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Abstract

It is well known that sparse coding models trained on natural images learn basis
functions whose shapes resemble the receptive fields (RFs) of simple cells in the primary
visual cortex (V1). However, few studies have considered how these basis functions
develop during training. In particular, it is unclear whether certain types of basis
functions emerge more quickly than others, or whether they develop simultaneously. In
this work, we train an overcomplete sparse coding model (Sparsenet) on natural images
and find that there is indeed order in the development of its basis functions, with basis
functions tuned to lower spatial frequencies emerging earlier and higher spatial
frequency basis functions emerging later. We observe the same trend in a biologically
plausible sparse coding model (SAILnet) that uses leaky integrate-and-fire neurons and
synaptically local learning rules, suggesting that this result is a general feature of sparse
coding. Our results are consistent with recent experimental evidence that the
distribution of optimal stimuli for driving neurons to fire shifts towards higher
frequencies during normal development in mouse V1. Our analysis of sparse coding
models during training yields an experimentally testable prediction for V1 development
that this shift may be due in part to higher spatial frequency RFs emerging later, as
opposed to a global shift towards higher frequencies across all RFs, which may also play
a role. We also find that at least two explanations could account for the order of RF
development: 1) high frequency RFs require more information to be specified accurately,
and thus may require more visual experience in order to learn, and 2) early development
of low frequency RFs improves the sparseness and fidelity of the visual representation
more than early development of high frequency RFs.

Author summary

We are interested in how visual neurons learn representations of the natural world. In
particular, we want to know whether certain visual features are learned by the visual
cortex earlier in development than others. To address this question, we turn to a class
of algorithms that can learn to represent natural scenes in a sparse fashion, with only a
few neurons active at any given time (population sparseness). While sparse coding has
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been used extensively to model the response properties of neurons in the visual cortex,
we use it here to arrive at a quantitative description of the way neurons might learn to
encode visual information during development. We find that receptive fields (RFs)
tuned to lower spatial frequencies develop earlier in our sparse coding models compared
to high frequency RFs. If our prediction is accurate, such a description would provide a
general framework for understanding the development of the functional properties of V1
neurons and serve as a guide for future experimental studies. It could also lead to new
computational models that learn from input statistics, as well as advances in the design
of devices that can augment or replace human vision.

Introduction 1

A central goal of systems neuroscience is to establish a precise quantitative description 2

of how neurons learn to encode sensory stimuli. Simple cells in the primary visual 3

cortex (V1) have well-studied response properties [1–4] and therefore offer a useful 4

model system for understanding how these representations of the visual world are 5

learned during development. In this work, we use computational models of neural 6

encoding to understand how V1 simple cells learn to represent the visual world from a 7

stream of visual input. While many response properties of V1 simple cells can emerge 8

before eye-opening without the need for visual experience (e.g., orientation selectivity 9

and ocular dominance), observations of changes in receptive field (RF) properties that 10

depend on the nature of the visual environment suggest that plasticity in V1 is 11

experience-dependent [5]. Experimental evidence also shows that early postnatal visual 12

experience is necessary for natural scene representation and discriminability in V1 [6]. 13

The process of learning to encode visual information in V1 has been modeled as an 14

unsupservised learning problem in which neurons adapt their tuning properties in order 15

to optimize some objective function based on the statistical structure of stimuli in the 16

natural environment. One coding principle that has proven to be useful for 17

understanding sensory representations is sparseness, which posits that the neural 18

population should not only maximize fidelity to input stimuli, but also minimize the 19

number of active units (L0 population sparseness), or the amount of neural activity 20

across the population (L1 population sparseness) [7]. Sparseness is an appealing concept 21

for biological systems, both in terms of conserving metabolic costs and efficiently 22

representing natural scenes, which have sparse structure [8]. Indeed, sparse coding 23

models trained on natural image data to jointly optimize both fidelity to the input and 24

sparseness have been shown to learn basis functions whose response properties replicate 25

simple cell receptive fields (RFs) of V1 neurons [9–11]. 26

Moreover, Hunt et al. have demonstrated that training sparse coding models with 27

unnatural training images results in basis functions resembling the RFs that arise when 28

animals are reared with abnormal visual input, suggesting that sparse coding is a 29

feature of experience-dependent development [12]. Zylberberg and DeWeese show that 30

sparse coding can account for the experimentally observed decrease in sparsity of V1 31

neural encodings over development in ferrets. They replicate this observation in 32

