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Introduction

An open problem in neuroscience is to ex-
plain the functional role of oscillations in
neural networks, contributing to percep-
tion, attention, and memory. Cross-fre-
quency coupling (CFC) is associated with
information integration across populations
of neurons'. We construct a novel oscillator
()-state  phasor

(PAM)?3, a type of

(PNN), that exhibits CFC via subharmon-

assoclative  memory

phasor neural network

ic injection locking (SHIL)* and predicts a

computational role for observed the-
ta-gamma, oscillatory circuits in neural
populations. We validate the capacity
of (Q-state PAM networks®
through si We show that the

mulation.
presence of SHIL increases the memory ca-

analysis

pacity of a population of oscillatory neural
networks (ONN),
synapses. This work bridges gaps between

connected by plastic

information theory and dynamical systems
theory to construct robust associative
memories in neural networks.

()-State Associative Memory

Given M memories with discrete phases
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(Top-left) Illustration of SHIL between theta and gamma neurons, correspond-

ing to ()=3. Theta oscillator received input from gamma, resulting in 3 discrete

phase states. (Top-right) Convergence of oscillators to discrete phase states with

increasing harmonic coupling,
memory as a function of capacity for varying ()-st

ates (N=1,024).

h (Q=3). (Bottom-left) Similarity of retrieved
(Bot-

tom-right) Information capacity (bits/synapse) as a function of (). ()=3 has

maximuim storage capacity.

Cross-Frequency Analysis

Simulation of PAM with
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implemented

In an

Energy function contains stable fixed-points
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Iterative decent of energy function achieved via
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(1) = exp(~ argmin Y — )

OR via continuous oscillator dynamics with SHIL

Normalized signal - A.U.

ONN. Phase-Phase Coupling
(PPC) and Phase-Ampli-
tude (PAC) are two types of
CFC. (Top) Raw signal ob-
tained from the superposi-
tion of theta and gamma
neurons with additive white

Gaussian noise. (Top-mid-
dle) Filtering the raw signal

c‘?@ e Ryysin (¢ — b — Byy) — hsin (Q6,) yielq_s. theta/low and gam-

oy ] ma /high-frequency Cf)mpo—

B ;= /Wi, Rij=|Wis | nents. (Bottom-middle)

Q PPC between theta phase

¢! , % and gamma phase results in

E S - banding. The number of
bands is equal to the fre-

Conclusion quency ratio w,/we=>5. (Bot-

e )-state PAMs achieve large synaptic ca-

tom & Bottom-right)

| D 0.14 Modulating the SHIL pa-
pacity for content-addressable memory < rameter, h, with the theta
. ey . ' 0.13 :
o Efficient ONN Q-state PAMS exhibit CFC = ¢ phase results in sparse PAC.
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