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Abstract: Hyperdimensional computing extends the traditional (von Neumann)

model of computing with numbers, to computing with wide vectors, e.g., 10,000-

bit. Operations that correspond to the addition and multiplication of numbers,

augmented by permutations of vector coordinates, allow us to build computers for

tasks that are served poorly by today’s computers. The hardware requirements are

a unique match to 3D nanoscale circuit technology. The vector operations can be

built into circuits and programmed in traditional ways. The encoding of informa-

tion, however, is totally different and takes getting used to. Multiple items of infor-

mation are encoded into a single vector and distributed over all vector components

in a kind of holographic representation. Computing with holographically encoded

vectors depends on the superabundance of approximately orthogonal vectors and on

the properties of the operations, namely, that some are invertible, some distributive,

and some distance-preserving. Such properties are familiar to us from computing

with numbers; now they form a foundation for computing with vectors. The goal of

computing with vectors is to interpret and to act fast on rich sensory input. Sensory

data and commands to actuators are coordinated in the high-dimensional vector

space, but raw sensory input must first be brought into the space. It is done with

sensor-specific pre-processors that can be designed by experts or trained as tradi-

tional neural nets and then frozen. Similarly, high-dimensional vectors for actions

are converted to commands for motors by actuator-specific post-processors.

Keywords: Von Neumann architecture; Computing in superposition; Holographic

reduced representation; Vector-symbolic architecture; Semantic pointer architecture
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0.1 Introduction

The digital computer, enabled by semiconductor technology, has become an

ever-present part of our lives. The relative ease of programming it for well-

specified tasks has us expecting that we should be able to program it for

about any task. However, experience has shown otherwise. What comes nat-

urally to us and may appear easy, such as understanding a scene or learning

a language, has eluded programming into computers [Mitchell, 2019]. Since

such things are accomplished by brains, we look for computing architec-

tures that work somewhat like brains. Computing of that kind would have

wide-ranging uses.

This chapter describes computing with vectors that is modeled after

traditional (von Neumann) computing with numbers. Its origins are in the

artificial neural systems of the 1970s and ’80s that have evolved into today’s

deep-learning nets, but it is fundamentally different from them.

Similarity to traditional computing relates to how computing is orga-

nized. Traditionally there is an arithmetic/logic unit (ALU) with circuits

for number arithmetic and Boolean logic, a large random-access memory for

storing numbers, and flow control for running a program one step at a time.

The same logical organization now refers to vectors as basic objects. The

mathematics of the vector operations is the main topic of this chapter.

Why compute with vectors; don’t we already have vector processors for

tasks heavy with vector operations? The reason has to do with the nature of

the vectors and operations on them. The new algorithms rely on truly high

dimensionality—a thousand or more—but the vector components need not

be precise nor ultrareliable. In contrast, the algorithms for vector proces-

sors assume high precision and reliability, the engineering requirements of

which are very different. Being able to compute with less-than-perfect cir-

cuits makes it possible to fully benefit from the miniaturization of circuits

and the inclusion of analog components in them. We will be able to build

ever larger circuits that operate with very little energy, eventually approach-

ing the efficiency of the brain which does amazing things with a mere 20
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Watts.

Attempts to understand brains in computing terms go back at least to

the birth of the digital computer. Early AI consisted of rule-based manip-

ulation of symbols, which mirrors the logic of programming and appeals to

our facility for language. However, it fails to explain learning, particularly

of language. Artificial neural nets have tried to fill the void by focusing

on learning from examples, but has insufficient means for representing and

manipulating structure such as the grammar of a language. It is becoming

clear that we need systems capable of both statistical learning and com-

puting with discrete symbols. Computing with high-dimensional vectors is

aimed at developing systems of that kind.

The first system of the kind was described by Plate in a PhD thesis in

1994, later published in the book Holographic Reduced Representation [Plate,

1994, 2003]. It combines ideas from Hinton’s [1990] reduced representation,

Smolensky’s [1990] tensor-product variable binding, and Murdock’s [1982]

convolution-based memory. Systems that compute with high-dimensional

random vectors go by various names: Holographic Reduced Representation,

Binary Spatter Code [Kanerva, 1996], MAP (for Multiply–Add–Permute)

[Gayler, 1998], Context-Dependent Thinning [Rachkovskij & Kussul, 2001],

Vector-Symbolic Architectures (VSA) [Gayler, 2003; Levy & Gayler, 2008],

Hyperdimensional Computing [Kanerva, 2009], Semantic Pointer Architec-

ture [Eliasmith, 2013], and Matrix Binding of Additive Terms [Gallant &

Okaywe, 2013].

0.2 Overview: Three Examples

Computing is based on three operations. Two correspond to addition and

multiplication of numbers and are called by the same names, and the third is

permutation of coordinates. All three take vectors as input and produce vec-

tors of the same dimensionality as output. The operations are programmed

into algorithms as in traditional computing.

The representation of information is very different from what we are
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used to. In traditional computing, variables are represented by locations in

memory and values by the bit patterns in those locations. In computing

with vectors, both the variables and the values are vectors of a common

high-dimensional space, and variable x having value a is also a vector in

that space. Moreover, any piece of information encoded into a vector is

distributed uniformly over the entire vector, in what is called holographic or

holistic representation. We will demonstrate these ideas with three example:

(1) variable x having value a, (2) a data record for three variables, and

(3) sequence-learning. The dimensionality of the vectors will be denoted by

H (H = 10,000 for example) and the vectors are also called HD vectors or

hypervectors. Variables and values are represented by random H-dimensional

vectors x,y, z,a,b, c of equally probable 1s and −1s, called bipolar.

0.2.1 Binding and Releasing with Multiplication

Variable x having value a is encoded with multiplication, which is done coor-

dinatewise and denoted with ∗: p = x ∗ a, where ph = xhah, h = 1, 2, . . . ,H.

We can also find the vector a that is encoded in p by multiplying p with

the inverse of x. The inverse of a bipolar vector is the vector itself, and thus

we have that

x ∗ p = x ∗ (x ∗ a) = (x ∗ x) ∗ a = 1 ∗ a = a

where 1 is the vector of H 1s. Combining a variable and its value in a single

vector is called binding, and decoding the value as “unbinding” or releasing.

