
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Generalized Key-Value Memory to Flexibly Adjust
Redundancy in Memory-Augmented Networks

Denis Kleyko , Member, IEEE, Geethan Karunaratne, Jan M. Rabaey , Life Fellow, IEEE,
Abu Sebastian , Senior Member, IEEE, and Abbas Rahimi

Abstract— Memory-augmented neural networks enhance a neural
network with an external key-value (KV) memory whose complexity is
typically dominated by the number of support vectors in the key memory.
We propose a generalized KV memory that decouples its dimension from
the number of support vectors by introducing a free parameter that can
arbitrarily add or remove redundancy to the key memory representation.
In effect, it provides an additional degree of freedom to flexibly control
the tradeoff between robustness and the resources required to store and
compute the generalized KV memory. This is particularly useful for
realizing the key memory on in-memory computing hardware where it
exploits nonideal, but extremely efficient nonvolatile memory devices for
dense storage and computation. Experimental results show that adapting
this parameter on demand effectively mitigates up to 44% nonidealities,
at equal accuracy and number of devices, without any need for neural
network retraining.

Index Terms— Hyperdimensional computing, in-memory com-
puting, key-value (KV) memory, linear distributed memories with
associations, memory-augmented neural networks (MANNs),
nonvolatile memory (NVM), phase-change memory (PCM), vec-
tor symbolic architectures.

I. INTRODUCTION

The idea of using memory for the neural networks has been widely
used since the formulation of long short-term memory [1]. Recent
approaches to memory-augmented neural networks (MANNs) incor-
porate an explicit memory into the neural networks as an end-to-end
differentiable module [2]–[5]. These MANNs are typically applied
in knowledge-based reasoning [2]–[4], sequential prediction [5],
unsupervised learning [6], [7], and few-shot learning tasks [8], [9].
All these MANN models commonly expand the explicit memory
to be able to handle various tasks and datasets with an increased

Manuscript received August 6, 2021; revised December 17, 2021; accepted
March 10, 2022. The work of Denis Kleyko was supported in part
by the European Union’s Horizon 2020 Programme through the Marie
Skłodowska-Curie Individual Fellowship under Grant 839179, in part by
the Defense Advanced Research Projects Agency’s (DARPA’s) Artificial
Intelligence Exploration (AIE) HyDDENN Project Program, and in part
by the Air Force Office of Scientific Research (AFOSR) under Grant
FA9550-19-1-0241. The work of Geethan Karunaratne and Abu Sebastian
was supported in part by the European Research Council (ERC) through
the European Unions Horizon 2020 Research and Innovation Program
under Grant 682675. The work of Jan M. Rabaey was supported in part
by the DARPA’s AIE HyDDENN Project Program. (Corresponding author:
Denis Kleyko.)

Denis Kleyko is with the Redwood Center for Theoretical Neuroscience,
University of California, Berkeley, Berkeley, CA 94720 USA, and also
with the Intelligent Systems Laboratory, Research Institutes of Sweden,
16440 Kista, Sweden (e-mail: denis.kleyko@ri.se).

Geethan Karunaratne, Abu Sebastian, and Abbas Rahimi are with IBM
Research Zurich, 8803 Rüschlikon, Switzerland (e-mail: kar@zurich.ibm.com;
ase@zurich.ibm.com; abr@zurich.ibm.com).

Jan M. Rabaey is with the Department of Electrical Engineering and Com-
puter Sciences, University of California, Berkeley, Berkeley, CA 94720 USA
(e-mail: jan_rabaey@berkeley.edu).

This article has supplementary material provided by the authors and color
versions of one or more figures available at https://doi.org/10.1109/
TNNLS.2021.3159445.

Digital Object Identifier 10.1109/TNNLS.2022.3159445

complexity. For instance, the size of explicit memory grows linearly
with the number of available samples and classes in the few-shot
learning tasks [8], [9], or with the total number of training samples
in the unsupervised learning [6], [7].

