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Integer Echo State Networks: Efficient Reservoir
Computing for Digital Hardware
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Abstract— We propose an approximation of echo state net-
works (ESNs) that can be efficiently implemented on digital
hardware based on the mathematics of hyperdimensional com-
puting. The reservoir of the proposed integer ESN (intESN)
is a vector containing only n-bits integers (where n < 8 is
normally sufficient for a satisfactory performance). The recurrent
matrix multiplication is replaced with an efficient cyclic shift
operation. The proposed intESN approach is verified with typical
tasks in reservoir computing: memorizing of a sequence of
inputs, classifying time series, and learning dynamic processes.
Such architecture results in dramatic improvements in memory
footprint and computational efficiency, with minimal perfor-
mance loss. The experiments on a field-programmable gate array
confirm that the proposed intESN approach is much more energy
efficient than the conventional ESN.

Index Terms— Dynamic systems modeling, echo state networks
(ESNs), hyperdimensional computing (HDC), memory capacity,
reservoir computing (RC), time-series classification, vector sym-
bolic architectures.

I. INTRODUCTION

RECENT work in reservoir computing (RC) [1], [2] illus-
trates how a recurrent neural network with fixed con-

nectivity can memorize and generate complex spatiotemporal
sequences. RC has been shown to be a powerful tool for
modeling and predicting dynamic systems, both living [3] and
technical [4], [5]. Recently, it has been shown in [6] that RC
is able to predict large chaotic systems.
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Recent work on feedforward networks shows that the bina-
rization of filters in convolutional neural networks can lead to
enormous gains in memory and computational efficiency [7].
Reducing the memory allocated to each neuron or synapse
from a 32-bit float to a few bits or binary saves computation
with minimal loss in performance (see [8], [9]). The increase
in efficiency broadens the range of applications for these
networks.

This article addresses two important research directions in
RC: training reservoir networks and implementing networks
efficiently. We discovered several direct functional similarities
between the operations in RC and those of hyperdimensional
computing (HDC) [10]. HDC [11] or more generally vector
symbolic architectures [12] are frameworks for neural sym-
bolic representation, computation, and analogical reasoning.
The distinction from the traditional computing is that all
entities (objects, phonemes, and symbols) are represented by
random vectors of very high dimensionality—several thousand
dimensions. Complex data structures and analogical reasoning
are implemented by simple arithmetical operations (binding,
addition/bundling, and permutation) and a well-defined simi-
larity metric [11]. Specifically, RC and HDC are connected by
the following core principles.

1) Random projections of input values onto a reservoir
(which in essence is a high-dimensional vector) match
random HDC representations stored in a superposition.

2) The update of the reservoir by a random recurrent con-
nection matrix is similar to HDC binding/permutation
operation.

3) The nonlinearity of the reservoir can be approximated
with the thresholded addition of integers in HDC.

We exploited these findings to design integer echo state
networks (intESNs), which performs like echo state networks
(ESNs) but with smaller memory footprint and computational
cost.

In the proposed architecture, the reservoir of the net-
work contains only constrained integers for each neuron,
reducing the memory of each neuron from a 32-bit float
to only a few bits. The recurrent matrix multiply update is
replaced by a permutation (or even a cyclic shift), which
results in the dramatic boosting of the computational effi-
ciency. We validate the architecture on several tasks common
in the RC literature. All examples demonstrate the satis-
factory approximation of performance of the conventional
ESN, while the implementation on field-programmable gate
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array (FPGA) confirms the amenability of intESN for digital
hardware.

This article is structured as follows. Background and related
work are presented in Section II. The main contribution—
intESNs—is described in Section III. The performance evalua-
tion follows in Section IV. Section V presents the experiments
on digital hardware. Sections VI and VII present a discussion
and conclusions, respectively.

II. BACKGROUND AND RELATED WORK

There are many practical tasks that require the history of
inputs to be solved. In the area of artificial neural networks
(ANNs), such tasks require working memory. This could be
implemented by recurrent connections between neurons of an
RNN. Training RNNs is much harder than that of feedforward
ANNs (FFNNs) due to the vanishing gradient problem [13].

The challenge of training RNNs was addressed from two
approaches. One approach eliminates the vanishing gradient
problem through neurons with special memory gates [14].
Another approach is to reformulate the training process by
learning only connections to the last readout layer while
keeping the other connections fixed. This approach orig-
inally appeared in two similar architectures: liquid state
machines [15] and ESNs [16], now referred to as RC [1].

It is interesting to note that similar ideas were conceived
in the area of FFNNs, which can be seen as an RNN without
memory and are known under the name of random vector
functional link (RVFL) [17] or extreme learning machines
(ELMs) [18]. RVFLs/ELMs are used to solve various machine
learning problems, including classification, clustering, and
regression [19].

Important applications of RC are the modeling and predict-
ing of complex dynamic systems. Generating and predicting
chaotic systems was an important use case from the begin-
ning [20], for example, ESNs were used for chaotic time
series from low-order aberrations caused by turbulence [21].
A thorough study on emulating chaotic systems was recently
presented in [22]. It was also shown that ESNs can be used
for forecasting electroencephalography signals and for solv-
ing classification problems in the context of brain–computer
interfaces [23]. There are different classification strategies
and readout methods when performing classification of time
series with ESN. In [24], three classification strategies and
three readout methods were explored under the conditions that
testing data are purposefully polluted with noise. Interestingly,
different readout methods are preferable in different noise
conditions. Recent work in [25] also studied the classifi-
cation of multivariate time series with ESN using standard
benchmarking data sets. The work covered several advanced
approaches, which extend the conventional ESN architecture,
for generating a representation of a time series in a reservoir.

Another recent research area is binary RC with cellular
automata (CARC) that started as an interdisciplinary research
within three areas: cellular automata, RC, and HDC. CARC
was initially explored in [26] for projecting binarized features
into high-dimensional space. Furthermore, in [27], it was
applied for modality classification of medical images. An alter-
native classifier based on cellular automata and HDC was

presented in [28]. Cellular automata can also be used to
form weight matrices for RC and HDC [29], [30]. The usage
of CARC for symbolic reasoning is explored in [31]. The
memory characteristics of a reservoir formed by CARC are
presented in [32]. Work [33] proposed the usage of coupled
cellular automata in CARC. Examples of recent RC devel-
opments also include advanced architectures, such as deep
RC [34], [35], Laplacian ESN [36], learning of reservoir’s
size and topology [37], new tools for investigating reservoir
dynamics [38], and determining its edge of criticality [39].