0.2.2 Superposing with Addition

Combining the values of several variables in a single vector begins with bind-

ing each variable–value pair as above. The vectors for the bound pairs are su-

perposed by adding them into a single vector r = (x ∗ a) + (y ∗ b) + (z ∗ c).

However, the sum is a vector of integers {−3,−1, 1, 3}. To make it bipolar,

we take the sign of each component, to get s = sign(r). Ties are a problem

when the number of vectors in the sum is even; we will discuss that later.
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Can we decode the values of the variables in the composed vector s?

We can, if the vectors for the variables are orthogonal to each other or

approximately orthogonal. For example, to find the value of x we multiply

s with (the inverse of) x as above, giving

x ∗ s = x ∗ (sign((x ∗ a) + (y ∗ b) + (z ∗ c))

= sign(x ∗ ((x ∗ a) + (y ∗ b) + (z ∗ c)))

= sign((x ∗ x ∗ a) + (x ∗ y ∗ b) + (x ∗ z ∗ c))

= sign(a + noise + noise)

≈ sign(a)

= a

The result is approximate but close enough to a to be identified as a.

The example relies on two properties of high-dimensional representation:

approximate orthogonality and noise-tolerance. Pairs of random vectors are

approximately orthogonal and so the vectors for the variables can be chosen

at random, and the vectors x ∗ y ∗ b and x ∗ z ∗ c are meaningless and act

as random noise.

The example demonstrates distributivity of multiplication over addition

and the need for an associative memory that stores all known vectors and

outputs vectors that match the input the best. The memory is also called

item memory and clean-up memory. Figure 1 shows the encoding and de-

coding of a data record for three variables step by step.

0.2.3 Sequences with Permutation

The third operation is permutation; it reorders vector coordinates. Permu-

tation is shown as ρ(x) and its inverse as ρ−1(x), or simply as ρx and ρ−1x.

Permutations are useful for encoding sequences as seen in the following ex-

ample on language identification. We look at text, letter by letter, without

resorting to dictionaries—the identification is based on letter-use statistics

peculiar to each language [Joshi, Halseth & Kanerva, 2017].
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 X   -1 +1 +1 -1 ... +1 -1 
                             *    -1 +1 -1 +1 ... -1 +1   x = a 
 A   +1 +1 -1 -1 ... -1 -1 

 Y   -1 +1 +1 +1 ... -1 +1 
                             *    +1 -1 -1 +1 ... +1 +1   y = b 
 B   -1 -1 -1 +1 ... -1 +1 

 Z   +1 -1 -1 +1 ... +1 -1 
                             *    -1 -1 -1 +1 ... +1 +1   z = c 
 C   -1 +1 +1 +1 ... +1 -1 

                                  -1 -1 -3 +3 ... +1 +3   sum 

                                  -1 -1 -1 +1 ... +1 +1   S (sign) 
A'   +1 -1 -1 -1 ... +1 -1    * 
                                  -1 +1 +1 -1 ... +1 -1   X 

      ASSOCIATIVE MEMORY 
    finds nearest neighbor 
     among stored vectors 

A    +1 +1 -1 -1 ... -1 -1 

Figure 1: Encoding {x = a, y = b, z = c} as S and releasing A with (the

inverse of) X. * denotes coordinatewise multiplication.

For each language we compute a high-dimensional profile vector or pro-

totype from about a million bytes of text. We use the same algorithm to

compute a profile vector for a test sentence, which is then compared to the

language profiles and the most similar one is chosen as the system’s answer.

The profiles are based on three-letter sequences called trigrams and

they are computed as follows. The 26 letters and the space are assigned

H-dimensional random bipolar seed vectors like the ones for the variables

above. The same letter vectors are used with all languages and test sentences.

The letter vectors are used to make trigram vectors with permutation and

multiplication. For example, the vector for the trigram the is computed by

permuting the t-vector twice, permuting the h-vector once, taking the e-



0.3. OPERATIONS ON VECTORS 7

vector as is, and multiplying the three componentwise: ρ(ρ(t)) ∗ ρ(h) ∗ e.

This produces an H-dimensional trigram vectors of randomly placed ±1s.

Finally the trigram vectors are added together into a profile vector by step-

ping trough the text one trigram at a time. The result is an H-dimensional

vector of integers. The cosine of profile vectors is used to measure their

similarity.

Such an experiment with 21 European Union languages gave the fol-

lowing results [Joshi, Halseth & Kanerva, 2017]. All vectors were 10,000-

dimensional. The language profiles clustered according to language families:

Baltic, Germanic, Romance, Slavic. When test-sentence profiles were com-

pared to the language profiles, the correct language was chosen 97% of the

time, and when the language profile for English was queried for the letter

most often following th, the answer was e.

The three examples illustrate computing with vectors, superposing them,

and learning from data. Next we go over the operations in detail. Much of

what traditional neural networks do—and fail to do—can be analyzed and

understood in terms of the three vector operations, and of vector similarity

and associative memory.

0.3 Operations on Vectors

We will continue with bipolar vectors because of the ease of working with

them: components with mean = 0 and variance = 1 make it easy. However,

the basic idea is the same when computing with high-dimensional random

binary, real or complex vectors. Thus we are dealing with general proper-

ties of high-dimensional representation. Computing with vectors is just as

natural and equally justified as computing with numbers.

• The bipolar space of representations rangers over H-dimensional

vectors of 1s and −1s, with H a thousand or more: a,b, c, . . . ∈
{1,−1}H . On occasion we consider also vectors of integers, ZH .

• Associative memory is the “RAM” for high-dimensional vectors.
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It stores the vectors known to the system and recognizes or retrieves

them from their noisy versions in what is called “clean up.” The other

use is that of an ordinary RAM: given an address, store or retrieve the

vector associated with that exact address or one most similar to it. We

can also think of it as a memory for key–value pairs where the keys

can be noisy. The actual making of such a memory will be discussed

below.