In the supervised learning tasks, the explicit memory is composed
of a key memory for storing and comparing learned patterns, and
a value memory for storing labels, that are jointly referred to as a
key-value (KV) memory [4]. The entries in the key memory are not
accessed by stating a hard address, but by comparing a query with
all the entries, forming soft read and write operations, which involve
every individual memory entry. These extremely memory intensive
operations cause a bottleneck when implemented in conventional von
Neumann architectures (e.g., CPUs and GPUs), especially for tasks
demanding a large number of memory entries.

To address the aforementioned bottleneck, one viable option is
to implement the KV memory with emerging nonvolatile mem-
ory (NVM) devices that offer dense storage as well as in-memory
computing capability to efficiently execute the comparison operations
at constant time. For instance, in [10] the NVM devices have
been arranged as a ternary content addressable memory to perform
comparisons inside the key memory. This structure, however, cannot
support widely used metrics such as cosine similarity. Furthermore,
practical in-memory computing is challenging due to low computa-
tional precision resulting from various sources of nonidealities in
the NVM devices such as intrinsic randomness, noise, and vari-
ability [11]. A recent methodology [12] addresses these issues by
enhancing the key memory representations with robust properties
of hyperdimensional computing [13], such that the representations
can be readily transformed to low-precision (i.e., bipolar or binary)
vectors in the key memory while exhibiting robustness against the
nonidealities in the NVM-based in-memory computing hardware.

In the few-shot learning tasks, for a given m-way n-shot problem,
the methodology in [12] sets the size of the key memory to [d ×mn]
where m is the number of classes in the problem, n denotes the
number of training samples per class, and d is the dimensionality
of support vectors. Specifically, the controller neural network in [12]
assigns a d-dimensional support vector to every training sample such
that the support vectors for different classes are quasi-orthogonal. The
dimensionality of support vector is typically set to thousands [13]
to generate a holographic distributed representation that is extremely
robust against nonidealities in in-memory computing [14]. Therefore,
the dimensionality of support vectors could be changed to maintain
a desired accuracy in the presence of the nonidealities for a fixed
m-way n-shot problem. However, every time d is changed, the
controller neural network should be retrained. This is impractical as
retraining the controller neural network is a costly process. Therefore,
it is important to consider alternative approaches for regulating the
robustness of the KV memory. To address this limitation, we propose
a generalization of the KV memory that can be dynamically adapted
in the inference phase to deal with any amount of nonidealities.

Thus, the generalization of the KV memory is the main con-
tribution of this brief. The proposed generalization decouples the

2162-237X © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on April 20,2022 at 18:21:03 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6032-6155
https://orcid.org/0000-0001-6290-4855
https://orcid.org/0000-0001-5603-5243
https://orcid.org/0000-0003-3141-4970

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

dimension of the key memory from mn by introducing a free
parameter r for controlling the redundancy such that the dimension
becomes [d × r] instead of [d × mn]. During the inference phase,
this new parameter r can add or remove redundancy in the repre-
sentations of the key memory, on demand, without any retraining
of the controller neural network. This results in a fully distrib-
uted version of the key memory, which is obtained, by the linear
superposition of the outer products between the support vectors and
randomized distributed representations of their corresponding class
labels. The empirical investigation of the generalized KV memory
demonstrates its flexibility and robustness against noise and NVM
nonidealities, e.g., it maintains the noiseless accuracy (obtained in
software) of the original KV memory when exposed up to 44% NVM
device nonidealities by adjusting r such that it demands no more
NVM devices than the original KV memory.

The rest of this brief is structured as follows. Section II provides
an overview of the original MANN architecture. The organization of
the proposed generalized KV memory is presented in Section III.
Section IV presents performance evaluation of the generalized
KV memory. Section V concludes the brief.