The design of ESNs has been an important research area
(see [40]–[42]). One important aspect of the design is,
of course, the choice of network’s parameters for a given
task. Another important aspect considered in this study is
the computational complexity. One of the ways of reducing
computational costs would be to use quantized reservoir states.
It was explored in fractal prediction machines [43] and neural
prediction machines [44], [45] RC models. Another way of
reducing computational costs involves modifications of net-
work’s connectivity structure. In this respect, the approach
that is ideologically closest to our intESN, was presented
in [46]. The authors demonstrated that a simple cycle reservoir
(referred to as the ring-based ESN) can be used to achieve a
performance similar to the conventional ESN. Similar conclu-
sions about the ring-based ESN were obtained in [42] when
studying different design strategies for reservoir connection
matrices in four typical RC tasks. While the ring-based ESN
explored reservoir update solution, which is similar to one of
our optimizations, the technical side is very different from our
approach as intESN strives at using only integers as neurons
activation values.

While in this article the main focus is on reservoir states
comprised of integers only, it is worth mentioning related
works considering the general problem of reducing the com-
putational complexity of the conventional ESN. For example,
several optimizations were used in [47] in order to deploy
an ESN on a resource-constrained device for anomaly detec-
tion. These optimizations include sparse matrix algebra via
compressed row storage for weights of connections between
the input layer neurons and the reservoir, single floating-point
precision, and an activation function, which resembles tanh()
function but has lower complexity. Similarly, in works [48],
[49], ESNs were used in the context of user movements pre-
diction on resource-constrained devices; therefore, the authors
studied how the parameters of the network will affect compu-
tational costs and task performance. In particular, the varied
parameters were sparsity of reservoir connection matrix, num-
ber of bits per weight, and number of neurons in reservoir.

A. Echo State Networks

This section summarizes the functionality of the conven-
tional ESN, and it follows the description in [50] for a special
case of leaky integration when α = 1.1 Fig. 1 shows the
architectural design of the conventional ESN, which includes
three layers of neurons. The input layer with K neurons
represents the current value of input signal denoted as u(n).

1For the detailed tutorial on ESNs, diligent readers are referred to [50].
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Fig. 1. Architecture of the conventional ESN.

The output layer (L neurons) produces the output of the
network [denoted as y(n)] during the operating phase. The
reservoir is the hidden layer of the network with N neurons,
with the state of the reservoir at time n denoted as x(n).

In general, the connectivity of ESN is described by four
matrices. Win describes connections between the input layer
neurons and the reservoir, and Wback does the same for the
output layer. Both matrices project the current input and
output to the reservoir. The memory in ESN is due to the
recurrent connections between neurons in the reservoir, which
are described in the reservoir matrix W. Finally, the matrix of
readout connections Wout transforms the current activity levels
in the input layer and reservoir (u(n) and x(n), respectively)
into the network’s output y(n). Note that three matrices (Win,
Wback, and W) are randomly generated at the network ini-
tialization and stay fixed during the network’s lifetime. Thus,
the training process is focused on learning the readout matrix
Wout. There are no strict restrictions for the generation of
projection matrices Win and Wback. They are usually randomly
drawn from either normal or uniform distributions and scaled
as shown next. The reservoir connection matrix, however,
is restricted to possess the echo state property. This property
is achieved when the spectral radius of the matrix W is
less or equal than one. For example, W can be generated
from a normal distribution and then normalized by its maximal
eigenvalue. Unless otherwise stated, in this article, an orthogo-
nal matrix was used as the reservoir connection matrix; such a
matrix was formed by applying QR decomposition to a random
matrix generated from the standard normal distribution. Also,
W can be scaled by a feedback strength parameter [see (1)].

The update of the network’s reservoir at time n is described
by the following equation:

x(n) = tanh(ρWx(n − 1) + βWinu(n) + βWbacky(n − 1))

(1)

where β and ρ denote the projection gain and the feedback
strength, respectively. Note that it is assumed that the spectral
radius of the reservoir connection matrix W is one. Note also

that at each time step, neurons in the reservoir apply tanh() as
the activation function. The nonlinearity prevents the network
from exploding by restricting the range of possible values from
−1 to 1. The activity in the output layer is calculated as

ŷ(n) = g(Wout[x(n); u(n)]) (2)

where the semicolon denotes the concatenation of two vectors
and g() denotes the activation function of the output neurons,
for example, linear or Winner-take-all.

1) Training Process: This article only considers training
with supervised learning when the network is provided with
the ground-truth desired output at each update step. The reser-
voir states x(n) are collected together with the ground truth
y(n) for each training step. The weights of the output layer
connections are acquired by solving the regression problem,
which minimizes the mean square error between predictions
(2) and the ground truth. While this article does not focus on
the readout training task, it should be noted that there are many
alternatives reported in the literature, including the usage of
regression with regularization and online update rules [50].

B. Fundamentals of Hyperdimensional Computing

In a localist representation, which is used in all modern
digital computers, a group of bits is needed in its entirety to
interpret a representation. In HDC [11], [51], [52], all entities
(objects, phonemes, symbols, and items) are represented by
vectors of very high dimensionality—thousands of bits. The
information is spread out in a distributed representation, which
contrary to the localist representations, any subset of the bits
can be interpreted. Computing with distributed representations
utilizes statistical properties of vector spaces with very high
dimensionality, which allows for approximate, noise-tolerant,
highly parallel computations. Item memory (also referred to
as clean-up memory) is needed to recover composite repre-
sentations assigned to complex concepts. There are several
flavors of HDC with distributed representations, differentiated
by the random distribution of vector elements, which can be
real numbers [51], [53]–[55], complex numbers [56], binary
numbers [11], [57], or bipolar [53], [58].