• The similarity (∼) of vectors a and b implies a distance between them

and is computed via their dot product a · b. For H-dimensional bipolar

vectors it varies from H when the vectors are the same, to −H when

they are opposites. Similarity is expressed conveniently with the cosine,

given by cos(a,b) = (a · b)/H for the bipolar. Dot product or cosine =

0 means that the vectors are orthogonal, i.e., unrelated, uncorrelated,

dissimilar: a 6∼ b. Computing with vectors tries to capture similarity

of meaning in the similarity of vectors.

The distribution of distances between high-dimensional vectors is

remarkable. Given any vector, nearly all others are approximately or-

thogonal to it [Widdows & Cohen, 2015]. This is called concentration

of measure and it means that large collections of random vectors—

billions when H = 10,000—include no similar pairs. The easy avail-

ability of approximately orthogonal vectors is paramount to computing

with vectors.

The somewhat imprecise terms “approximately equal” (≈), “simi-

lar” (∼), “dissimilar” (6∼) and “approximately orthogonal” need clari-

fication. Approximately equal vectors are like noisy copies of each other

and have the same meaning, similar vectors arise from constructions

with common constituents (see Addition), dissimilar is used for vectors

that are orthogonal or approximately orthogonal. Each bipolar vector

has an opposite vector, but the two are not considered representing

opposite meanings.
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• Addition is coordinatewise vector addition and it commutes. The sum

is a vector of integers in ZH and is normalized by the sign function,

with 0s mapped to 1s and −1s at random. Normalizing the sum is

shown with brackets: [−2,−6, 0, 0, 2, 4, . . . ] = (−1,−1, 1,−1, 1, 1, . . . )

for example.

The sum is similar to its inputs: [a + b] ∼ a,b. For example, cos(a,

[a + b]) = 0.5 for random a and b. Addition is associative before the

sum is normalized but only approximately associative after:

[[a + b] + c] ∼ [a + [b + c]]

Likewise, it is invertible before normalization but only approximately

invertible after: [[a + b] + (−b)] ∼ a. Information is lost each time a

sum is normalized and so normalizing should be delayed whenever

possible. Addition is also called bundling and superposing.

• Multiplication is done coordinatewise, known as Hadamard product,

and it commutes. The product a ∗ b of bipolar vectors is also bipolar

and thus ready for use as input in subsequent operations. Multipli-

cation is invertible—a bipolar vector is its own inverse—it distributes

over addition: x ∗ [a + b] = [(x ∗ a) + (x ∗ b)]; and it preserves simi-

larity: (x ∗ a) · (x ∗ b) = a · b, which also means that a vector can be

moved across the dot: a · (b ∗ c) = (a ∗ b) · c. The product is dissim-

ilar to its inputs: a ∗ b 6∼ a,b. See Figure 1 for examples of addition

and multiplication.

• Permutations reorder vector coordinates. The number of permuta-

tions is enormous, H! overall. Permutations are invertible: ρ−1(ρ(a)) =

a; they distribute over both addition and multiplication: ρ[a + b] =

[ρ(a) + ρ(b)] and ρ(a ∗ b) = ρ(a) ∗ ρ(b), in fact, permutations distribute

over all coordinatewise operations, such as Booleans; they preserve

similarity: ρ(a) · ρ(b) = a · b; but most permutations do not commute:

ρ(σ(a)) 6= σ(ρ(a)). The output of a random permutation is dissimilar

to the input: ρ(a) 6∼ a.
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Table 1: Summary of Bipolar Vector Operations

Dot Sum Normal’d Product Permu-
Property product sum tation

a · b a + b [a + b] a ∗ b ρ(a)

Associative n/a Yes approx* Yes Yes

Commutative Yes Yes Yes Yes No

Invertible n/a Yes approx* Yes Yes

Similar to inputs, n/a Yes Yes No No
increases similarity

Preserves similarity, n/a No No Yes Yes
randomizes

Distributes over Yes n/a n/a Yes Yes
addition

Distributes over n/a** No No n/a Yes
multiplication

*Partly true

**However, a · (b ∗ c) = (a ∗ b) · c = (a ∗ b ∗ c) · 1

Permutations themselves are not elements of the vector space. In

linear algebra they are represented by matrices and so ρ can be thought

of as a permutation matrix; here they are unary operations on vectors.

They are potentially very useful by incorporating all finite groups up

to size H into the vector math. The permutation σ(ρ(a)) is commonly

abbreviated to σρa and it equals (σρ)a.

The operations and their properties for bipolar vectors are summarized

in Table 1, as an example of things to consider when setting up a system

of computing with vectors. A system for binary vectors is equivalent to the

bipolar when 1 is replaced by 0, −1 by 1, multiplication by XOR, and the

sign function by coordinatewise majority, and when similarity is based on

the Hamming distance.
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0.4 Data Structures

Computer programming consists of laying and tracing pathways to data,

and then doing arithmetic and logic operations on the data. The pathways

are called data structures and they include sets, sequences, lists, queues,

stacks, arrays, graphs, heaps, and so forth. The data are the values attached

to the structure, but to the computer the structure itself is also data. It is

impossible to draw a sharp boundary between data and structure, ever more

so when computing in holographic representation.

Since data structures are an essential part of programming and comput-

ing, we need to look at how to encode and operate with them in superposed

vectors.

• Seed Vectors. Computing begins with the selection of vectors for

basic entities such as variables and values. Bipolar seed vectors are

made of random, independent, equally probable 1s and −1s. They are

also called atomic vectors and elemental vectors because they are the

stuff from which everything else is built. For example, in working with

text, each letter of the alphabet can be represented by a seed vector.

A set of seed vectors is called alphabet or vocabulary or codebook.

Because of high dimensionality, randomly chosen (seed) vectors are

approximately orthogonal—the superabundance of approximately or-

thogonal vectors and the relative ease of making them is a primary

reasons for high dimensionality. Orthogonality allows multiple vectors

to be encoded into a single vector and subsequently decoded, making it

possible to analyze and interpret the results of computing in superposi-

tion. The selection of a seed vector corresponds to assigning a memory

location—an address—to a variable, or choosing a representation for

its value.

• Bound pairs encode a variable and its value—or a role and a filler, or

a key and a value—in a single vector. If binding is done with an invert-

ible operation, the value can be recovered by decoding. An example of
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binding with multiplication is shown in the Introduction where x = a

is encoded with x ∗ a.