II. MANNS OVERVIEW

The MANN architectures combine neural networks with an explicit
memory [2]–[9], [12]. Such an approach exploits meta-learning for
performing few-shot learning tasks [8], [9], [12]. The trained neural
network can produce representations of new previously unseen data,
which are then written to the explicit memory, so that the memory
can be used to, e.g., classify new queries with only a few examples
per each class. The distinctive feature of the MANN architecture
in [12] is that the neural network is guided to produce support
vectors in the form of d-dimensional vectors with the properties
suitable for hyperdimensional computing [13], [15] (also known as
vector symbolic architectures [16], [17]).1 The architecture shows
that the support vectors produced by the trained neural network can
be directed toward robust bipolar or binary representations. It was
shown to solve the Omniglot [20] problems, as large as 100-way
five-shot using the in-memory computing hardware. Specifically,
this architecture allows implementation of the binary key memory
on 256 000 (5 × 100 × 512) noisy phase-change memory (PCM)
devices, performing highly efficient analog in-memory computation,
with less than 2.7% accuracy drop compared to the 32-bit real-
valued memory in software for the largest problem ever-tried on
Omniglot [12].

As follows from the above, conceptually the architecture can be
divided into two parts: the controller (i.e., the neural network) and
the explicit memory. This brief is devoted to the organization of the
explicit memory during the inference phase.2 The explicit memory is
split into two parts: the key memory and the value memory (hence,
the KV memory). In the original formulation, the key memory
(denoted as K) stores mn d-dimensional3 support vectors produced
by the controller for a given m-way n-shot problem so K ∈ [d ×mn].
For the inference phase with PCM devices, every d-dimensional
support vector is quantized to a binary or bipolar vector. The value
memory (denoted as V) stores one-hot encodings of the class labels
corresponding to the support vectors in K, so V ∈ [m × mn].
Here, it is important to emphasize that despite the fact that the KV
memory contains the holographic distributed representations (i.e., the
support vectors), the organization of the memory is local because the

1Consult [18], [19] for a comprehensive survey of hyperdimensional com-
puting/vector symbolic architectures.

2It is important to note that the proposed approach does not require any
modification of the training of the controller described in [12].

3Following [12], d is set to 512 for the experiments in this brief.

vectors Ki and Vi in the corresponding parts of the KV memory can
be identified with a particular sample of the training data.

During the inference phase, the query vector q ∈ [d × 1] is used
as an input to the key memory where the main step is to compute
the similarity between q and the support vectors Ki using the dot
product (denoted as α) as the similarity measure

α = K�q (1)

where αi contains the similarity between the query and i th support
vector. Note that when the support vectors in the key memory are
normalized to the same norm, the dot products in α are proportional
to the corresponding cosine similarities.

Next, the dot products can be modified with some sharpening
function [denoted as σ(·)]

γ = σ(α). (2)

The sharpened similarity scores are used to compute the accumulated
scores for each class as

s = Vγ (3)

where s j contains the score for j th class (1 ≤ j ≤ m). The
prediction is chosen to be the class with the highest accumulated
score: arg max j s j .

It is worth noting that the above inference procedure is a special
case of the k-nearest neighbor classifier with distance-weighted voting
where k = mn and the weight for i th training sample (i.e., neighbor)
corresponds to γi . This observation suggests that it is worth exploring
a fully distributed organization of the KV memory where there is
no local correspondence between the entries of the key memory
and the support vectors. Such a fully distributed organization can
be achieved using, e.g., a linear distributed memory with the outer
product learning rule [21], [22]. The distributed organization of the
KV memory allows achieving similar functionality for the inference
phase while providing an additional degree of freedom, which plays
an important role in controlling the tradeoff between the robustness
of the key memory and the resources required to store it.