We rely on the mathematics of HDC with bipolar distributed
representations to develop intESN. Kanerva [11] proposed the
use of distributed representations comprising N = 10 000
binary elements (referred to as HD vectors). The values
of each element of an HD vector are independent equally
probable, and hence, they are also called densely distributed
representations. The similarity between two binary HD vectors
is characterized by Hamming distance, which (for two vectors)
measures the number of elements in which they differ. In
very high dimensions, Hamming distances (normalized by
the dimensionality N) between any arbitrary chosen HD
vector and all other vectors in the HD space are concentrated
around 0.5. Interested readers are referred to [11] and [59]
for comprehensive analysis of probabilistic properties of the
high-dimensional representational space.

The binary HD vectors can be equivalently mapped to
the case of bipolar representations, i.e., where each vector’s
element is encoded as “−1” or “+1.” This definition is
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Fig. 2. Architecture of the proposed intESN.

sometimes more convenient for purely computational reasons.
The distance metric for the bipolar case is a dot product

dist = x�y. (3)

Basic symbols in HDC are referred to as atomic HD vectors.
They are generated randomly and independently and, due to
high dimensionality, will be nearly orthogonal with very high
probability, i.e., similarity (dot product) between such HD
vectors is approximately 0. An ordered sequence of symbols
can be encoded into a composite HD vector using the atomic
HD vectors, the permutation (e.g., cyclic shift as a special case
of permutation), and bundling operations. This vector encodes
the entire sequence history in the composite HD vector and
resembles a neural reservoir.

Normally, in HDC, the recovery of component atomic
HD vectors from a composite HD vector is performed by
finding the most similar vectors stored in the item memory.2

However, as more vectors are bundled together, there is more
interference noise and the likelihood of recovering the correct
atomic HD vector declines.

Our recent work [10] reveals the impact of interference
noise and shows that different flavors of HDC have universal
memory capacity. Thus, the different flavors of HDC can
be interchanged without affecting performance. From these
insights, we are able to design much more efficient networks
for RC for digital hardware.

III. INTEGER ECHO STATE NETWORKS

This section presents the main contribution of the article—
an architecture for intESN. The architecture is shown in Fig. 2.
The proposed intESN is structurally identical to the conven-
tional ESN (see Fig. 1) with three layers of neurons: input
(u(n) and K neurons), output (y(n) and L neurons), and
reservoir (x(n) and N neurons). It is important to note from
the beginning that training the readout matrix Wout for intESN
is the same as for the conventional ESN (see Section II-A1).

However, other components of intESN differ from the
conventional ESN. First, activations of input and output layers
are projected into the reservoir in the form of bipolar HD

2It is not common to do such decoding in RC. Normally, in the scope of
RC, a readout matrix is learned. In this article, we follow this standard RC
approach to extracting information back from a reservoir.

vectors [54] of size N [denoted as uHD(n) and yHD(n)].
For problems where input and output data are described by
finite alphabets and each symbol can be treated independently,
the mapping to N-dimensional space is achieved by simply
assigning a random bipolar HD vector to each symbol in
the alphabet and storing them in the item memory [11],
[60]. In the case with continuous data (e.g., real numbers),
we quantized the continuous values into a finite alphabet. The
quantization scheme (denoted as Q) and the granularity of the
quantization are problem dependent. In addition, when there
is a need to preserve similarity between quantization levels,
distance preserving mapping schemes are applied (see [61],
[62]), which can preserve, for example, linear or nonlinear
similarity between levels. An example of a discretization and
quantization of a continuous signal as well as its HD vectors
in the item memory is shown in Fig. 2. Continuous values can
also be represented in HD vectors by varying their density. For
a recent overview of several mapping approaches, readers are
referred to [63]. Also, an example of applying such mapping is
presented in Section IV-A2. Another feature of intESN is the
way the recurrence in the reservoir is implemented. Rather
than a matrix multiply, recurrence is implemented via the
permutation of the reservoir vector. Note that permutation of a
vector can be described in matrix form, which can play the role
of W in intESN. Note that the spectral radius of this matrix
equals one. However, an efficient implementation of permuta-
tion can be achieved for a special case—cyclic shift (denoted
as Sh()). It is important to note that we have shown in [10]
that the recurrent weight matrix W creates key-value pairs
of the input data. Note that W is chosen randomly and kept
fixed, and this always leads to the same properties. Moreover,
there is no advantage of the fully connected random recurrent
weight matrix over the simple cyclic shift operation for storing
the input history. Thus, the use of the cyclic shift in place
of a random recurrent weight matrix does not limit intESN’s
ability to produce linearly separable representations. Fig. 2
shows the recurrent connections of neurons in a reservoir with
recurrence by cyclic shift of one position. In this case, vector-
matrix multiplication Wx(n) is equivalent to Sh(x(n), 1).

Finally, to keep the integer values of neurons, intESN
uses different nonlinear activation function for the reservoir—
clipping (4). Note that the simplest bundling operation is an
elementwise addition. However, when using the elementwise
addition, the activity of a reservoir (i.e., a composite HD
vector) is no longer bipolar. From the implementation point
of view, it is practical to keep the values of the elements of
the HD vector in the limited range using a threshold value
(denoted as κ)

fκ (x) =

⎧⎪⎨
⎪⎩

−κ, x ≤ −κ

x, −κ < x < κ

κ, x ≥ κ.

(4)

The clipping threshold κ is regulating the nonlinear behavior
of the reservoir and limiting the range of activation values.
Note that in intESN, the reservoir is updated only with integer
bipolar vectors, and after clipping, the values of neurons are
still integers in the range between −κ and κ . Thus, each
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neuron can be represented using only log2(2κ + 1) bits of
memory. For example, when κ = 7, there are 15 unique values
of a neuron, which can be stored with just four bits. We have
also shown recently that the usage of the clipping might be
beneficial when implementing resource-efficient alternatives of
self-organizing maps [64].

Summarizing the aforementioned differences, the update of
intESN is described as

x(n) = fκ (Sh(x(n − 1), 1) + uHD(n) + yHD(n − 1)). (5)

IV. PERFORMANCE EVALUATION

In this section, the proposed intESN approach is veri-
fied and compared to the conventional ESN and the ring-
based ESN [46] on a set of typical RC tasks. In particular,
three aspects are evaluated: short-term memory, classification
of time series, and modeling of dynamic processes. Short-
term memories are compared using the trajectory association
task [56], introduced in the area of holographic reduced
representations [51]. In addition, an approach for storing and
decoding analog values using intESN is demonstrated on
image patches. Classification of time series is studied using the
standard data sets from UCI and UCR. Modeling of dynamic
processes is tested on two typical cases. First, the task of
learning a simple sinusoidal function is considered. Next,
networks are trained to reproduce a complex dynamical system
produced by a Mackey–Glass series. Unless otherwise stated,
ridge regression (the regularization coefficient is denoted as
λ) with the Moore–Penrose pseudoinverse was used to learn
the readout matrix Wout. The values of the input neurons
u(n) were not used for training the readout in any of the
experiments in the following.