• Sets and multisets name their members but do not specify their

order: {a, a, b, c} = {a, b, a, c}. They can be encoded with addition

because it commutes. Since the sum is similar to the vectors in it, it is

possible to query whether a specific vector is included in the set or the

multiset. That works reliably for small sets, but the adding of vectors

makes the sum less similar to any one of them, and normalizing the

sum makes it even less similar.

To decode a sum, we look for vectors similar to it in the associative

memory. Once a vector is assumed to be in a sum, it can be subtracted

out and the remaining sum queried for further vectors. Peeling off

vectors one at a time works with sums that have not been normalized,

but poorly with normalized sum vectors because of information that

has been lost (hence invertibility is called “partly true” in Table 1).

Multiplication commutes and therefore also it can encode a set, but

not a multiset because bipolar vectors are their own inverses and cancel

multiple copies of themselves. The product is dissimilar to its inputs

and can therefore be used as a label for a set. Decoding a product is

problematic, however. There is no efficient way to do it in general, but

if the inputs come from known sets of dissimilar vectors and there are

not too many of them, a product can be broken down into its inputs

with an iterative search, as discussed below under factorization.

• Sequences are ordered multisets, e.g. (a, a, b, c) 6= (a, b, a, c). They can

be encoded with permutations. If the application needs only one per-

mutation, rotation of coordinates (cyclic shift) is usually most conve-

nient. The sequence (a, b, c) can be encoded as a sum s3 = ρ2a + ρb + c

or as a product p3 = ρ2a ∗ ρb ∗ c and extended to include d by

permuting s3 and adding d: s4 = ρs3 + d = ρ(ρ2a + ρb + c) + d =

ρ3a+ρ2b + ρc + d; and similarly p4 = ρp3 ∗d. The successive powers
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of the permutation act like an index into the sequence. Either kind of

sequence can be extended recursively with only two operations because

permutations distribute over both addition and multiplication.

Decoding the ith vector of the sequence uses the inverse permuta-

tion. For example, the first vector in s3 is found by searching the asso-

ciative memory for the vector most similar to ρ−2s3 because that equals

ρ−2(ρ2a + ρb + c) = a+ρ−1b+ρ−2c = a + noise + noise = a′ ≈ a. A

sequence encoded with multiplication is harder to decode because

products don’t resemble their inputs. To decode a from p3 requires

that b and c are already known, in which case ρ−2(p3 ∗ (ρb ∗ c)) = a

because ρb and c in p3 cancel out: ρ−2((ρ2a ∗ ρb ∗ c) ∗ (ρb ∗ c)) =

ρ−2(ρ2a) = a.

• Binary trees can be encoded with two independent random permu-

tations, ρ1 and ρ2, that do not commute—most permutations don’t.

If we encode the pair (a, b) with ρ1a + ρ2b then the two-deep tree

((a, b), (c, d)) can be encoded as t = ρ1(ρ1a + ρ2b) + ρ2(ρ1c + ρ2d)),

which equals ρ1(ρ1a)+ρ1(ρ2b)+ρ2(ρ1c)+ρ2(ρ2d) and can be written

as ρ11a+ρ12b+ρ21c+ρ22d, where ρij is the permutation ρiρj . To de-

code a tree, we follow the indices and apply the inverse permutations

in the reverse order. For example,

ρ−11 (ρ−12 (t)) = ρ−11 (ρ−12 (ρ1(ρ1a) + ρ1(ρ2b) + ρ2(ρ1c) + ρ2(ρ2d)))

= (ρ−11 ρ−12 ρ1ρ1)a + (ρ−11 ρ−12 ρ1ρ2)b + (ρ−11 ρ−12 ρ2ρ1)c

+ (ρ−11 ρ−12 ρ2ρ2)d

= noise + noise + c + noise

≈ c

where ρ−12 (t) extracts the right half of the tree and ρ−11 extracts its left

branch. An alternative encoding of binary trees uses one permutation

and two seed vectors. Successive powers of the permutation encode

depth, and they are multiplied by the two vectors that mean left and

right [Frady et al., 2020].
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• Graphs consist of a set of nodes and connecting links. Of the different

kind, we consider directed graphs with loops, i.e., where nodes can have

links to themselves. Graphs are used to depict relations between en-

tities, for example, ‘parent of’, ‘hears from’ and ‘communicates with’.

The nodes can also represent the set of states si ∈ S of a Markov chain

or a finite-state automaton, and the links tij ∈ T its state transitions,

T ∈ S×S. We will encode the states by random seed vectors si—they

name or label the states. The transition tij = (si, sj) can then be en-

coded with permutation and multiplication as tij = ρsi ∗ sj , and the

graph with the sum of all its transitions:

g =
∑
tij∈T

tij =
∑
tij∈T

ρsi ∗ sj .

Given the vector g for the graph, we can ask whether the state sj can

be reached from the state si in a single step. The answer is contained

in the vector gi = ρsi ∗ g and it is found by comparing gi to sj : it is

‘yes’ if the two are similar and ‘no’ if they are dissimilar. This follows

from the distributivity of multiplication over addition, and from the

sum being similar to its inputs: the vector g is a sum of transitions,

and multiplying it by ρsi releases sj if ρsi ∗ sj is included in the sum.

Notice that gi releases (it brings to the surface) all the states (their

labels) that can be reached from si in a single step; gi also includes a

noise vector for every transition from states other than si and so gi is

a noisy representation of the set of states one step from si.

We can go further and look for the (multi)set of states two steps

from si. The answer is contained in—it’s similar to—ρ(ρsi ∗ g) ∗ g =

ρ2si ∗ρg∗g; or three steps from si: ρ
3si ∗ρ2g∗ρg∗g, but it gets noisier

at each step, overpowering the signal.

Linear algebra gives us an exact answer in terms of the |S| × |S|
state-transition matrix T where links are represented by 1s (and non-

links by 0s). The set of states reached from si in a single step is given by

the |S|-dimensional vector iT where i is an |S|-dimensional indicator
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vector whose ith component equals 1. The (multi)set of states reached

in exactly three steps is given by iT3. We can see that ρ2g ∗ ρg ∗ g
serves a function similar to T3, and also that its form is similar to the

encoding of a sequence with multiplication, as shown in the discussion

of sequences.