III. GENERALIZED KV MEMORY

As highlighted in [12], an important advantage of the architecture
is that the key memory can be mapped to PCM devices for analog
in-memory computing, which has shown to significantly improve the
energy efficiency of the inference procedure compared to a digital
design. Note, however, that in the original formulation, the dimension
of the key memory is K ∈ [d × mn], i.e., assuming that d is fixed,
the dimension of the key memory is determined by the number of
support vectors in a given m-way n-shot problem. This dependency
makes the key memory rigid in the sense that there is no possibility
to control the dimension of the key memory other than changing d ,
which demands retraining the controller neural network, once m and
n are fixed. Therefore, it is important to consider a generalization
of the KV memory allowing to decouple the dimension of the key
memory from m and n by using a free parameter r so the dimension
becomes [d × r] instead of [d × mn].

The decoupling is achieved by changing the organization of the
KV memory from the local one to a fully distributed one using
the principles of forming context-dependent associations in linear
distributed associative memories [21], [23], [24]. To reformulate the
KV memory in terms of the context-dependent associations, we need
to first define a new value memory (d)L ∈ [r × m], where (d)L j is an
r -dimensional vector representing the label of j th class (1 ≤ j ≤ m).
We will discuss the options for choosing (d)L j in Section IV. Once
the class labels’ representations are defined, the real-valued support

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on April 20,2022 at 18:21:03 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 3

vectors Ki and their corresponding (d)L j are used to create the
distributed version of the key memory (denoted as (d)K) using the
outer product learning rule

(d)K =
mn∑

i=1

(d)Lc(i)K�
i (4)

where c(i) denotes the class index of i th support vector. Thus, the
distributed version of the key memory is the linear superposition of
the outer products of the support vectors and the representations of
their class labels,4 therefore, (d)K ∈ [r × d]. Since the distributed
version of the key memory in (4) does not strictly depend on mn,
we refer to (d)K and (d)L as the generalized KV memory.

The inference procedure with the generalized KV memory is very
similar to the original one. For a given query, q, the dot product
between (d)K and q, which is computed as

γ = α = (d)Kq (5)

produces an r -dimensional vector, which is the weighted superposi-
tion of class labels’ representations. This vector α can be seen as a
sharpened vector γ assuming that an identity function is used as the
sharpening function. Finally, the value memory is used to measure
the scores of each class as

s = (d)L�γ . (6)

As in the original KV memory, the result is an m-dimensional vector
where the j th component contains the accumulated score for the
corresponding class so the prediction is chosen as before: arg max j s j .

Similar to the original key memory K, (d)K can be bipolarized
using the componentwise sign(·) function

(d)K̂ = sign((d)K). (7)

Obviously, the bipolar version (d)K̂ can be transformed to the binary
version.

IV. EVALUATION OF THE GENERALIZED KV MEMORY

Here, we discuss when it would be beneficial to use the generalized
key-memory instead of the original KV memory. We suggest the
following two modes.

1) For compression when there is a little or no noise. For the
problems where n > 1, the generalized KV memory effectively
removes the redundancy and can achieve the classification
accuracy on a par to the original KV memory for r � mn.

2) For increasing robustness at very low signal-to-noise
ratio (SNR) conditions. The generalized KV memory flexibly
increases the redundancy by allocating more resources to the
key memory so that r > mn that results in improved robustness
to noise and nonidealities compared to the original KV memory,
which does not have a mechanism to regulate the redundancy
of the key memory.

Both the aforementioned modes are related to each other since
usually it is necessary to tradeoff between the achieved accuracy and
required resources in the presence of noise and nonidealities but to
make the points clear, we isolate the two. In the following, we present

4While here we do not go into the details of comparing the computational
costs of the two considered approaches to the organization of the KV memory,
it is worth noting that both of them incur certain computation costs when it
comes to adding new support vectors to the key memory. In the case of the
original KV memory, the cost is in the allocation of space for a new support
vector and writing the new vector to the key memory; while in the case of the
generalized KV memory, the cost is in computing the outer product between
the support vector and its label vector as well as in incrementing the key
memory with the outer product result.

the results of three sets of experiments to illustrate these modes. The
first mode is investigated in Section IV-A while the second one is
studied in Sections IV-B and IV-C.

