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Background

Methods

Results

The brain contains periodic representations of space in the form of head directional cells and grid cells. Grid cells encode 
position with lattices.

We construct a Periodic 1-D network in a ring configuration based on 
neural activities, s. At each neuron position, there are two neural 
populations, left and right. (See footnote (1) for equation)

In the standard fashion [2], the neuron connectivities exhibit inhibition 
that produces localized bumps of activity. Modifying the width of 
inhibition allows for multiple bumps to be formed. The scaled bump 
shape remains constant across bump numbers and network sizes.

There are different 
ways to map the 
network back onto 
linear and circular 
physical 
coordinates.
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Conclusion
To reduce noise-induced path integration errors in 
continuous attractor networks, linear coordinates like 
position should be encoded with multiple bumps 
while circular coordinates like head direction is 
indifferent to the number of bumps. Our findings 
provide motivation for the presence of multiple 
bumps in the mammalian grid network [1].


Bump trapping occurs at low drive due to connectivity noise. Escape drive differs for different 
coordinates mappings shown in both simulation and theoretical derivation.

Bump diffusion due to input and spiking noise affects 
linear and circular coordinate mappings differently.

provide meaningful insights into neural computation. 57

One factor that strongly a↵ects the performance of CANs in path integration is biological noise. To 58

accurately represent physical coordinates, attractor bumps must move in precise synchrony with the ani- 59

mal’s trajectory. Hence, the bump velocity must remain proportional to the driving input that represents 60

coordinate changes (Burak and Fiete, 2009). Di↵erent sources of noise produce di↵erent types of deviations 61

from this exact relationship, all of which lead to path integration errors. While noisy CANs have been 62

previously studied (Tsodyks and Sejnowski, 1995; Zhang, 1996; Compte et al., 2000; Stringer et al., 2002; 63

Renart et al., 2003; Wu et al., 2008; Burak and Fiete, 2009; Itskov et al., 2011; Burak and Fiete, 2012; 64

Kilpatrick and Ermentrout, 2013; Seeholzer et al., 2019), these works did not investigate of role of bump 65

number. CANs with di↵erent connectivities can produce di↵erent numbers of attractor bumps, which are 66

equally spaced throughout the network and perform path integration by moving in unison (Stringer et al., 67

2004; Fuhs and Touretzky, 2006; Burak and Fiete, 2009). Two networks with di↵erent bump numbers have 68

the same representational capability (Fig. 1). They can share the same attractor manifold and produce 69

neurons with identical tuning curves, as long as the coupling strength between bump motion and driving 70

input scales appropriately. The computational advantages of having more or fewer bumps are unknown. 71

Our aim is to elucidate the relationship between bump number and robustness to noise. We first develop 72

a rigorous theoretical framework for studying 1D CANs that path integrate and contain multiple bumps. Our 73

theory predicts the number, shape, and speed of bumps. We then introduce three forms of noise. The first is 74

Gaussian noise added to the total synaptic input, which can represent fluctuations in a broad range of cellular 75

processes occurring at short timescales. The second is Poisson spiking noise. The third is noise in synaptic 76

connectivity strengths. The ability for bumps to respond readily to driving inputs is generally conferred by a 77

precise network architecture. We add Gaussian noise to the ideal connectivity and evaluate path integration 78

in this setting. The first two forms of noise are independent over time and neurons, in contrast to the third. 79

We find that networks with more bumps can better resist all three forms of noise under certain encoding 80

assumptions. These observations are explained by our theoretical framework with simple scaling arguments. 81

The following Results section presents all simulation findings and major theoretical conclusions; complete 82

theoretical derivations are found in the Theoretical model section. 83

Results 84

Bump formation in a ring attractor network 85

We study a 1D ring attractor network that extends the model of Xie et al. (2002) to allow for multiple 86

attractor bumps. It contains two neural populations ↵ 2 {L,R} at each network position x, with N total 87

neurons in each population (Fig. 2A). Each neuron is described by its total synaptic input g that obeys the 88

following dynamics: 89

⌧
dg↵(x, t)

dt
+ g↵(x, t) =

X

�

Z
dyW�(x, y)s�(y, t) +A±↵ �b(t) + ⇣↵(x, t), (1)
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drift towards these points (Fig. 6B). The introduction of b adds a constant vdrive that moves the curve in 239

Fig. 6A up for positive b or down for negative b: 240

vtotal(✓) = vdrive + vconn(✓). (24)

If vtotal(✓) still crosses 0, bumps would still be trapped. The absence of bump motion in response to coordinate 241

changes encoded by b would be a catastrophic failure of path integration. To permit bump motion through 242

the entire network, the drive must be strong enough to eliminate all zero-crossings. Figure 6C shows bump 243

motion at this drive for both directions of motion. The positive b is just large enough for the bump to pass 244

through the region with the most negative vconn(✓) in Fig. 6A; likewise for negative b and positive vconn(✓). 245