A. Short-Term Memory

1) Sequence Recall Task: The sequence recall task includes
two stages: memorization and recall. At the memorization
stage, a network continuously stores a sequence of tokens (e.g.,
letters and phonemes). The number of unique tokens is denoted
as D (D = 27 in the experiments), and one token is presented
as input each timestep. At the recall stage, the network uses
the content of its reservoir to retrieve the token stored d steps
ago, where d denotes delay. In the experiments, the range of
delay varied between 0 and 15.

For the conventional and ring-based ESNs, the dictionary of
tokens was represented by a one-hot encoding, i.e., the number
of input layer neurons was set to the size of the dictionary
K = D = 27. The same encoding scheme was adopted for
the output layer, L = 27. The input vector was projected to
the reservoir by the projection matrix Win where each entry
was independently generated from the uniform distribution in
the range [−1, 1], and the projection gain was set to β = 0.1.
The reservoir connection matrix W for the conventional ESN
was first generated from the standard normal distribution and
then orthogonalized. The reservoir connection matrix W for
the ring-based ESN was generated as a permutation matrix.
The feedback strength of both reservoir connection matrices
was set to ρ = 0.94.

Fig. 3. Accuracy of the correct decoding of tokens for the conventional ESN,
ring-based ESN, and intESN for three different values of N .

For intESN, the item memory was populated with D ran-
dom high-dimensional bipolar vectors. The threshold for the
clipping function was set to κ = 3. The output layer was
the same as in ESN with L = 27 and one-hot encoding of
tokens. It is worth noting that ρ and κ were chosen in such
a way that the accuracy curves would resemble each other
as close as possible. The diligent readers are kindly referred
to the Supplementary Materials (Fig. S.1) where, for the case
N = 200, the curves for the range of ρ and κ values are
presented.

For each value of the delay d , a readout matrix Wout was
trained, producing 16 matrices in total. The training sequence
presented 2000 random tokens to the network, and only the
last 1500 steps were used to compute the readout matrices. The
regularization parameter for ridge regression was set to λ = 0.
The training sequence of tokens delayed by the particular d
was used as the ground truth for the activations of the output
layer. During the operating phase, both the inclusion of a
new token into the reservoir and the recall of the delayed
token from the reservoir were simultaneous. Experiments were
performed for three different sizes of the reservoir: N = 100,
N = 200, and N = 300.

The memory capacity of the network is characterized by
the accuracy of the correct decoding of tokens for different
values of the delay. Fig. 3 shows the accuracy for all networks
conventional ESN (solid lines), ring-based ESN (dashed–
dotted line), and intESN (dashed lines). The capacities of all
the networks grow with the increased number of neurons in
the reservoir. Since the capacities of the conventional ESN
and the ring-based ESN are almost identical, which is in line
with [42], for the rest of this section, we assume both of these
networks when using the term ESN.

The capacities of ESN and intESN are comparable for
small d , i.e., for the most recent tokens. For the increased
delays, the curves featured slightly different behaviors. With
increase in the value of d , the performance of intESN started
to decline faster compared to ESN. Eventually, all curves
converge to the value of the random guess, which equals
1/D. Moreover, the information capacity of a network is
characterized by the amount of information decoded from
the reservoir. This amount is determined using the amount of
information per token (log2 D), the probability of correctly
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Fig. 4. Accuracy of the correct decoding of tokens for the conventional ESN,
ring-based ESN, and intESN for three different values of N . “intESN-large”
refers to the fact that the number of neurons in intESN was equivalent to the
memory footprint required by ESN for the stated number of neurons.

decoding a token at each delay value, and the concept of
mutual information. We calculated the amount of information
for all networks in Fig. 3 in the considered delay range. For
100 neurons, intESN preserved 19.3% less information, and
for 200 and 300 neurons, intESN preserved 21.7% less.

These results highlight a very important tradeoff: the per-
formance versus a complexity of implementation. While the
performance of intESN is somewhat poorer in this task, one
has to bear in mind its memory footprint. With the clipping
threshold κ = 3, only 3-bit are needed to represent the state
of a neuron compared to 32-bit per neuron (the size of type
float) in ESN. In other words, intESN allowed lowering the
memory footprint of the reservoir by an order of magnitude
by sacrificing only a fraction of the performance with respect
to the information capacity. Thus, we conjecture that some
reduction in the performance for ten folds memory footprint
reduction is an acceptable price in applications on resource-
constrained computing devices. On the other hand, we can
check the performance of the networks with equal memory
footprints. For this, we increased the number of neurons in
intESN so that the total memory consumed by the reser-
voir with the same clipping threshold κ = 3 would match
that of the conventional or ring-based ESN. This network
is denoted as “intESN-large.” Since κ = 3 requires only
3 bit, in order to get the memory footprint corresponding to
ESN, intESN could use more than ten times more neurons.
Thus, the memory footprint of intESN with 1000 neurons
corresponds to ESN with 100 neurons, whereas intESN with
2000 and 3000 neurons correspond to ESN with 200 and 300
neurons, respectively. The results for this case are presented
in Fig. 4 (the training sequence was prolonged to 9000 random
tokens). With such settings, intESN-large has clearly higher
information capacity. In particular, for ESN memory foot-
print with 100 neurons, the decoded amount of information
has increased 2.2 times, whereas for 200 and 300 neurons,
it increased 1.6 and 1.3 times, respectively. It is important
to note, however, that while the memory consumed by the
reservoir of intESN-large was comparable to the corresponding
ESN, the readout matrix for intESN-large was larger and more
computationally demanding than the ESN readout matrix since
the size of a readout matrix is proportional to the number

of neurons in the reservoir. In order to consider the size
of the readout matrix, we have to include in the memory
footprint both the reservoir and the readout sizes. In this case,
the memory footprint of ESN is

r NESN + r NESN L = r NESN(L + 1) (6)

where r denotes the resolution of a neuron/weight in ESN
(e.g., 32-bit) and NESN is the size of ESN’s reservoir. The
memory footprint of intESN is