We use the data from [12] in the form of 512-dimensional real-
valued vectors obtained from the trained controller using the images
in the test set of the Omniglot dataset. It includes 659 classes with
20 samples per each class. These data were used to perform the
experiments below.

Recall that the first step in the generalized KV memory is to
populate the value memory (d)L ∈ [r × m]. There are several options
to do so. The most obvious choice is to generate (d)L randomly
so that each class label is represented by a random vector (d)L j .
This, however, is not the best choice since the random vectors are
only approximately orthogonal, hence, there will be some crosstalk
noise between different (d)L j in (d)K, which would negatively affect
the classification accuracy and robustness to noise and nonidealities.
Therefore, in the experiments below we use random orthogonal
matrices to form the value memory (d)L when r ≥ m, or whitened
random matrices when r < m. In the former case, an orthogonal
matrix can be formed by applying the QR decomposition to a random
matrix generated from the standard normal distribution. The fact that
values of (d)L are real-valued should not be discouraging as it is
meant to be implemented in software. In case if (d)L is also desired
to be binary/bipolar, one could use, e.g., Walsh codes to form (d)L.

A. Compression in Noiseless Condition

In the first experiment, we evaluate the tradeoff between the clas-
sification accuracy of the generalized KV memory and its dimension,
which is controlled by r . Fig. 1 presents the average classification
accuracy against r for two problems: 20-way five-shot (left panel)
and 100-way five-shot (right panel). The markers depict the baselines
obtained with the original KV memories5 Recall, that the dimension
of the original key memory is mn, i.e., 100 and 500 for the considered
problems, respectively. The dashed lines correspond to the results
of the generalized KV memories. For both problems, to provide
the intuition for the dimensions of the original key memories,
r was limited to mn. It is clear that for both problems, the accuracy
of the generalized KV memories approached the accuracy of the
original KV memories with values of r being smaller than mn.
For example, for the 20-way five-shot problem, the generalized KV
memory reached 95% of the accuracy of the original KV memory by
using r of 10, 12, and 14 for real, bipolar, and binary key memory,
respectively; these correspond to mn/r ratio, hence, memory saving
of 10.0×, 8.3×, and 7.1×. For the 100-way five-shot problem, the
corresponding values of r were 60, 70, and 80, with memory savings
of 8.3×, 7.1×, and 6.3×, respectively. These results demonstrate the
possibility of compressing the KV memory without sacrificing most
of the classification accuracy.

B. Robustness in the Presence of White Noise

The previous experiment did not take into account the fact that a
hardware implementation of the key memory might return a noisy
version of γ as the result of computing the dot products. Therefore,
in the second experiment, we measure the classification accuracy
against the white noise added to γ . The experiment is conducted with
20-way five-shot problem using all three variants of the key memory:
real, bipolar, and binary. The dimension of the original key memory
was fixed to nm = 100, while for the generalized KV memory
flexibly sets four different values with r ∈ {50, 100, 150, 200}
without any need to retrain the controller.

5All the experimental results for the original KV memory were obtained
using the identity function as the sharpening function in (3).

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on April 20,2022 at 18:21:03 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 1. Average classification accuracy against the dimensionality of representations of the class labels (r). The results are shown for the real, bipolar, and
binary variants of the key memory and query vectors, in software without any noise. The results are averaged over 1000 problems randomly chosen from the
test data.

Fig. 2. Average classification accuracy against SNR of α. The 20-way five-shot problem is used with fixed nm = 100 while r < nm or r ≥ nm. Panels
correspond to real, bipolar, and binary variants of the key memory and query vectors in software. The results are averaged over 100 problems randomly
chosen from the test data.