SAILnet, a biologically plausible sparse coding model, by tracking the changes in 33

sparseness of the learned representations throughout model training [13]. 34

In this work, we analyze sparse coding models during training to answer the 35

following question: do some types of basis functions develop sooner than others, and if 36

so, which ones? Experimental work demonstrates that over the course of development, 37

the distribution of frequency tuning of V1 neurons shifts towards higher spatial 38

frequencies, and this shift requires visual experience [14,15]. However, the question 39

remains whether this shift is due to high spatial frequency RFs emerging later after the 40

early development of low spatial frequency RFs, or whether there is a global shift during 41
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development across all receptive fields towards higher spatial frequencies. We find that 42

the Sparsenet model [9] predicts the former to be true: low spatial frequency basis 43

functions tend to emerge earlier in training, and high spatial frequency basis functions 44

tend to emerge later. In fact, we observe the same behavior for the SAILnet model [11] 45

of sparse coding, which implements leaky integrate-and-fire neurons and synaptically 46

local learning rules, suggesting both that this result is a general feature of sparse coding 47

and that it is biologically plausible. 48

Methods 49

Data and pre-processing 50

The sparse coding models used in this work are trained on 16×16 patches drawn from 51

35 images in the van Hateren database [16]. The original images are 1024 rows × 1536 52

columns, with pixel values linearly proportional to intensity. They are then 53

pre-processed using the same procedure described in [17]. The full images are first 54

transformed to log-intensity to account for background luminance [18]. The central 55

1024×1024 region of each image is extracted and the mean is subtracted to yield a pixel 56

distribution that is roughly symmetric around zero. Each image is then whitened and 57

lowpass filtered in the frequency domain by multiplying with the following filter: 58

W (f⃗) = |f⃗ |e−
(

|f⃗|
f0

)n

, (1)

where f⃗ denotes the two-dimensional spatial frequency. The cutoff frequency f0 is set to 59

200 cycles/image, and the steepness parameter n is set to 4 to produce a sharp cutoff 60

without introducing ringing in the space domain [19]. This filter is chosen to attenuate 61

low frequencies while boosting high frequencies. For natural images, which typically 62

have power spectra that roughly obey a 1/f2−η power law, with 0 < η < 0.3 [20], the 63

filter flattens out the power spectrum to approximately whiten the images. Consistent 64

with this, we find that the filter tends to overcompensate, giving slightly more power to 65

higher frequencies than to lower frequencies (S1 Fig). The central 512×512 region of the 66

image frequency domain is then extracted and inverse Fourier transformed to yield a 67

512×512 image that is down sampled by a factor of two from the original. The set of 68

images obtained this way is then multiplied by a single scale factor so that the variance 69

of the entire ensemble is 1.0. The filenames of the exact images used are listed in [17]. 70

Sparsenet simulation details 71

Sparsenet [9] is a sparse coding model that learns to approximate reconstructions of 72

natural images as a linear combination of basis functions. The model is trained by 73

alternately optimizing the basis functions and the coefficients of the linear 74

combination [9,21,22]. The model used here consists of 2048 basis functions (about 10× 75

overcomplete relative to the effective dimensionality of the input image patches). The 76

basis functions are initialized with Gaussian white noise. At each training iteration, a 77

batch of 100 image patches is presented to the model. The model is trained for 105 78

iterations with a sparseness parameter of λ = 1. All learning rates are held constant 79

throughout training and are specified in the code used to generate these results, publicly 80

distributed by Yubei Chen (https://github.com/yubeic/Sparse-Coding/). 81

SAILnet simulation details 82

The SAILnet [11] model is a network of leaky integrate-and-fire neurons that learns 83

approximate reconstructions of natural images based on neuronal spiking activity. The 84
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neurons receive excitatory feed-forward input from the image pixels weighted by their 85

respective receptive fields (basis functions) and inhibit each other by recurrent 86

connections. If the net input to a neuron exceeds its threshold value in response to a 87

given image, it will emit some number of spikes; these spike counts are analogous to the 88

coefficients in Sparsenet. The model is trained on Hebbian and anti-Hebbian rules 89

similar to those used in [23], with the additional constraint that learning is localized to 90

each synapse without information from any other synapses in the network. As with 91