NintESN(�log2(2κ + 1)� + r L) (7)

where NintESN is the size of intESN’s reservoir. Thus, using
the footprints above, we could obtain an equation describing
the ratio NintESN/NESN characterizing the size of intESN’s
reservoir via the size of ESN’s reservoir in the case when
both networks have the same memory footprint (reservoir plus
readout)

NintESN

NESN
= r(L + 1)

�log2(2κ + 1)� + r L
. (8)

Assuming the standard value of r being 32-bit, the ratio
depends on L and κ and has its largest value when L and κ
are small. For example, when κ = 3 and there is only one
output neuron (L = 1), intESN could have in its reservoir
1.83 more neurons than ESN for the same memory footprint
when L = 10 this value decreases to 1.09.

2) Storage of Analog Values in intESN: This section
presents the feasibility of storing analog values in intESN
using image patches as a showcase. It is important to empha-
size that this section does not go into detailed comparisons
with other methods as the main purpose here is the principal
demonstration of the possibilities of storing continuous data
in reservoirs consisting of integers in a limited range. In other
words, with this showcase, we are aiming at demonstrating the
feasibility of using integer approximation of neuron states in
intESN to work with analog representations. A value of a pixel
(in an RGB channel) can be treated as an analog value in the
range between 0 and 1. For each pixel, it is possible to generate
a unique bipolar HD vector. The typical approach to encode
an analog value is to multiply all elements of the HD vector
by that value. The whole sequence is then represented using
the bundling operation on all scaled HD vectors. The result
of bundling can be used as an input to a reservoir. However,
the resultant composite HD vector will not be in the integer
range anymore. We address this problem by using sparsity.
Instead of scaling elements of an HD vector, we propose to
randomly set the fraction of elements of the HD vector to
zeros, i.e., the HD vector will become ternary. The proportion
of zero elements is determined by the pixel’s analog value.
Pixels with values close to zero will have very sparse HD
vectors, whereas pixels with values close to one will have
dense HD vectors, but all entries will always be [−1, 0, or +1].
The result of bundling of such HD vectors (i.e., HD vector for
an image) will still have integer values. Such representational
scheme allows keeping integer values in the reservoir, but it
still can effectively store analog values.

The examples of results are presented in Fig. 5. The top row
depicts original images stored in the reservoir. The other rows
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Fig. 5. Example of image patches decoded from an intESN. Top row represents the original images stored in the reservoir. Other rows depict the patches
reconstructed from intESN for different reservoir sizes and clipping thresholds.

depict images reconstructed from the reservoir. The following
parameters of intESN were used (top to bottom): N = 64000,
κ = 11; N = 32000, κ = 8; N = 16000, κ = 6; and
N = 8000, κ = 4. The values of κ were optimized for a
particular N . Columns correspond to the delay values (i.e.,
how many steps ago an image was stored in the reservoir) as in
the previous experiment. As one would anticipate, the quality
of the reconstructed images is improving for larger reservoir
sizes. At the same time, the quality of the reconstructed images
is deteriorating for larger delay values, i.e., the worst quality of
the reconstructed image could be observed in the bottom-right
corner, while the best reconstruction is located in the top-left
corner. Nevertheless, the main observation for this experiment
is that it is possible to project analog values into the reservoir
with integer values using the mapping via varying sparsity and
then retrieve the values from the reservoir. Moreover, we have
shown recently [65] that the mapping via varying sparsity
could even be helpful when solving classification problems
with a feedforward variant of the ESN.

B. Classification of Time Series

In this section, ESN (conventional and ring-based) and
intESN networks are compared in terms of classification accu-
racy obtained on standard time-series data sets. Following [25],
we used several (four) univariate data sets from UCR3 [66]
and several (three) multivariate data sets from UCI4 [67].
Details of data sets are presented in Table I. For each data set,
the table includes the name, number of variables (#V ), number
of classes (#C), and the number of examples in training and
testing data sets.

Configurations of the networks were kept fixed for all data
sets. In fact, the configuration of the conventional and ring-
based ESNs was set in accordance to [25]: reservoir size was
set to N = 800, projection gain was set to β = 0.25, and the
feedback strength was set to ρ = 0.99. The regularization
parameter for the ridge regression was set to λ = 1.0.
The intESN was also trained with the same λ. The clipping
threshold for the intESN was set to κ = 7. Also, for intESN,

3UCR. Time Series Classification Archive [online], 2020.—Available
online: https://www.cs.ucr.edu/%7Eeamonn/time_series_data_2018/.

4UCI. Machine Learning Repository [online], 2020.—Available online:
https://archive.ics.uci.edu/ml/index.php.

TABLE I

DETAILS OF DATA SETS FOR TIME-SERIES CLASSIFICATION

the quantized values of time series were mapped to bipolar
vectors using scatter codes [63], [68]. The input signal u(n)
was quantized as

u(n)q = �200u(n)�/200 (9)

where �∗� denotes rounding to the closest integer. Two sizes
of intESN’s reservoir were used. The first size corresponded
to the size of the conventional and ring-based ESNs, i.e., N =
800. The second size (“intESN-large”) corresponded to the
same memory footprint5 required for ESN reservoir assuming
that one ESN neuron requires 32 bit, while one intESN neuron
requires 4 bit (when κ = 7). Thus, “intESN-large” had N =
6400 neurons.

The output layers of the networks were representing one-
hot encodings of classes in a data set, i.e., for the particular
data set L =#C of that data set. The readout layers of all
networks were trained using time series from a training data set
in the so-called endpoints mode [24] when only final temporal
reservoir states for each time series are used for training a
single readout matrix.

The experimental accuracies obtained from the networks
for the considered data sets are presented in Figs. 6 and 7.
Fig. 6 shows the results for univariate data sets, whereas

5Except for the Japanese Vowels data set where such reservoir size seemed
to significantly overfit the training data. In that case, the number of neurons
was increased twice.
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Fig. 6. Classification accuracy for univariate data sets from UCR. Bars
depict mean values, and lines depict standard deviations. Bars denoted as
“ESN” and “intESN” had the same number of neurons in their reservoirs,
whereas for “intESN-large,” the number of neurons corresponded to ESN’s
memory footprint.