We call the larger absolute value of these two drives the escape drive b0. Simulations show that b0 decreases 246

with bump number M and increases with network size N under linear mapping (Fig. 6D, E). A smaller b0 247

implies weaker trapping, so smaller networks with more bumps are more resilient against this phenomenon. 248

Under circular mapping, however, b0 demonstrates no significant dependence on M or N . We can predict 249

b0 by inverting the relationship in Eq. 8 between b and v: 250

b0 = �
max

✓
|vconn(✓)| · ⌧

Z
dx

✓
ds

dx

◆2

�⇠

Z
dx

d2s

dx2

. (25)

This theoretical result agrees well with values obtained by simulation (Fig. 6D, E). In the Theoretical model 251

section, we present a heuristic argument (Eq. 123) that leads to the observed scaling of escape drive on M 252

and N : 253

b0 / N

M
linear, b0 / 1 circular. (26)

At high drive |b| > b0, attractor bumps are no longer trapped by the drift velocity vconn(✓). Instead, the 254

drift term produces irregularities in the total velocity vtotal(✓) (Fig. 7A). They can be decomposed into two 255

components: irregularities between directions of motion and irregularities within each direction. Both imply 256

errors in path integration because v and b are not strictly proportional. To quantify these components, we 257

call |v+(✓)| and |v�(✓)| the observed bump speeds under positive and negative b. We define speed di↵erence 258

as the unsigned di↵erence between mean speeds in either direction, normalized by the overall mean speed: 259

speed di↵erence =
2
���mean

✓
|v+(✓)|�mean

✓
|v�(✓)|

���

mean
✓

|v+(✓)|+mean
✓

|v�(✓)|
. (27)

We then define speed variability as the standard deviation of speeds within each direction, averaged over 260

both directions and normalized by the overall mean speed: 261

speed variability =
std
✓

|v+(✓)|+ std
✓

|v�(✓)|

mean
✓

|v+(✓)|+mean
✓

|v�(✓)|
. (28)

Speed di↵erence and speed variability follow the same trends under changes in bump number M and network 262

size N (Fig. 7B–E). Under linear mapping, they decrease with M and increase with N . Under circular 263
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At high drive, connectivity noise induces irregularity in bump speed over different positions 
within the network.

Figure 7: Bump speed irregularity due to connectivity noise at high drive. (A) Bump speed as a function of bump

position with connectivity noise of magnitude 0.002 and drive b = 1.5. Network with 600 neurons, 1 bump, and the

same realization of connectivity noise as in Fig. 5A–C. Thick gray lines indicate Eq. 24. (B–E) Networks with multiple

realizations of connectivity noise of magnitude 0.002 and drive b = 1.5. (B) Speed difference between directions

decreases with bump number under linear mapping and remains largely constant under circular mapping. Networks

with 600 neurons. (C) Speed difference increases with network size under linear mapping and remains largely constant

under circular mapping. Networks with 3 bumps. (D, E) Same as B, C, but for speed variability within each direction.

Points indicate simulation means over 48 realizations and bars indicate standard deviations. Dotted gray lines indicate

Eqs. 29 and 30 averaged over 96 realizations.

mapping, they do not significantly depend on M and N . These are also the same trends exhibited by 264

the escape drive b0 (Fig. 6D, E). In terms of theoretical quantities, the formulas for speed di↵erence and 265

variability become 266

speed di↵erence =
2
���mean

✓
vconn(✓)

���

|vdrive|
(29)

and 267

speed variability =
std
✓

vconn(✓)

|vdrive|
. (30)

These expressions match the observed values well (Fig. 7B–E). In the Theoretical methods section, we 268

calculate the observed dependence of speed di↵erence (Eq. 112) and variability (Eq. 119) on M and N : 269

speed di↵erence and variability / N

M
linear, speed di↵erence and variability / 1 circular. (31)

To summarize, CANs with imperfect connectivity benefit from more attractor bumps when encoding 270

linear coordinates. This advantage is present at all driving inputs and may be more crucial for larger 271

networks. On the other hand, connectivity noise has largely the same consequences for networks of all bump 272

numbers and sizes when encoding circular coordinates. 273
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Figure 5: Bump diffusion due to input and spiking noise. (A, B) Networks with synaptic input noise of magnitude

� = 0.5 and drive b = 0.5. Dotted gray lines indicate Eq. 10. (A) Diffusion decreases with bump number under linear

mapping and remains largely constant under circular mapping. Networks with 600 neurons. (B) Diffusion increases

with network size under linear mapping and decreases under circular mapping. Networks with 3 bumps. (C, D) Same

as A, B, but for networks with Poisson spiking noise instead of input noise. Dotted gray lines indicate Eq. 20. Points

indicate data from 48 replicate simulations and bars indicate bootstrapped standard deviations.