Sparsenet, the basis functions are initialized with Gaussian white noise, and the model 92

is trained with batches of 100 images for 105 iterations. To ensure stable convergence 93

and sufficient diversity of the basis functions, the learning rates and model parameters 94

must be appropriately tuned. Otherwise, the basis functions might only learn 95

low-frequency features or they could exhibit what we will refer to as “fluidity” and 96

continue to change indefinitely rather than converge to a final shape. The learning rate 97

schedule is as follows: the initial learning rate in the original SAILnet code (linked 98

below) for the first 103 iterations; the initial learning rates reduced by a factor of 10 99

from that point until 5× 104 iterations; and tuned down by another factor of 10 from 100

that point until the end of training. We set the sparseness parameter p, which 101

modulates the target number of spikes per image, at p = 0.025, and θ0, the initial firing 102

thresholds, at θ0 = 4.0. The SAILnet results are generated using code publicly 103

distributed by Joel Zylberberg (http://www.jzlab.org/sailcodes.html). 104

Classification of basis functions by frequency 105

Power spectra of the basis functions are computed by 2-dimensional discrete fast Fourier 106

transform. We sample the power spectra for frequencies of up to 8 cycles per image 107

(half the width and length of the basis functions) and bin by amplitude. Each basis 108

function is assigned a class based on the maximum power frequency in its power 109

spectrum: for each network, the lowest third of maximum frequencies is classified as low 110

frequency, the middle third is classified as mid frequency, and the highest third is 111

classified as high frequency. 112

Results 113

Sparsenet learns low frequency basis functions earlier 114

To study the rate at which basis functions are learned in Sparsenet, we train an 115

overcomplete Sparsenet model on whitened natural image patches [9, 17]. We display 116

the full learned Sparsenet dictionary in S2 Fig. For the model details and link to the 117

code used, see Methods. 118

The basis functions in the model are initialized with Gaussian-distributed white 119

noise. The extent to which a basis function is learned at a given time step in training t 120

is measured by the degree of similarity to its final learned shape at the final training 121

time step T . We quantify this using cosine similarity, the cosine of the angle between 122

two vectors, between a given basis function at t and that same basis function at T . This 123

is expressed as 124

similarity(BFt, BFT ) =
BFt ·BFT

∥BFt∥ ∥BFT ∥
, (2)

where BFt denotes the basis function at a given time step t, BFT denotes the final 125

learned basis function, and ∥·∥ denotes the L2 norm. By definition, the maximum 126

similarity between any two basis functions is 1, which indicates that they are equal up 127
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to a re-scaling of the pixel intensities. Two orthogonal basis functions have a similarity 128

of 0. 129

We divide the basis functions into three equally sized categories — low, mid, or high 130

frequency — based on the peak frequencies in their power spectra (see Methods for 131

details). We plot the similarity over training time steps t and find that on average low 132

frequency basis functions converge to their final learned shapes (reach similarity of 1) 133

first, followed by the mid frequency basis functions, and the high frequency basis 134

functions converging last (Fig 1A). The effect persists when binning the basis functions 135

by the actual values of the peak frequency (number of cycles) in their power spectra, as 136

opposed to binning into equally sized frequency batches, though differences in the 137

number of basis functions for each category lead to higher variance for bins containing 138

fewer basis functions (S3 Fig). These results demonstrate that the rate at which basis 139

functions are learned is characterized by a spectral bias towards lower frequency 140

features in the data. 141

Fig 1. Low frequency basis functions develop earlier than high frequency
basis functions in sparse coding models. (A) Convergence of basis functions over
training time. A value of 1 on the y-axis denotes a basis function that has fully
converged to its final learned shape BFT , so the higher the curve, the faster the basis
function has converged. The shaded regions denote 95% confidence intervals about the
mean for each category. (B) Representative examples of one basis function developing
(left to right, shown every 1000 training iterations) from each frequency category,
starting from random initialization. (C)—(D) Same analysis in SAILnet.