Fig. 7. Classification accuracy for multivariate data sets from UCI. Bars
depict mean values, and lines depict standard deviations. Bars denoted as
“ESN” and “intESN” had the same number of neurons in their reservoirs,
whereas for “intESN-large,” the number of neurons corresponded to ESN’s
memory footprint.

Fig. 7 shows the results for multivariate data sets. The fig-
ures depict mean and standard deviation values across ten
independent random initializations of the networks. Similar
to Section IV-A1, the accuracy of the conventional ESN and
the ring-based ESN is almost identical, and thus, for the rest
of this section, we assume both of these networks when using
the term ESN.

The obtained results strongly depend on the characteristics
of the data. However, it was generally observed that intESN
with the memory footprint equivalent to ESN demonstrated
higher classification accuracy. On the other hand, the classifi-
cation accuracy of intESN with the same number of neurons as
in ESN was similar to ESN’s performance for all considered
data sets but two (“Swedish Leaf” and “Character Trajec-
tories”) for which the accuracy degradation was sensible.
We, therefore, conjecture that in a general case, one cannot
guarantee the same classification accuracy as for ESN. The
empirical evidence, however, shows that it is not infeasible.
Since placing the reported results into the general context of
time-series classifications is outside the scope of this article,
we do not further elaborate on fine-tuning of hyperparameters
of intESN for the best classification performance. However,

Fig. 8. Generation of a sinusoidal signal.

the interested readers are kindly referred to the Supplementary
Materials (Fig. S.2 and S.3) where several different values of
N , κ , and ρ were examined for each data set.

C. Modeling of Dynamic Processes

1) Learning Sinusoidal Function: The task of learning a
sinusoidal function [69] is an example of a learning simple
dynamic system with the constant cyclic behavior. The ground
truth signal was generated as follows:

y(n) = 0.5 sin(n/4). (10)

In this task, the input layer was not used, i.e., K = 0, but
the network projected the activations of the output layer back
to the reservoir using Wback. The output layer had only one
neuron (L = 1). The reservoir size was fixed to N = 1000
neurons. The length of the training sequence was 3000 (first
1000 steps were discarded from the calculation). For ESN,
the feedback strength for the reservoir connection matrix was
set to ρ = 0.8, and for both networks, λ was set to 0.
A continuous value of the ground-truth signal was fed-in to
ESN during the training.

For intESN, in order to map the input signal to a bipolar
vector, the quantization was used. The signal was quantized
as

y(n)q = �100y(n)�/100. (11)

The item memory for the projection of the output layer was
populated with bipolar vectors preserving linear (in terms of
dot product) similarity between quantization levels [62]. The
threshold for the clipping function was set to κ = 3.

In the operating phase, the network acted as the generator of
the signal feeding its previous prediction (at time n − 1) back
to the reservoir. Fig. 8 shows the behavior of intESN during
the first 100 prediction steps. The ground truth is depicted
by the dashed line, while the prediction of intESN is illus-
trated by the shaded area between 10% and 90% percentiles
(100 simulations were performed). The figure does not show
the performance of the conventional ESN as it just followed
the ground truth without visible deviations. intESN clearly
follows the values of the ground truth, but the deviation from
the ground truth is increasing with the number of prediction
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Fig. 9. Prediction of the Mackey–Glass series.

steps. It is unavoidable for the increasing prediction horizon,
but, in this scenario, it is additionally accelerated due to the
presence of the quantization error at each prediction step. It is
worth noting, however, that the quality of predictions for this
task could be improved by increasing the value of κ = 3,
i.e., at the cost of extract memory allocated for each neuron.
The diligent readers are kindly referred to the Supplementary
Materials (Fig. S.4) where several different values of κ were
examined. Section IV-C2 will clearly demonstrate the effects
caused by the quantization process. The error is accumulated
because, every time when feeding the prediction back to the
reservoir of intESN, it should be quantized in order to fetch a
vector from the item memory.

2) Mackey–Glass Series Prediction: A Mackey–Glass series
is generated by the nonlinear time-delay differential equation.
It is commonly used to assess the predictive power of an
RC approach. In this scenario, we followed the preprocessing
of data and the parameters of ESN described in [4]. The
parameters of intESN (including quantization scheme) were
the same as in Section IV-C1. The interested readers are kindly
referred to the Supplementary Materials (Fig. S.5) where
several different values of N and κ were examined. The length
of the training sequence was 3000 (the first 1000 steps were
discarded from the calculation). Fig. 9 shows the results for
the first 300 prediction steps. The results were calculated from
100 simulation runs. The figure includes four panels. Each
panel depicts the ground truth, the mean value of predictions,
as well as areas marking percentiles between 10% and 90%.
The lower right corner corresponds to intESN, whereas three
other panels show performance of ESN in three different cases
related to the quantization of the data.

In these scenarios, ESN was trained to learn the model from
the quantized data in order to see to which extent it affects
the network. The upper left corner corresponds to ESN without
data quantization. In this case, the predictions precisely follow
the ground truth. The upper right corner corresponds to ESN
trained on the quantized data but with no quantization during
the operational phase. In such settings, the network closely
follows the ground truth for the first 150 steps, but then it often
explodes. The lower left corner corresponds to ESN where

the data were quantized during both training and prediction.
In this scenario, the network was able produce to produce
good prediction just for the first few dozens of steps and then
entered the chaotic mode where even the mean value does
not reflect the ground truth. These cases demonstrate how
the quantization error could affect the predictions, especially
when it is added at each prediction step. Note that intESN
operated in the same mode as the third ESN. Despite this
fact, its performance rather resembles that of the second ESN
where the speed deviation of the ground truth is faster. At the
same time, the deviation of intESN grows smoothly without a
sudden explosion in contrast to ESN.

V. DIGITAL HARDWARE EXPERIMENTS

In order to demonstrate the amenability of intESN for digital
hardware, we used an FPGA and implemented three different
architectures: software ESN as well as hardware accelerated
ESN and intESN. An alternative FPGA implementation has
been recently proposed in [70]. All architectures were imple-
mented on a ZedBoard FPGA,6 which contains a dual core
ARM Cortex A9 CPU interfacing with a programmable logic
fabric. The Xilinx Vivado Design Suite7 and Vivado SDK8

were used to design the hardware architectures and program
the FPGA board, respectively. The efficiency evaluation (e.g.,
energy consumption) of the architectures was based on the
recall stage of the sequence recall task as described in
Section IV-A1.