Thus, a consistent relationship between b and vdrive is preserved in units of both neurons/s and degrees/s. 193

Of course, there are other possible mappings between network and physical coordinates across bump 194

numbers and network sizes, but for the rest of our paper, we will consider these two. We will see that noise 195

has di↵erent consequences in networks encoding linear and circular coordinates. 196

More bumps improve robustness to input and spiking noise under linear mapping 197

We now revisit the e↵ect of input noise on bump di↵usion, as explored in Fig. 3D–H. We measure how the 198

di↵usion coe�cient D varies with bump number M and network size N under linear and circular mappings. 199

Under linear mapping, D decreases as a function of M but increases as a function of N (Fig. 5A–B). Thus, 200

more bumps attenuate di↵usion produced by input noise, which is especially prominent in large networks. 201

However, for circular coordinates, D remains largely constant with respect to M and decreases with respect 202

to N (Fig. 5A–B). Increasing the number of bumps provides no benefit. These results can be understood 203

through Eqs. 10 to 12, which predict 204

Dinput /
N

M2
linear, Dinput /

1

N
circular. (15)

Two powers of the conversion factor in Eq. 12 account for the di↵erences between the two mappings. 205

Next, we investigate networks with spiking noise instead of input noise. To do so, we replace the deter- 206

ministic formula for firing rate in Eq. 2 with 207

s↵(x, t) =
c↵(x, t)

�t
. (16)

9

Here, s is a stochastic, instantaneous firing rate given by the number of spikes c emitted in a simulation 208

timestep divided by the timestep duration �t. We take the c’s to be independent Poisson random variables 209

driven by the deterministic firing rate: 210

c↵(x, t) ⇠ Pois
⇥
�[g↵(x, t)]�t

⇤
. (17)

As fully explained in the Theoretical model section (Eq. 98), we can approximate this spiking process by the 211

rate-based dynamics in Eqs. 1 and 2 with the noise term 212

⇣↵(x, t) =
X

�

Z
dyW�(x, y)

r
�[g�(y, t)]

�t
⌘�(y, t). (18)

The ⌘’s are independent random variables with zero mean and unit variance: 213

h⌘↵(x, t)i = 0, h⌘↵(x, t)⌘�(y, t0)i = �t �(t� t
0)�↵��(x� y). (19)

As for Eq. 9, the simulation timestep �t sets the rate at which ⌘ is resampled. This spiking noise produces 214

bump di↵usion with coe�cient 215

Dspike =

Z
dx s(x)

✓
ds

dx

◆2

4⌧2
"Z

dx

✓
ds

dx

◆2#2 . (20)

As before, s is the baseline firing rate configuration without noise and drive. Through the relationships in 216

Eqs. 11 and 12, Dspike scales with M and N in the same way as Dinput does: 217

Dspike /
N

M2
linear, Dspike /

1

N
circular. (21)

These findings are presented in Fig. 5C–D along with simulation results that confirm our theory. Spiking 218

noise behaves similarly to input noise. Increasing bump number improves robustness to noise under linear 219

mapping but has almost no e↵ect under circular mapping. Bump di↵usion in larger networks is exacerbated 220

under linear mapping but suppressed under circular mapping. 221

More bumps improve robustness to connectivity noise under linear mapping 222

Another source of noise in biological CANs is inhomogeneity in the connectivity W . Perfect continuous 223

attractor dynamics requires W to be invariant to translations along the network (Skaggs et al., 1995; Zhang, 224

1996; Samsonovich and McNaughton, 1997; Fuhs and Touretzky, 2006; Burak and Fiete, 2009), a concept 225

related to Goldstone’s theorem in physics (Nambu, 1960; Goldstone, 1961). We consider the e↵ect of replacing 226

W ! W + V , where V is a noisy connectivity matrix whose entries are independently drawn from a zero- 227

mean Gaussian distribution. V disrupts the symmetries of W . This noise is quenched and does not change 228

over the course of the simulation, in contrast to input and spiking noise which are independently sampled in 229
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Abstract
A central function of continuous attractor networks (CANs) is encoding coordinates and accurately updating their values through path integration. To do so, 
these networks produce bumps of activity that can represent position or orientation. However they can do so with different number of bumps, and the 
consequences of having more or fewer bumps are unclear. We find that CANs with different bump numbers have different responses to three types of noise: 
fluctuations in synaptic inputs, stochastic spiking, and connectivity deviations away from an ideal attractor configuration. Increasing the bump number 
improves robustness to all three sources of noise. This observation motivates the evolution of grid cell networks with multiple bumps, as observed by [1].


Continuous attractor networks can produce 
head direction cells and grid cells. They can do 
so with any number of attractor bumps.

Check out our 
preprint on bioRxiv!
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