A biologically plausible sparse coding model also learns low 142

frequency basis functions earlier 143

We perform the same analysis as in the previous section using the SAILnet model, a 144

biologically plausible sparse coding model that uses leaky integrate-and-fire (LIF) 145

neurons and local learning rules [11]. Each neuron receives feed-forward input from 146

image pixels, as well as inhibitory synaptic input from the other neurons in the network. 147

The feed-forward weights and inhibitory synapses are both trained by iterative local 148

learning rules — the update rule for an individual synaptic weight only depends on 149

information available at that synapse during training, without requiring any information 150

from any of the other synapses in the network. A third learning rule trains each 151

neuron’s firing threshold, which modulates how often that neuron fires for a given 152

amount of input. This rule is also local in that it only trains each threshold based on 153

the current firing rate of that neuron, without access to the firing rates of any other 154

neurons in the network. We emphasize these features of the model to demonstrate that 155

this model achieves sparse representations while incorporating biologically plausible 156

learning mechanisms — as could occur in real neuronal networks such as the population 157

of simple cells in V1. For SAILnet, neural activities take on discrete values in terms of 158

the number of spikes for a given input, and learning is local to synapses and neurons, 159

neither of which is true for Sparsenet. For the model details and link to the code used, 160

see Methods. 161

We train SAILnet on the same whitened natural image data as with Sparsenet for 162

the same number of training iterations. We report the full learned SAILnet dictionary 163

in S2 Fig. We find that on average, SAILnet also learns lower frequency basis functions 164

earlier in training and higher frequency basis functions later in training (Fig 1C). 165

Though the effect is smaller than in Sparsenet, the same order of development persists 166

and also holds when binning by the actual peak frequency values (S3 Fig). 167
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Candidate explanations for fast learning of low frequency basis 168

functions 169

There are several reasons one might expect low frequency basis functions to develop 170

earlier than high frequency basis functions. We analyze two of these here and 171

demonstrate that they are consistent with our findings. 172

Higher frequency basis functions require more spatial precision to specify 173

fully 174

The first potential reason for the observed spectral bias in training is that it requires 175

more spatial precision to specify higher frequency basis functions, and therefore they 176

may take more time to converge. We examine this by applying a small shift ϵ to the 177

phase of each basis function along the direction of its maximum spatial gradient. We 178

then compute similarity(BF,BF + ϵ), where BF + ϵ denotes the phase-shifted basis 179

function, and find that high spatial frequency basis functions are changed more from 180

their original shapes under ϵ-phase shifts (Fig 2A). The sensitivity of high frequency 181

receptive fields to small perturbations suggests they may require more training data to 182

converge to their final shapes. 183

Fig 2. Two candidate explanations for early development of low frequency
basis functions. (A)—(B) More information is needed to fully specify the shape of
high frequency basis functions. To illustrate the sensitivity of a basis function’s spatial
pattern to the parameters one might use to specify its detailed shape, such as its exact
location, we computed the similarity between a given basis function and the same
pattern shifted by a small amount. Phase shifts result in larger perturbations for higher
frequency representations. The distribution of similarity between basis function and
basis function under a 1-pixel phase shift for each frequency category. Vertical lines
denote the means for each category. Note that for both models, the mean of the low
frequency histogram is closer to 1 (exactly the same under phase shift) than that of the
mid frequency or high frequency histograms, as one would expect. (C) Early
development of lower frequency basis functions yields faster optimization of sparse
coding objective function. For each of the three categories, the distribution of decreases
in the Sparsenet objective function obtained by swapping one learned basis function
from a fully converged dictionary into a randomly initialized model. Each objective
function was evaluated on the same batch of 100 whitened natural image patches. A
negative decrease corresponds to an increase in the objective function. Vertical lines
denote the means for each category. Note that the low frequency histogram has a
greater mean value than the mid frequency or high frequency histograms.