Fig. 2 presents the results. As expected, the low SNR values
reduced the classification accuracy. At the same time, it is clear that
the dimension of the key memory has an effect on the robustness
to noise. The generalized KV memory with the lowest r (r = 50)
demonstrated the worst performance for the low SNR values. When
r = mn, both memory types performed very close to each other
independent of the SNR values. However, since the generalized KV
memory can control r , it can be set to r > mn. Thus, the generalized
KV memory can be flexibly switched to the second mode with a
larger amount of redundancy to provide robustness to extremely low
SNR values. For example, r = 400 exhibits a very graceful accuracy
degradation (e.g., an accuracy of >90% at SNR = −10 dB). These
results provide the evidence that subject to sufficient dimensionality
of r , the generalized KV memory can be designed to operate at very
low SNR.

C. Robustness in the Presence of PCM Nonidealities

It is important to note that the noise and nonidealities present in
the PCM devices are not well-described by white noise. It has been
shown that there are three major components to PCM noise. These
include 1) a programming noise component which is modeled as
multiplicative Gaussian noise; 2) drift noise component which models
1/ f noise as a Gaussian random exponent with respect to time; and
3) read noise component which is modeled as additive Gaussian noise
(see Supplementary notes in [12]). Of these, the programming noise
variability can be directly controlled by employing an iterative pro-
gramming scheme whereas drift and noise components are controlled
by external conditions such as temperature or the internal conductance
state, over which there is less controllability. Therefore, we perform

the last set of experiments using the model of a temporal evolution
of conductance G(t) of a single PCM device [12]

G(t) = N (
0, G̃2

r

) + (
G0 · N (

1, G̃2
p

)) · t−ν·N (1,ν̃2)) (8)

where N (μ, σ 2) denotes a normal distribution; t is the time since
programming (assumed to be 20 s), G0 is the mean conductance at

t = 1 s (measured: G0 = 22.8×10−6 S), ν is the mean drift exponent
(measured: ν = 0.0598); G̃2

r , G̃2
p, and ν̃2 represent the variation in

additive read noise (measured: G̃r = 0.496 × 10−6 S), conductance
variation (programming noise; measured: G̃ p = 31.7%), and drift
variation (measured: ν̃ = 9.07%), respectively. Please refer to “PCM
model and simulations” subsection in “Method” section in [12] for
the additional details of the model. We perform the experiments by
varying the relative conductance variation (i.e., G̃ p) while keeping
all other parameters fixed.

Figs. 3 and 4 present the average classification accuracy against
the conductance variation in the PCM model for 20-way five-shot
and 100-way five-shot problems, respectively.6 The dimension of the
original key memories are fixed to nm, while for the generalized
KV memories different values of r are used: {50, 100, 150, 200} and
{250, 500, 1000, 2000}, respectively. Note that the PCM implemen-
tation of the bipolar variants requires two devices per dimension.

The results for the original KV memory are consistent with the
ones reported in [12] in the sense that the bipolar variant is more
robust against the conductance variations. Also, similar to the results
in Fig. 2, for both problems the generalized KV memory with

6The diligent readers are kindly referred to the Supplementary Material that
provides an additional experimental evaluation to further justify the proposed
approach.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on April 20,2022 at 18:21:03 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 5

Fig. 3. Average classification accuracy against the conductance variations in the PCM model for 20-way five-shot problem. Panels correspond to the bipolar
and the binary variants of the key memory mapped to PCM devices. The results were averaged over 1000 problems randomly chosen from the test data.

Fig. 4. Average classification accuracy against the conductance variations in the PCM model for 100-way five-shot problems. Panels correspond to the
bipolar and the binary variants of the key memory mapped to PCM devices. The results were averaged over 1000 problems randomly chosen from the test
data.

