103/PhysRevLett.104.090602
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1119/1.10023
https://doi.org/10.1103/PhysRevLett.95.190602
https://doi.org/10.1209/0295-5075/81/20003
https://doi.org/10.1209/0295-5075/81/20003
https://doi.org/10.1103/PhysRevLett.102.130602
https://doi.org/10.1103/PhysRevLett.102.130602
https://doi.org/10.1103/PhysRevLett.105.150603
https://doi.org/10.1103/PhysRevX.5.031019
https://doi.org/10.1103/PhysRevX.5.031019
https://doi.org/10.1103/PhysRevLett.116.220601
https://doi.org/10.1103/PhysRevLett.116.220601
https://doi.org/10.1103/PhysRevLett.117.190601
https://doi.org/10.1103/PhysRevLett.117.190601
https://doi.org/10.1103/PhysRevE.98.022133
https://doi.org/10.1103/PhysRevE.98.022133
https://doi.org/10.1103/PhysRevE.98.042112
https://doi.org/10.1103/PhysRevE.98.042112
https://doi.org/10.1103/PhysRevLett.124.110606
https://doi.org/10.1103/PhysRevLett.124.110606
https://doi.org/10.1103/PhysRevLett.125.210601
https://doi.org/10.1103/PhysRevLett.125.260602
https://doi.org/10.1103/PhysRevLett.125.260602
https://doi.org/10.1103/PhysRevE.103.062103
https://doi.org/10.1103/PhysRevE.105.L052103
https://doi.org/10.1103/PhysRevE.105.L052103
https://doi.org/10.1103/PhysRevResearch.4.L012008
https://doi.org/10.1103/PhysRevResearch.4.L012008
https://doi.org/10.1103/PRXQuantum.3.010326
https://doi.org/10.1038/nphys3518
https://doi.org/10.1103/PhysRevLett.124.040602
https://doi.org/10.1103/PhysRevLett.124.040602
https://doi.org/10.1103/PhysRevE.104.044101
https://doi.org/10.1088/1742-5468/2016/12/124004
https://doi.org/10.1088/1742-5468/2016/12/124004
https://doi.org/10.1103/PhysRevX.9.041032
https://doi.org/10.1103/PhysRevE.102.010101
https://doi.org/10.1103/PhysRevE.102.010101
https://doi.org/10.1103/PhysRevE.102.032116
https://doi.org/10.1103/PhysRevE.102.032116
https://doi.org/10.1063/1.431689
https://doi.org/10.1103/PhysRevA.20.1608
https://doi.org/10.1103/PhysRevLett.51.1127
https://doi.org/10.1103/PhysRevLett.51.1127
https://doi.org/10.1063/1.446467
https://doi.org/10.1063/1.446467
https://doi.org/10.1007/BF01328857
https://doi.org/10.1007/BF01328857
https://doi.org/10.1103/RevModPhys.67.605
https://doi.org/10.1103/PhysRevLett.99.100602
https://doi.org/10.1103/PhysRevLett.108.190602
https://doi.org/10.1103/PhysRevLett.108.190602
https://doi.org/10.1103/PhysRevE.86.041148
https://doi.org/10.1103/PhysRevE.89.052140
https://doi.org/10.1103/PhysRevE.89.052140
https://doi.org/10.1371/journal.pone.0082754
https://doi.org/10.1371/journal.pone.0082754
https://doi.org/10.1103/PhysRevE.92.032113
https://doi.org/10.1103/PhysRevE.92.032113
https://doi.org/10.1103/PhysRevE.92.032117
https://doi.org/10.1103/PhysRevE.92.032117
https://doi.org/10.1103/PhysRevE.92.060102
https://doi.org/10.1103/PhysRevE.92.060102
https://doi.org/10.3390/e22101076
https://doi.org/10.1063/5.0033405
https://doi.org/10.1063/5.0033405
https://doi.org/10.1137/1009070
https://doi.org/10.1090/S0002-9904-1978-14553-4
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.230601
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.230601
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.230601
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.230601
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.230601
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.230601
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.230601
https://doi.org/10.1103/PhysRevLett.98.108301
https://doi.org/10.1103/PhysRevLett.98.108301
https://doi.org/10.1038/nphys2163
https://doi.org/10.1103/PhysRevLett.114.120601
https://doi.org/10.1039/C6SM00923A
https://doi.org/10.1039/C6SM00923A
https://doi.org/10.3934/dcdss.2020072
https://doi.org/10.3934/dcdss.2020072
https://doi.org/10.4310/CAG.2001.v9.n5.a5

PHYSICAL REVIEW LETTERS 128, 230601 (2022)

[58] G. Verley, T. Willaert, C. Van den Broeck, and M. Esposito,
Phys. Rev. E 90, 052145 (2014).

[59] K. Ito, C. Jiang, and G. Watanabe, arXiv:1910.08096.

[60] S. Saryal, M. Gerry, I. Khait, D. Segal, and B. K. Agarwalla,
Phys. Rev. Lett. 127, 190603 (2021).

[61] P. Pietzonka and U. Seifert, Phys. Rev. Lett. 120, 190602
(2018).

[62] F. Morgan, Not. Am. Math. Soc. 52, 853 (2005), https://
www.ams.org/journals/notices/200508/fea-morgan.pdf.

[63] C. Rosales, A. Cafiete, V. Bayle, and F. Morgan, Calc. Var.
Partial Differ. Equ. 31, 27 (2008).

[64] F. Morgan and A. Pratelli, Ann. Glob. Anal. Geom. 43, 331
(2013).

[65] R. Kosloff and A. Levy, Annu. Rev. Phys. Chem. 65, 365
(2014).

[66] B. Gardas and S. Deffner, Phys. Rev. E 92, 042126
(2015).

[67] S. Deffner, Entropy 20, 875 (2018).

[68] H.J.D. Miller, M.H. Mohammady, M. Perarnau-
Llobet, and G. Guarnieri, Phys. Rev. Lett. 126, 210603
(2021).

230601-7


https://doi.org/10.1103/PhysRevE.90.052145
https://arXiv.org/abs/1910.08096
https://doi.org/10.1103/PhysRevLett.127.190603
https://doi.org/10.1103/PhysRevLett.120.190602
https://doi.org/10.1103/PhysRevLett.120.190602
https://www.ams.org/journals/notices/200508/fea-morgan.pdf
https://www.ams.org/journals/notices/200508/fea-morgan.pdf
https://www.ams.org/journals/notices/200508/fea-morgan.pdf
https://www.ams.org/journals/notices/200508/fea-morgan.pdf
https://www.ams.org/journals/notices/200508/fea-morgan.pdf
https://doi.org/10.1007/s00526-007-0104-y
https://doi.org/10.1007/s00526-007-0104-y
https://doi.org/10.1007/s10455-012-9348-7
https://doi.org/10.1007/s10455-012-9348-7
https://doi.org/10.1146/annurev-physchem-040513-103724
https://doi.org/10.1146/annurev-physchem-040513-103724
https://doi.org/10.1103/PhysRevE.92.042126
https://doi.org/10.1103/PhysRevE.92.042126
https://doi.org/10.3390/e20110875
https://doi.org/10.1103/PhysRevLett.126.210603
https://doi.org/10.1103/PhysRevLett.126.210603