Early learning of low frequency basis functions leads to faster optimization 184

Another reason we might expect low frequency basis functions to develop sooner is that 185

they lead to faster optimization. We examine this possibility by comparing the model 186

performance of a randomly initialized Sparsenet model to the performance of copies of 187

the same model with one fully trained basis function swapped in for one of the 188

randomly initialized basis functions. For each frequency category, we compute the 189

distribution of changes in the objective function obtained by swapping in one fully 190

trained basis function from that category. We find that swapping in lower frequency 191

basis functions yields greater decreases in the objective than swapping in higher 192

frequency basis functions (Fig 2B). This suggests that early development of low 193

frequency basis functions leads to larger improvements in the sparse coding objective 194
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function than would early development of high frequency basis functions. Moreover, 195

high frequency basis functions may only substantially improve sparse representations 196

once low frequency basis functions have already emerged. 197

Discussion 198

The spectral bias in sparse coding model training is consistent 199

with experimental findings in V1 development 200

In this work, we demonstrate that sparse coding models learn basis functions in a 201

hierarchical manner: lower frequency basis functions are learned early in training, and 202

higher frequency basis functions are learned later in training. Because Sparsenet and 203

SAILnet represent two substantially different model architectures, we argue that our 204

results are indicative of a general property of sparse coding, as opposed to being 205

particular to a specific model architecture or optimization algorithm. In addition, 206

because SAILnet is a biologically plausible model of sparse coding (see Methods), it 207

further suggests that this observed spectral bias may be a feature of RF development in 208

V1. 209

Our findings are consistent with experimental evidence that V1 becomes more 210

attuned to higher spatial frequencies over the course of experience-dependent 211

development. Chino et al. show a rapid increase in the mean optimal spatial frequency 212

tuning of V1 neurons in macaque monkeys over the first four postnatal weeks [14]. 213

Nishio et al. find that the overall distribution of optimal tuning of V1 neurons in mice 214

shifts towards higher spatial frequencies from postnatal weeks 3-6. They also find that 215

this shift in the distribution of optimal tuning towards higher frequencies does not occur 216

for binocularly deprived animals, suggesting that visual experience is required for 217

neurons to learn higher frequency representations [15]. 218

Our results may provide additional insight into this phenomenon because we are able 219

to observe the development of each individual basis function in the model, as opposed 220

to just sampling from the distribution of tuning across the V1 neuronal population at 221

different timepoints during training. In particular, we propose that this shift in the 222

distribution is due to higher frequency receptive fields emerging later than the low 223

frequency receptive fields. An alternative possibility is that it is due to a global shift 224

across all receptive fields towards higher spatial frequencies during development. Future 225

experimental work can help distinguish whether one or both of these explanations can 226

account for the observations in [14,15]. It may be experimentally challenging to track 227

individual neuronal receptive fields over the full course of development, which would be 228

the ideal way to distinguish whether high frequency RFs emerge late in development, as 229

opposed to all RFs shifting to higher frequencies over time. Whether or not this can be 230

done, it should be possible to sample from the population of receptive fields at various 231

points in development and estimate the relative proportions of low, mid, and high 232

frequency receptive fields at each time point. This could provide indirect evidence for 233

one or the other of these possibilities, depending on the details of the distribution of RF 234

shapes. 235

Convergence of the SAILnet model depends strongly on initial 236

conditions and model parameters 237

For some sets of hyperparameters and initial conditions, individual model neurons in 238