Fig. 5. Average dimensionality of r against the conductance variation in the PCM model required to maintain iso-accuracies of the corresponding variants
of the original noiseless KV memory. Panels correspond to 20-way five-shot and 100-way five-shot problems, respectively. The results are averaged over
1000 problems randomly chosen from the test data.

the lowest r (r = 50 and r = 250, respectively) consistently
demonstrates the lowest accuracy amongst all depicted. Importantly,
the generalized KV memory performs better than the original one for
high conductance variations (>80%) when r = nm (i.e., having the
same number of devices). This can be attributed to the fact that the
local organization is more brittle to errors than the distributed one,
which is a well-known advantage of distributed representations [25].
Finally, the robustness to the conductance variation can be increased
further by increasing r , and naturally, the largest values of r (r = 400
and r = 2000, respectively) demonstrate the least accuracy degra-
dation even at the very high conductance variation. In particular,
for G̃ p = 200% compared to G̃ p = 0% the accuracy decreases
by only 0.26% (r = 400) & 0.90% (r = 2000) and 0.64%

(r = 400) & 1.97% (r = 2000) for the bipolar and binary variants,
respectively.

Iso-Accuracy Generalized KV Memory at Conductance Variations:
In the previous experiment, the generalized KV memory improves
the robustness to conductance variations by increasing r . Hence, the
next step is to investigate whether the generalized KV memory can
achieve the iso-accuracy of the original KV memory without any
noise and nonidealities as in Fig. 1. The average values of r providing
the iso-accuracy for a range of conductance variations are depicted
in Fig. 5.

Considering the 20-way five-shot problem with the binary vectors,
the generalized KV memory can maintain the original accuracy of its
noiseless software variant when experiencing up to 44% variations in

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on April 20,2022 at 18:21:03 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

the PCM hardware, yet using the same number of devices (r = mn).
Since in the hardware implementation, the “set” conductance was
fixed at 38 μS, 44% conductance variation translates into a standard
deviation of the “set” conductance distribution of 16 μS. For the
larger amount of variations, increased r can guarantee the iso-
accuracy; as expected, for the bipolar KV memories r grows slower
than that of the binary ones. Similar trend is observed for the large
100-way five-shot problem. As shown, it is possible to achieve the
iso-accuracy even for extremely high conductance variations, which
confirms the general nature of the proposed KV memory, which
allows trading-off additional hardware resources for the robustness
of the classification accuracy.

V. CONCLUSION

This brief presented the generalized KV memory for MANNs. The
proposed approach is based on the two key ideas. First, the fact that
it is not necessary to use one-hot encodings for the value memory;
randomized distributed representations can be used instead. Second,
the organization of the key memory can be changed from the local
one (storing individual support vectors) to the distributed one with
the outer product learning rule.

The empirical evaluation demonstrated the flexibility of the gen-
eralized KV memory. In the noiseless conditions, it achieves the
classification accuracy on a par with the original KV memory using
a fraction of dimensions required by the original key memory.
Alternatively, for very harsh conditions the generalized KV mem-
ory can easily adjust the memory redundancy to tolerate extreme
amounts of noise and nonidealities, which is an attractive fea-
ture for implementing the KV memory on emerging computational
NVM devices.

REFERENCES

[1] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997, doi: 10.1162/neco.
1997.9.8.1735.

[2] A. Graves, G. Wayne, and I. Danihelka, “Neural Turing machines,” 2014,
arXiv:1410.5401.

[3] A. Graves et al., “Hybrid computing using a neural network with
dynamic external memory,” Nature, vol. 538, no. 7626, pp. 471–476,
2016.

[4] J. Weston, S. Chopra, and A. Bordes, “Memory networks,” in Proc. Int.
Conf. Learn. Represent. (ICLR), 2015, pp. 2440–2448.

[5] S. Sukhbaatar, A. szlam, J. Weston, and R. Fergus, “End-to-end memory
networks,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2015,
pp. 2440–2448.

[6] Z. Wu, Y. Xiong, S. X. Yu, and D. Lin, “Unsupervised feature learning
via non-parametric instance discrimination,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), 2018, pp. 3733–3742.

[7] Z. Wu, A. A. Efros, and S. X. Yu, “Improving generalization via scalable
neighborhood component analysis,” in Proc. Eur. Conf. Comput. Vis.
(ECCV), Sep. 2018, pp. 685–701.