Examples of computing with graphs include graph isomorphism

[Gayler & Levy, 2009] and a finite automaton [Osipov, Kleyko &

Legalov, 2017].

0.5 Vector Sums Encode Probabilities

Probabilities can be included in and inferred from high-dimensional vectors

without explicit counting and bookkeeping. This opens the door to statistical

learning from data, which is traditionally the domain of artificial neural nets.

It is clearly seen in the unnormalized representation of a multiset, i.e., when

the vectors of the multiset are simply added into a sum vector f .

The dot product of a bipolar H-dimensional vector x with itself is H:

x · x = H. If f is the sum of k copies of x, the dot product x · f = kH.

If other vectors are added to f and they all are orthogonal to x, the dot

product x · f still is kH, and it is approximately kH if the other vectors are

approximately orthogonal to x. Thus the dot product of a bipolar vector x

with a sum vector f , divided by H, is an estimate of the number of times x

has been added into the sum. This explains the identification of languages

from their profile vectors in example 3 of the Overview. It goes as follows

[Joshi, Halseth & Kanerva, 2017]:

Each language and each test sentence is represented as a sum of trigrams

that have been encoded as sequences of three letter vectors, e.g., ρ2t ∗ ρh ∗ e.

The letter vectors are dissimilar to each other, and since the outputs of

permutation and multiplication are dissimilar to their inputs, the trigram

vectors are also dissimilar—approximately orthogonal. A profile vector f ,

which is their sum, can then be used to estimate the frequencies of the

trigrams in the text. The trigram statistics for different languages apparently
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are different enough to allow test sentences to be identified correctly as to

language, but similar enough within language families to produce Baltic,

Germanic, Romance, and Slavic clusters. Numerically, 27 letters give rise to

273 = 19,683 possible trigrams, and so the algorithm projects a histogram

of 19,683 trigram frequencies randomly to 10,000 dimensions (H = 10,000

was used in the example). The experiment was repeated with tetragrams

and gave a slightly better result (97.8% vs. 97.3% correct). In that case a

histogram of 274 = 531,441 possible frequencies is projected randomly to

10,000 dimensions.

Finally, the letter most often following th in English is found by mul-

tiplying the profile for English, fEnglish, with (the inverse of) ρ2t ∗ ρh. The

multiplication distributes over every trigram vector added into fEnglish and

cancels out the initial th wherever it occurs. In particular, it releases e from

ρ2t ∗ ρh ∗ e. It also releases every other letter that comes after th, but since

e is the most frequent, ρ2t ∗ ρh ∗ fEnglish has a higher dot product with

e than with any other letter vector. The dot product is the same as be-

tween fEnglish and the vector for the trigram the: (ρ2t ∗ ρh ∗ fEnglish) · e =

(ρ2t ∗ ρh ∗ e) · fEnglish—as vectors of a product move across the dot. Its ex-

pected value is the number of times e occurs after th, multiplied by 10,000.

The language example suggests the possibility of representing a Markov

chain as a high-dimensional vector learned from data—in this case a second-

order chain. A language profile made of trigrams allows us to estimate

letter frequencies following a pair of letters such as th. The vector e was

found by searching the 27 letter vectors for the best match to the query

q = ρ2t ∗ ρh ∗ fEnglish. If the letter vectors are treated as a H × 27 matrix

A for the alphabet, then multiplying q with AT approximates each latter’s

relative weight in candidacy for the next letter. However, since the alpha-

bet vectors and the trigram vectors are only approximately orthogonal, the

weights are approximate. Yet the transition frequencies have been captured

by the model and can govern the probability of choosing the next letter:

choose it in proportion to the 27 elements of ATq, adjusted for the ran-

domness due to orthogonality being approximate. How actually to choose
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the next letter based on the probabilities or their estimates, other than by

traditional programming, remains an open question.

The language example demonstrates the power of computing with vec-

tors when it is based on a comprehensive arithmetic of vectors. It uses all

three operations: a language profile vector is a sum of products of permu-

tations. The algorithm for “training” is the same as for making profiles of

test sentences. It is simple and easily adapted to classification problems at

large, and it works in one pass over the data, meaning that the algorithm is

incremental. Frequencies and probabilities can be recovered approximately

from a profile vector by inverting the operations used to encode a profile:

the representation is explainable.

0.6 Decoding a Product

Unlike a sum vector which is similar to its inputs, the product vector is

dissimilar. Thus x ∗ y gives us no clue as to its originating from x and y, nor

that w = ρ2t ∗ ρh ∗ e consists of t, h and e. In fact, any product vector can

be factored to possible input vectors in countless ways. However, if we know

that the vector w represents a sequence of three letters, we can examine all

273 possible sequences systematically to see which of them yields w. That is

up to 19,683 tests. As an alternative to a systematic search, we can search for

the answer through successive approximations or educated guesses of t, h

and e with an algorithm called the resonator. We will explain the algorithm

by referring to the product p of three vectors, p = x ∗ y ∗ z, drawn from

three different dictionaries or codebooks, X,Y and Z—their columns are

the codevectors [Frady et al., 2020].

If the product and all its inputs but one are known, the “unknown”

input is simply the product of the known vectors, e.g., x = p ∗ y ∗ z. If

y and z are noisy, however, the “unknown” x′ = p ∗ y′ ∗ z′ is even more

noisy on the average. However, it can be used to compute a new estimate

x′′ that has a higher probability of being one of the vectors in X. The

vector x′′ is computed as the weighted sum of the codevectors in X, nor-
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malized to bipolar, where the similarity of x′ to the vectors in X serve

as the weights. This can be expressed as x′′ = [X(XTx′)], where XTx′

are the weights and [. . . ] makes the result bipolar. If x′′ is in the code-

book X we accept it and continue to search for the remaining inputs.

If it is not in X, we continue to search for the inputs one codebook at

a time by computing y′′ = [Y(YTy′)] = [Y(YT(x′′ ∗ p ∗ z′))], computing

z′′ = [Z(ZTz′)] = [Z(ZT(x′′ ∗ y′′ ∗ p))], back to computing x′′′ from x′′ as

before, and so on.