A. Architectures Design

The software ESN was implemented using only CPU on
the FPGA board. For the hardware acceleration experiments,

6ZedBoard. Hardware User’s Guide [online], 2014.—Available online:
http://zedboard.org/sites/default/files/documentations/ZedBoard_HW_UG_
v2_2.pdf.

7Xilinx. Vivado Design Suite User Guide [online], 2018.—Available online:
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/
ug910-vivado-getting-started.pdf.

8Xilinx. Generating Basic Software Platforms [online], 2018.—
Available online: https://www.xilinx.com/support/documentation/sw_manuals/
xilinx2018_3/ug1138-generating-basic-software-platforms.pdf.
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we programmed the CPU to generate the inputs and feed them
into a hardware architecture (either for ESN or intESN) and
then retrieve the outputs once the computation is over. The
hardware ESN and intESN architectures were designed using
Vivado High Level Synthesis (HLS) using the C programming
language and later on synthesized into hardware intellectual
property components to be integrated in a larger hardware
system comprised of the Zynq Processing System, AXI Direct
Memory Access, AXI Interconnect, ESN/intESN architecture,
and various other peripherals used for clocking and resetting
mechanisms. It is important to note that for resource limita-
tions on the ZedBoard, no pipelining or hardware optimization
directives have been used on the HLS designs in order to
cope with the resource usage for growing reservoir sizes and
remain within the board’s capacity. However, we still provide
a comparison of a speedup expected from the pipelining for
the two hardware architectures.

B. Evaluation Methodology

For each architecture, the reservoir size was varied between
100, 200, and 300 neurons. In the following, we report the
number of clock cycles required to accomplish the sequence
recall task, the power consumption, and the area utilization
(i.e., resources) required for the hardware designs. The number
of clock cycles was measured using a hardware timer incor-
porated into the designs. The area utilization is reported from
the hardware synthesis reports provided by Vivado. All three
architectures use the same clock frequency of 100 MHz. The
ZedBoard contains a 10-m� shunt resistor in series with
the input supply of the whole board, which could be used
to obtain the overall power consumption by measuring the
voltage across it. However, at the desired scale of changes,
voltage fluctuation and measurement sensitivity made it almost
impossible to properly perform a precise comparison. There-
fore, instead, we used the Xilinx Power Estimator (XPE)
tool9 provided by the Vivado Design Suite to estimate the
power consumption of each architecture, which is a standard
option [71]–[73].

C. Efficiency Evaluation Results

Table II presents the area utilization of the hardware archi-
tectures for different sizes of reservoir. It is clear that the
resource utilization of the hardware ESN is always larger than
that of hardware intESN. This is an empirical manifestation
of the facts that intESN: 1) requires a lower memory footprint
(κ = 3) and 2) its machinery uses simpler operations, e.g.,
the clipping instead of tanh() and the cyclic shift instead of
vector-matrix multiplication. It is important to note that the
drastic increase of LUT utilization when the reservoir size of
ESN was set to 300 is due to resource constraints on the FPGA
board since the total number of usable BRAM units is 140.
Thus, the increased number of LUTs was used as an alternative
way of increasing the memory capacity of the board.

9Xilinx. Power Estimator User Guide [online], 2018.—Available online:
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/
ug440-xilinx-power-estimator.pdf.

TABLE II

AREA UTILIZATION OF THE HARDWARE ARCHITECTURES

TABLE III

NUMBER OF CLOCK CYCLES (TIME) INVOLVED IN THE
SEQUENCE RECALL TASK

Table II presents the number of clock cycles (time in
seconds) necessary to perform the operating phase of the
sequence recall task for each architecture. The number of clock
cycles was measured with the help of the hardware timer. The
time was calculated using the known frequency of the clock
(100 MHz) As expected, for each architecture, the operation
time increases with the increased reservoir size. However, for
any reservoir size, intESN is several times faster than both
implementations of ESN (at least 2.1 against the software ESN
when N = 100). The gain is increasing with the increased
reservoir size so that when N = 300, the hardware intESN is
8.7 times faster than the hardware ESN.

An interesting remark in Table III is that the hardware ESN
seems slower than the software ESN. It is counterintuitive
since the hardware architecture is expected to accelerate the
computations. In the considered case, this fact is explained
by the absence of pipelining (see Section V-A) what prevents
further hardware optimizations. The pipelining would certainly
increase the speed at the price of the increased area utilization,
which would make the hardware designs being inconceivable
on the target board. In order to evaluate the effect of the
pipelining on the speed of the hardware architectures, we have
used the Vivado HLS synthesis report to estimate the number
of clock cycles per iteration when N = 300. The results are
presented in Table IV. It shows that the pipelining significantly
decreases the number of clock cycles, which makes the hard-
ware ESN much faster than the software one. At the same
time, the speedup obtained for the hardware intESN is still
higher than that of the hardware ESN, which makes intESN
even more efficient than ESN.

Table V presents the power consumption of each archi-
tecture. The first observation is that the consumption of
the software ESN remains constant for different N . This is
because the hardware itself remains fixed, and the software
computations that are performed on the Cortex CPU are the
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TABLE IV

SPEEDUP COMPARISON WITH THE USE OF PIPELINING

TABLE V

XPE OVERALL POWER CONSUMPTION (WATTS)

Fig. 10. Overall energy consumption of all three architectures against the
reservoir size.

same for each configuration. Moreover, the software ESN has
the lowest power consumption because it is only comprised of
the CPU and the hardware timer, whereas the other two include
other hardware components in addition to those. However,
for the hardware implementation of ESN, one could see a
noticeable increase for a larger reservoir size. There is also
an increase for the hardware intESN, but it is slower than the
hardware ESN. Moreover, for the fixed reservoir size, intESN’s
power consumption remains lower than that of ESN.