[8] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. P. Lillicrap,
“Meta-learning with memory-augmented neural networks,” in Proc. Int.
Conf. Mach. Learn. (ICML), 2016, pp. 1–9.

[9] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra,
“Matching networks for one shot learning,” in Proc. Adv. Neural Inf.
Process. Syst. (NIPS), 2016, pp. 3637–3645.

[10] K. Ni et al., “Ferroelectric ternary content-addressable memory for one-
shot learning,” Nat. Electron., vol. 2, no. 11, pp. 521–529, 2019.

[11] A. Sebastian, M. L. Gallo, R. Khaddam-Aljameh, and E. Eleftheriou,
“Memory devices and applications for in-memory computing,” Nature
Nanotechnol., vol. 15, no. 7, pp. 529–544, 2020.

[12] G. Karunaratne et al., “Robust high-dimensional memory-augmented
neural networks,” Nature Commun., vol. 12, no. 1, pp. 1–12,
Dec. 2021.

[13] P. Kanerva, “Hyperdimensional computing: An introduction to comput-
ing in distributed representation with high-dimensional random vectors,”
Cognit. Comput., vol. 1, no. 2, pp. 139–159, Oct. 2009.

[14] G. Karunaratne, M. Le Gallo, G. Cherubini, L. Benini, A. Rahimi,
and A. Sebastian, “In-memory hyperdimensional computing,” Nature
Electron., vol. 3, no. 6, pp. 327–337, Jun. 2020.

[15] A. Rahimi et al., “High-dimensional computing as a nanoscalable
paradigm,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 64, no. 9,
pp. 2508–2521, Sep. 2017.

[16] R. W. Gayler, “Vector symbolic architectures answer Jackendoff’s chal-
lenges for cognitive neuroscience,” in Proc. Joint Int. Conf. Cognit. Sci.
(ICCS/ASCS), Dec. 2003, pp. 133–138.

[17] D. Kleyko et al., “Vector symbolic architectures as a computing frame-
work for nanoscale hardware,” 2021, arXiv:2106.05268.

[18] D. Kleyko, D. A. Rachkovskij, E. Osipov, and A. Rahimi, “A survey on
hyperdimensional computing aka vector symbolic architectures—Part I:
Models and data transformations,” 2021, arXiv:2111.06077.

[19] D. Kleyko, D. A. Rachkovskij, E. Osipov, and A. Rahimi, “A survey
on hyperdimensional computing aka vector symbolic architectures—
Part II: Applications, cognitive models, and challenges,” 2021,
arXiv:2112.15424.

[20] B. M. Lake, R. Salakhutdinov, and J. B. Tenebaum, “Human-level
concept learning through probabilistic program induction,” Science,
vol. 350, no. 6266, pp. 1332–1338, 2015.

[21] E. Mizraji, “Context-dependent associations in linear distributed mem-
ories,” Bull. Math. Biol., vol. 51, no. 2, pp. 195–205, 1989.

[22] E. P. Frady and F. T. Sommer, “Robust computation with rhythmic spike
patterns,” Proc. Nat. Acad. Sci. USA, vol. 116, no. 36, pp. 18050–18059,
Sep. 2019.

[23] A. A. Frolov, D. Husek, and D. A. Rachkovskij, “Time of searching
for similar binary vectors in associative memory,” Cybern. Syst. Anal.,
vol. 42, no. 5, pp. 615–623, 2006.

[24] V. I. Gritsenko, D. A. Rachkovskij, A. A. Frolov, R. Gayler, D. Kleyko,
and E. Osipov, “Neural distributed autoassociative memories: A survey,”
Cybern. Comput. Eng., vol. 2, no. 188, pp. 5–35, 2017.

[25] E. P. Frady, D. Kleyko, and F. T. Sommer, “A theory of sequence
indexing and working memory in recurrent neural networks,” Neural
Comput., vol. 30, no. 6, pp. 1449–1513, 2018.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on April 20,2022 at 18:21:03 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735