We still need to choose vectors y′ and z′ to get started. Recalling that

a sum vector is similar to each of its inputs, the normalized sums of the

codevectors in Y and Z are used. The probability and rate of convergence

to the correct vectors depend on the number of inputs in the product, the

sizes of the codebooks, and the dimensionality H [Kent et al., 2020].

0.7 High-Dimensional Vectors at Large

The idea of computing with high-dimensional vectors is simplest to convey

with the bipolar, and bipolar vectors are also useful in applications. However,

the idea is general and depends more on the abundance of nearly orthogonal

vectors, than on the nature of the vector components. The abundance comes

from high dimensionality. It also matters greatly to have a useful set of

operations on the vectors, akin to add, multiply and permute for bipolar

vectors. In fact, the corresponding add and multiply of numbers constitute

an algebraic field. The vector math adds to it all finite groups up to size H.

We have already commented on the equivalence of the binary with the

bipolar when coordinatewise multiplication is replaced by bitwise Exclusive-

Or (XOR). To convert a binary sum vector to the exact bipolar sum vector,

and vice versa, we also need to keep count of the vectors in the sum.

The original Holographic Reduced Representation [Plate, 1994] is based

on real vectors with random independent normally distributed components

with mean = 0 and variance = 1/H. Addition is vector addition followed

by normalization (to Euclidean length 1), and multiplication is by circular
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convolution; its approximate inverse is called “circular correlation.” Similar-

ity of vectors is based on the Euclidean distance, dot product or cosine, all

of them being essentially the same when the vectors are normalized to unit

length.

Holographic Reduced Representation with complex vectors uses random

phase angles as vector components. Addition is by vector addition followed

by normalization (coordinatewise projection to the unit circle), multiplica-

tion is by coordinatewise addition of phase angles (i.e., complex multipli-

cation), and similarity is based on the magnitude of the difference between

H-dimensional complex vectors.

All these frameworks are related and their properties are essentially the

same. The binary and the bipolar are equivalent, the complex becomes the

bipolar when the phase angles are restricted to 0 and 180◦, and the real and

the complex are related by FFT. The choice of representation can depend

on a variety of factors. For example, binary vectors are the simplest to

realize in hardware, and complex vectors (phase angles) provide a model for

computing with the timing of spikes.

Computing with vectors, as describes in this chapter, assumes dense vec-

tor: half 1s and half −1s (or half 0s and half 1s for binary). Addition and

multiplication automatically tend toward dense vectors, which is mathemat-

ically convenient but may not be desirable otherwise and will be commented

on below.

Computing can also be based on Boolean operations on bit vectors and

on permutations. These operations are common in hashing for distributing

data in a high-dimensional space. They are also used in Context-Dependent

Thinning [Rachkovskij & Kussul, 2001] to encode structure with sparse bi-

nary vectors. Geometric Algebra offers a further possibility to compute with

high-dimensional vectors, called multivectors [Aerts et al., 2009].

The activity of neurons in the brain is very sparse, which is partly respon-

sible for the remarkable energy efficiency of brains. Sparse representation is

also the most efficient for storing information, so why not compute with

sparse vectors? The answer is simply that we have not found operations for
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sparse vectors that work as well as the combination of add, multiply and

permute for dense vectors. This is a worthy challenge for mathematicians to

take on.

0.8 Memory for High-Dimensional Vectors

Computing with vectors is premised on the dimensionality H remaining

constant. The choice of H can vary over a wide range, however, and the

exact value is not critical (e.g., 1,000 ≤ H ≤ 10,000). Mainly, it needs to

be large enough to give us a sufficient supply of random, approximately

orthogonal vectors. That number grows exponentially with H [Gallant &

Okaywe, 2013].

Whatever the dimensionality within a reasonable range, a single vector

can reliably encode only a limited amount of information. In psychologists’

models of cognition, such a vector is called a working memory or a short-

term memory, implying the existence also of a long-term memory. That

distinction agrees with the traditional organization of a computer where

the arithmetic/logic unit and its “active” registers comprise the working

memory, and the random-access memory (RAM) is the long-term memory.

The same idea applies to computing with vectors. Operations on vectors

output new vectors of the same kind, and a memory stores them for future

use. Like the RAM, the memory can be made as large as needed, and large

memories are necessary in systems that learn over a long life span. Further-

more, new learning should disrupt minimally what has been learned already.

Such memories are called associative and were a topic of early neural-net

research, but they are not a part of today’s deep-learning nets. In deep

learning, the memory function and the forming of new representations are

entangled.

Memories for high-dimensional vectors have been used in two ways in

the examples above. Decoding the vector s of three superposed variables

for the value of x in subsection “Superposing with Addition” (see Fig. 1)

produces the vector a′ that needs to be associated with its nearest neighbor
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among the known vectors. This is the function of the item memory: given a

noisy vector, output its nearest neighbor among the known vectors. Using

the cleaned-up a in further computations prevents noise from accumulating.

The item memory is addressed with a bipolar vector and it outputs a bipolar

vector.

The second use was to compare the profile of a test sentences to language

profiles stored in memory. The profiles are (unnormalized) sum vectors with

integer components, and their similarity is measured with the cosine. The

profiles can be normalized to bipolar (and ultimately to binary) after having

been accumulated, and then the memory task is identical to that of the item

memory. Some information is lost to normalization [Frady et al., 2018], but

the loss can be offset in part by higher vector dimensionality [Rahimi et al.,

2017].

Postponing the normalization of a sum vector facilitates incremental

learning—simply keep adding vectors to the sum. To make it practical, how-

ever, the range of sum-vector components needs to be limited and overflow

and underflow ignored. Truncation to 8 bits per component has a minor

effect on classification tasks such as language identification.

Arrays of H-dimensional vectors can be used as the memory in computer

simulations. Searching through them is time-consuming, however, but the

simplicity of vector algorithms can still make them practical even when

simulated on standard hardware.

Associative memories at large are yet to be fully integrated into the

high-dimensional computing architecture. Such memories were studied in

the 1970s and 80s [Hinton & Anderson, 1981], with the cerebellum proposed

as their realization in the brain [Marr, 1969; Albus, 1971; Kanerva, 1988].