SAILnet do not each converge to one final learned shape. Rather, individual neurons 239

fluctuate, morphing from one shape to another throughout training; these fluctuations 240

do not terminate even after training for many iterations. We refer to this phenomenon 241
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as fluidity. This is in contrast to Sparsenet, for which we have only observed smooth 242

convergence of basis functions to their respective final shapes after many training 243

iterations. 244

We note that when the basis functions are fluid during training, the metric of 245

similarity over training time, and by extension, most simple metrics of convergence, are 246

no longer meaningful, as there is no point at which every basis function has fully 247

converged. Therefore, our main findings hold for a set of parameters and initial 248

conditions that are sufficient to suppress fluidity (see Methods). Whether fluidity is a 249

biological phenomenon is an interesting open question that we hope will be the subject 250

of future experimental work. 251

Basis function complexity and input data statistics could each 252

account for spectral bias in RF development 253

We propose two candidate explanations for why lower frequency basis functions emerge 254

earlier in sparse coding models. The first is a statement about complexity of the learned 255

basis functions: higher frequency functions require more spatial precision to specify, and 256

therefore may require more training data to accurately learn (Fig 1). The second is a 257

statement about the dataset: early development of lower frequency basis functions leads 258

to larger decreases in the sparse coding objective function, suggesting that the data 259

contains more statistically relevant features at lower frequencies. As it is known that 260

natural images exhibit a roughly 1/f2 power spectrum [20], with more power 261

concentrated at low frequencies, one might expect from the second mechanisms above 262

that learning first lower frequencies on natural image data is better for optimization. 263

However, we trained both models in this study on whitened natural images, which have 264

approximately flat power spectra across all frequencies between our upper and lower 265

frequency cutoffs. Moreover, our whitening procedure tends to overcompensate, 266

boosting higher frequencies so power increases with frequency. This makes our results 267

even more surprising: if anything, because of the dominance of higher frequencies in the 268

dataset, we would expect the model’s spectral bias to lean towards learning higher 269

frequencies first. This would seem to implicate the first mechanism over the second 270

since the first mechanism is not so obviously dependent on stimulus properties. 271

It could also be the case that some aspects of higher-than-second-order statistics in 272

the data not captured by the power spectrum may induce a bias towards learning lower 273

frequencies early in training. Similar phenomena have also been observed in other 274

statistical learning paradigms such as deep neural networks [24,25], suggesting that 275

spectral bias towards lower frequencies may be a general characteristic of representation 276

learning. 277

Finally, there are many factors potentially affecting spectral bias in biological 278

development that we do not consider in our modeling. For example, the optics of the 279

eyes of young animals often change during development after eye opening so that spatial 280

acuity increases over time [26]. Moreover, changes in the RFs of neurons upstream of 281

V1, such as in the retinas or the lateral geniculate nucleus of the thalamus, are 282

undoubtedly changing during development. 283

Conclusion 284

We have demonstrated that sparse coding models learn low frequency basis functions 285

earlier than high frequency basis functions during training and we propose this as an 286

experimentally testable prediction for development of simple cell RFs in V1. Here, we 287

only consider the development of V1 simple cells, rather than complex cells or neurons 288

in higher visual areas. Other sparse coding models have the capacity to learn complex 289
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cell receptive field properties and topography [27]. We also do not consider excitatory 290

connections between cells, which are a feature of the sparse coding model described 291

in [28]. Future work could analyze development of the basis functions in these 292

extensions of sparse coding. Other models of V1, such as the probabilistic Bayesian 293

update model [29], would also be interesting to explore in the context of development. 294

Our spectral bias prediction was derived in the context of experience-dependent 295

development, during which neuronal tuning adapts to natural scene statistics. It is 296

possible that this particular order of development may not hold for 297

experience-independent development, such as occurs in V1 prior to eye opening.This 298

question could be addressed by considering different input data to the model. One 299

possible input could be internally generated spontaneous neural activity, such as retinal 300

waves, which play a role in the wiring of circuitry in early visual areas. For example, 301

Dähne and colleagues implement slow feature analysis to encode retinal wave signals 302

and find that the learned features correspond to the shapes of V1 complex cells [30]. 303

Continuous-time implementations of sparse coding models trained on similar inputs 304

could yield further insights into experience-independent development. 305

Supporting information 306

S1 Fig. Power spectra of 5 randomly selected full, whitened images from 307

dataset. 308

S2 Fig. Complete dictionaries of learned basis functions. Both dictionaries are 309

about 10x overcomplete (2048 basis functions) with respect to the dimensionality (200 310

features) of the in the image patches of the training set. 311

S3 Fig. Direct correlation between number of cycles in peak frequency of 312

basis function and time to develop. 313
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