Fig. 10 shows the overall energy consumption of each archi-
tecture for different sizes of reservoir. The energy consumption
was calculated as a product of the overall power consump-
tion reported in Table V and the operating time reported
in Table III. Fig. 10 clearly shows that the energy efficiency
of the hardware intESN is much better than that of both the
hardware and software ESNs. Scaling the reservoir size leads
to an increase in the energy consumption of all architectures.
However, the slope of the curve for intESN is lower than for
ESN’s architectures. Therefore, the energy saved by the use of
intESN drastically increases with increasing size of reservoir
(e.g., for N = 300, it needs 10.6 times lower energy than for
the hardware ESN), which is a strong argument in favor of
intESN.

VI. DISCUSSION

A. Efficiency of intESN
In principle, evaluation of the computational efficiency of

the proposed intESN could be done even in a simplistic
manner using only a computer. For example, we have per-
formed the initial assessment by simplified execution time
measurements with MATLAB. We used our MATLAB imple-
mentations of both networks for the trajectory association task
(see Section IV-A1) with N = 300 neurons to compare the
times of projecting data and executing a reservoir. ESN was
implemented using 32-bit float type (type single in MATLAB),
whereas intESN was implemented using 8-bits integer type
(type int8 in MATLAB). On average, the time required by
intESN was 3.9 times less than that of ESN. Thus, even the
training time needed for convergence with intESN is shorter
than that of ESN because intESN is much faster when it comes
to projecting data and executing a reservoir, while the time
for estimating the readout matrix would be the same for both
networks.

Section V presented the proper evaluation of the com-
putational efficiency of the proposed intESN approach and
the conventional ESN using the FPGA board. The hardware
implementation of intESN was compared to two reference
implementations: software ESN and hardware ESN. The
detailed benchmarking tests have supported our claims about
the efficiency of intESN. It is also worth noting that the
efficiency gains of the intESN would be less relative to the
ring-based ESN as essentially both networks use the same
efficient mechanism for reservoir’s connectivity.

B. Hyperparameters
In comparison to ESN, intESN has fewer hyperparameters.

The common hyperparameter is the reservoir size N . Two
specific intESN hyperparameters are the clipping threshold κ
and the mapping to the reservoir, whereas for ESN, we have
to choose ρ, β, and α. When N is fixed, then κ in intESN has
an effect on the network’s memory similar to ρ and β in ESN
(see Section VI-C for details). However, the difference is that
κ takes only positive integer values. This has its pros and cons.
It could be much easier to optimize a single hyperparameter
in the integer range. On the other hand, having real-valued
hyperparameters, one can get a configuration providing much
finer tuning of network’s memory for a given task.

With respect to the mapping (projection) to the reservoir,
it is probably the most nontrivial part on intESN, especially,
when data to be projected are real numbers. In this article,
we mention three different strategies for mapping real numbers
to bipolar or ternary vectors: puncturing of nonzero elements
(see Section IV-A2), mapping preserving linear similarity
between vectors [62], and nonlinear approximate mapping
using scatter codes [63], [68]. We suggest that it is a useful
heuristic to try each of the approaches and choose the one
performing best.

C. On Equivalence of ESN and intESN in Terms of
Forgetting Time Constants

Section IV-A1 presented the experimental comparison
of storage capabilities of intESN and ESN. An analytical
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Fig. 11. Correspondence between time constants of intESN and special cases
of ESN.

approach to the treatment of memory capacity of reservoir
was presented in [10, Sec. 2.4.4]. The work introduced an
analytical tool called the forgetting time constant (denoted
as τ ). The forgetting time constant is a scalar characterizing
the memory decay in a network. In the case of intESN, it can
be calculated analytically using the clipping threshold κ . For
ESN, currently, only special cases can be analyzed. For exam-
ple, when reservoir neurons are linear, the feedback strength
ρ will determine τ . The other example is when reservoir
neurons use tanh, the feedback strength is fixed to one, and
the reservoir update rule is modified to f (x) = γ tanh(x/γ ),
where γ denotes a gain parameter. This parameter affects
τ , which could be calculated numerically. Fig. 11 shows the
implicit comparison of this special case of ESN and intESN
via their forgetting time constants that are determined by γ
and κ , respectively. Both parameters similarly (not far from
linear in logarithmic coordinates) affect τ . It allows arguing
that the networks are close to being functionally identical in
terms of storage capabilities. The development of an approach
for estimating the forgetting time constant for ESN in a general
case is a part of our agenda for the future work.

D. Training the Readout in a Generator Mode
In the experiments generating time series, we used the

teacher forcing approach for training a readout matrix. This,
however, does not have to be the compulsory choice for
intESN. We do not foresee any complications for applying
other approaches allowing to modify the network’s behav-
ior for producing complex target functions. In particular,
the FORCE method [2], which uses error-based modification
of readout weights during the training process, can be used as
it has a mode in which only weights of a readout matrix are
changed while leaving the rest of the network fixed.

VII. CONCLUSION

In this article, we proposed an architecture for integer
approximation of the RC, which is based on the mathemat-
ics of hyperdimensional computing. The neurons in reser-
voir are described by integers in the limited range, and the
update operations include only addition, permutation (cyclic
shift), and clipping. Therefore, the intESN has substantially
smaller memory footprint and higher computational efficiency
compared to the conventional echo state network with the
same number of neurons in the reservoir. The actual number
of bits for representing a neuron depends on the clipping
threshold κ but can be significantly lower than 32-bit floats
in ESN. For example, in our experiments, the results were

obtained with κ = 3 and κ = 7, which effectively makes
it sufficient to represent a neuron with only three or four
bits, respectively. We demonstrated that the performance of
the intESN is comparable to the conventional ESN in terms
of memory capacity, potential capabilities for classification
of time series, and modeling dynamic systems. The better
performance was observed when the memory footprint of
reservoir of the intESN was set to that of the conventional
ESN. The experiment on the digital hardware has validated
the amenability of the intESN for significantly improving
the energy efficiency of computations. Further improvements
can be made by optimization of the parameters and better
quantization schemes for handling continuous values. Natu-
rally, due to the peculiarity of input data projection into the
intESN, the performance of the network in tasks for modeling
dynamic systems is to a certain degree lower than that of
the conventional ESN. This, however, does not undermine
the importance of intESNs, which are extremely attractive
for memory and power savings, and in the general area of
approximate computing, where errors and approximations are
becoming acceptable as long as the outcomes have a well-
defined statistical behavior.
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