Subsequent lack of interest has a plausible explanation: a versatile algebra

for computing with high-dimensional vectors was unknown, and an asso-

ciative memory by itself isn’t particularly useful. This has changed start-

ing with Holographic Reduced Representation in the 1990s [Plate, 1994],

and memories for high-dimensional vectors are now included in our models

[Karunaratne et al., 2012]. The very large circuits that the memories require,
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are only now becoming practical.

0.9 Outline of Systems for Autonomous Learning

Systems for computing with vectors derive their power from the remarkable

properties of high-(hyper)dimensional spaces. For example, high-dimensional

representation is robust and noise-tolerant in ways that human perception,

learning and memory are. It also allows data structures to be encoded, ma-

nipulated, and decoded explicitly, as in traditional computing, setting it

apart from artificial neural nets trained with gradient descent. It allows data

to be represented and manipulated in superposition, which sets it apart from

traditional computing. The resulting system of computing combines proper-

ties that traditional computing and neural nets individually lack. Its prop-

erties seem particularly appropriate for modeling of functions controlled by

brains. In this section we outline a computing architecture for autonomous

learning based on high-dimensional vectors.

Ideas for autonomous learning come from observing the animal world.

For an animal to survive and prosper in an environment, it must recognize

some situations as favorable and life-sustaining, and others as unfavorable

and dangerous, and then act so as to favor the former and avoid the lat-

ter: seek reward and avoid punishment. To that effect, animals perceive the

environment through a multitude of senses—sight, sound, smell, taste, tem-

perature, pressure, acceleration, vibration, hunger, pain, proprioception—

and they move about and act upon the environment by controlling their

muscles. The brain’s job is to coordinate it all. This can be thought of as a

classification problem where favorable motor commands serve as the classes

to which sensory states are mapped, bearing in mind that classification is a

particular strength of computing with high-dimensional vectors [Ge & Parhi,

2020]. What the favorable motor commands are in any sensory state can be

learned in any number of ways: by explicit design, following an example,

supervised, reinforced, trial-and-error.

Coordinating a variety of sensors and actuators is a major challenge for
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artificial systems. Different kinds of information need to be represented in

a common mathematical space that is not overly confining. As a counter-

example, the number line is appropriate for representing temperature but

not odor, much less combinations of the two. However, when the dimen-

sionality of the space is high enough, all manner of things can be repre-

sented in it—i.e., embedded—without them unduly interfering with each

other. Generic algorithms can then be used to discover relations among

them and to find paths to favorable actions. That brings about the need

to map raw sensory signals to high-dimensional vectors, and to map such

vectors for action to signals that control actuators.

Each sensory system responds to the environment in its own peculiar

way, and so the designing of the interfaces can take considerable engineering

expertise. In working with speech, for example, the power spectrum is more

useful than the sound wave and is universally used, and there are simple ways

to turn spectra into high-dimensional vectors. Mapping a signal onto high-

dimensional vectors corresponds to and is no more difficult than designing

and selecting features for traditional classification algorithms [Burrello et

al., 2020; Moin et al., 2021].

Designing of the interface can also be automated, at least in part, by em-

ploying deep learning or genetic algorithms. If we can define an appropriate

objective function or measure of fitness, we can let the computer search for a

useful mapping of signals to high-dimensional vectors, and from the vectors

to commands to actuators. For the system to remain stable, however, the

mappings need to remain fixed once they have been adopted, with further

learning taking place with vectors in the high-dimensional space. Traditional

computing can be used to program such a system and to interface it with

the environment.

0.10 Energy-Efficiency

Ideas about computing with vectors need ultimately to be built into hard-

ware [Semiconductor Research Corporation, 2021]. The requirements are
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fundamentally different from those for computing with numbers. The tradi-

tional model assumes determinism—identical inputs produce identical out-

puts—at a considerable cost in energy. Tasks that are uniquely suited for

computing with vectors involve large collections of sensors and actuators of

various kind where no single measurement is critical. They matter in the

aggregate. When information is distributed equally over all components of a

vector, individual components need not be 100% reliable. That makes it pos-

sible to use circuits with ever smaller elements and to operate them at very

low voltages. Exploiting analog properties of materials also becomes possi-

ble, with further gains in energy efficiency [Wu et al., 2018]. In contrast, the

requirements of the deterministic model become hard to meet when circuits

get ever larger and their elements ever smaller.

The operations on vectors offer further opportunity to reduce the demand

for energy. Addition and multiplication happen coordinatewise and thus

can be done in parallel, meaning that the total system can be fast without

its components needing to be much faster. Furthermore, the simplicity of

addition, and particularly of multiplication (e.g., XOR), makes it possible

to build them into the memory, reducing the need to bus data between

a central processor and the memory [Gupta, Imani & Rosing, 2018]. In

traditional computing, both speed and the accessing of memory are paid for

in energy.

0.11 Discussion and Future Directions

Computing with vectors has grown out of attempts to understand how brains

“compute,” ideas for which have come from varied directions. Early evidence

was qualitative and was based on observations of behavior and thought ex-

periments, mainly by philosophers and psychologists. After the invention

of the digital computer the models became computer-like. However, their

ability to explain brains has fallen far short of expectations. Meanwhile,

information from neuroscience has been accumulating, starting with neu-

roanatomy. However, the detailed drawings of neurons and circuits by Cajal
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in the late 1800s and early 1900s continue to challenge our ability to explain.

With advances in neurophysiology, we are able to demonstrate learning in

synapses in stereotypical tasks, but the workings of entire circuits still wait

to be explained.

Many things suggest that computing with vectors will help us under-

stand brains. Dimensionality in the thousands agrees with the size of neural

circuits. High-dimensional distributed representation is extremely robust,

and so the failure of a single component is no more consequential than

the death of a single neuron. It matters greatly that simple operations on

vectors can be made into efficient algorithms for learning. Sufficiently high

dimensionality allows many kinds of things to be represented in a common

mathematical space without unduly interfering with each other. For exam-

ple sight and sound can be both kept apart and combined. A high-capacity

associative memory is an essential part of computing with vectors. That

agrees with the brain’s ability to learn quickly and to retain large amounts

of information over long periods of time. Among the brain’s circuits, the

cerebellum’s looks remarkably like an associative memory, and it contains

over half the brain’s neurons. Its importance for motor learning has been

known since the 1800s, and it appears to be involved in mental functions as

well. Its interpretation as an associative memory goes back half a century

[Marr, 1969], and its design can instruct the engineering of high-capacity

associative memories for artificial systems.

Other evidence is experiential. The human brain receives infinitely var-

ied input through a 100 million or more sensory neurons, and from it builds

a mental world of specific, nameable, repeating, more-or-less permanent

colors, sounds, shapes, objects, people, events, stories, histories, and so

on. The specificity can be explained by the distribution of distances—and

similarity—in a high-dimensional space, and by the tendency of some op-

erations to cluster the inputs. The representation is robust and tolerant of

variation and “noise.”

Computing with vectors bridges the gap between traditional computing

with numbers and symbols on one hand, and artificial neural nets and deep



26

learning on the other. We can expect it to become an established technology

for machine learning within a decade, applied widely to multimodal moni-

toring and control. Its ability to deal with symbols and structure makes it

also a candidate technology for logic-based reasoning and language.

Wide-ranging exploration and large-scale experiments are needed mean-

while. New algorithms are easily simulated on standard hardware. Not nec-

essarily in the scale as ultimately desired, but the underlying math makes

it possible to see whether an algorithm scales. Semantic vectors provide

an example. When made with Latent Semantic Analysis [Landauer & Du-

mais, 1997], which uses singular-value decomposition, runtime grows with

the square of the number of documents, whereas Random Indexing [Kanerva,

Kristoferson & Holst, 2000] achieves comparable results in linear time.

Algorithm development needs to proceed on two fronts: high-dimensional

core and interfaces. The core algorithms are generic and are what we think

of as computing with vectors—and what this chapter is about. The algo-

rithms at the core integrate input from a multitude of sensors and generate

vectors that control the system’s output. They also account for learning.

The interfaces are specific to sensor and motor modalities and they translate

between low-dimensional signal spaces and the high-dimensional representa-

tion space as discussed in the section on autonomous learning. The interface

in the language-identifying experiment (example 3 on Sequences with Per-

mutation) is extremely simple because languages are already encoded with

letters, and representing letters with high-dimensional random seed vectors

was all that is needed. Designing an interface usually requires more domain

knowledge but is not necessarily difficult.

Against this backdrop, we can try to see what lies ahead. We are far

from understanding how brains compute, or from building artificial systems

that behave like systems controlled by brains. That would be a monumental

achievement, both technological and as a source of insight into human and

animal minds. Computing with high-dimensional vectors seems like a nec-

essary step in that direction, even if only a single step of how many, we do

not know.
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The disparity between brains and our models can give us a clue. If we

were given 100 billion neuronlike circuit elements with 100 trillion points of

contact between them, akin to synapses, we would not know how to connect

them into a system that works. Neither does exact copying of neural circuits

yield the understanding we need, unfortunately. But the large numbers surely

are meaningful and need to be included in our theories and models—and in

brain-inspired computing.

Massive feedback is an essential feature throughout the brain, and only

rarely is its role apparent. Our theories and models need to come to terms

with massive feedback. Activation of neurons in the brain is sparse whereas

the models discussed in this chapter compute with dense vectors. Brains

learn continuously with minuscule energy compared to neural-net models

trained on computer clusters. The fluidity of human language will challenge

our modeling for years to come.

Much work is needed to fully develop the idea of computing with vectors,

but even incremental advances can lead to significant insight and applica-

tions. For example, adaptive robotics is likely to benefit early on, where sen-

sor fusion and sensor–motor integration are absolute requirements [Räsänen

& Saarinen, 2016; Mitrokhin et al., 2019; Neubert, Schubert & Protzel, 2019].

Taking our cues from the animal world, every motor action includes a pro-

prioceptive component that reports on the execution of the action and its

outcome. High-dimensional space is natural for dealing with the feedback

and incorporating it into future action. From the (nervous)system’s point of

view, proprioception is just another set of sensory signals, to be integrated

with the rest.

Signals of every kind need to be studied from the point of view of map-

ping them into high-dimensional vectors for further processing. Here again

we can look to nature for clues. For example, the cochlea of the inner ear

breaks sound into its frequency components before passing the signal on to

the brain—it is a Fourier analyzer. No doubt the frequency spectrum tells

us more about the sound source than the raw sound wave. The design of an

associative memory for perhaps thousands-to-millions of vectors is a major



28

engineering challenge. The size and structure of the cerebellum can provide

ideas for meeting it.

The statistical nature of the operations means that computing with vec-

tors will not replace traditional computing with numbers. Instead, it allows

new algorithms that benefit from high dimensionality, for example by mak-

ing it possible to learn continuously from streaming data.

Computing with vectors can benefit from hardware trends to the fullest.

Because the representation is extremely redundant, circuits need not be

100% reliable. The manufacture of very large circuits that operate with very

little energy becomes possible, and it will be possible to compute using the

analog properties of materials.

Computing with vectors has been demonstrated here with bipolar vec-

tors, or equivalently with dense binary vectors. To extend it to vectors of

other kind, and to other mathematical objects, we need to identify oper-

ations on the objects that form a useful computational algebra, and that

are also suited for realization in a physical medium. Today that medium is

overwhelmingly silicon because of its success at meeting the needs of digi-

tal logic. However, the discovery of new materials and physical phenomena

will widen our choices and offer new opportunities. Thinking of computing

in terms of an algebra of operations on elements of a mathematical space

will help us to recognize opportunities as they arise and to develop them to

practical systems for computing.

Resources. At the time of this writing there are several websites tracking

progress in computing with high-dimensional vectors.

• Vector Symbolic Architectures aka Hyperdimensional Com-

puting

https://www.hd-computing.com/home

• Collection of Hyperdimensional Computing Projects

https://github.com/HyperdimensionalComputing/collection
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• Online Speakers’ Corner on Vector Symbolic Architectures

and Hyperdimensional Computing

https://sites.google.com/ltu.se/vsaonline/home

Computing with vectors of different kind in various contexts are summarized

in several papers [Neubert, Schubert & Protzel, 2019; Ge & Parhi, 2020;

Hassan et al., 2021; Kleyko et al., 2021].
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