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Choosing dynamical systems that predict weak input
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Somehow, our brain and other organisms manage to predict their environment. Behind this must be an
input-dependent dynamical system, or recurrent neural network, whose present state reflects the history of
environmental input. The design principles for prediction—in particular, what kinds of attractors allow for greater
predictive capability—are still unknown. We offer some clues to design principles using an attractor picture when
the environment perturbs the system’s state weakly, motivating and developing some theory for continuous-time
time-varying linear reservoirs along the way. Reservoirs that inherently support only stable fixed points are
generically good predictors, while reservoirs with limit cycles are good predictors for noisy periodic input.

DOI: 10.1103/PhysRevE.104.014409

I. INTRODUCTION

In recent years, both the predictive brain and recurrent
networks have seen a surge of interest. Those who believe
in the predictive brain study how and how well organisms’
brains predict their environment, the idea being that prediction
is a necessary aspect to survival [1–3]. Those who study
recurrent networks engineer systems to predict input, such
as written text or audio files. See Refs. [4–7] for examples
of advances in designing and training recurrent networks for
such applications, and Refs. [8,9] for some applications. But
the mechanism behind the predictive brain must be a series of
molecular events, describable with nonequilibrium statistical
physics. Mathematically, this description is nothing more than
a recurrent network. As such, advances in one field can, in
principle, advance the other [10].

Many questions still remain about what kinds of recurrent
networks are good at predicting their input. We attempt to
answer this question in the limit in which environmental input
only weakly perturbs the state of the network and in which
there is an unspecified sensory readout layer that transforms
the system’s state into useful predictions of the environmental
input (a reservoir [4,5,7,10])—using the tools of dynamical
systems theory [11]. Notably, Ref. [12] showed that the vanilla
recurrent neural networks that we study here are capable, if
trained correctly, of achieving as high a performance as more
advanced architectures.

In dynamical systems theory, the attractor-basin portrait
reigns supreme. In this viewpoint, one tracks the behavior of
the dynamical system (without input) and broadly classifies
it as a fixed point, a limit cycle, or a strange attractor. A
fixed point means that the dynamical system’s state heads
towards a particular point and stays there; for a limit cycle,
the dynamical system’s state oscillates; and strange attractors
are famously infinite sets of unstable limit cycles, in which
the behavior of the system moves around unpredictably. With
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input, the attractor-basin portrait might, in principle, jump
from one combination of fixed points, limit cycles, and strange
attractors to another instantaneously, making it absolutely un-
suitable for analyzing the predictive capabilities of recurrent
networks. But if the input is weak, there is one attractor-basin
portrait that governs the general behavior of the recurrent
network for all time. We use this to try and understand which
of the three types of attractors—fixed points, limit cycles, or
strange attractors—is best for predicting which kinds of input
in the weak-input limit. In other words, we attempt to throw
the dynamical systems textbook [11] at the still-unanswered
question: how can reservoir computers be designed to predict
better [10]? The echo-state property—that inputs farther in the
past have less effect on the present network state—is known
to be key, and here we connect this property to attractor types.

In Sec. II, we describe some dynamical systems theory that
will aid us in our quest to find design principles for prediction.
In Sec. III, we describe the reservoir computing setup. In
Sec. IV, we first explain analytically why one can roughly
classify the predictive capabilities of a recurrent network with
weak input based on attractor type and then run simulations of
minimal models to confirm the analytics. Finally, we close in
Sec. V with the implications of these findings for the design
of reservoir computers and, therefore, potentially, biology.

II. BACKGROUND

In this paper, we use basic dynamical systems theory
to understand reservoir computers. Reservoir computers are
actually input-dependent dynamical systems coupled with a
linear (or sometimes nonlinear) readout layer. The weights
of the readout layer are trained and so we focus on de-
sign principles for the underlying input-dependent dynamical
system.

Sometimes, one views these input-dependent dynamical
systems as random dynamical systems or dynamical systems
with noise [13]. However, the so-called noise is actually signal
for us and so this viewpoint seems inappropriate. Instead, we
turn to Ref. [11]. The setup in that textbook is as follows.

2470-0045/2021/104(1)/014409(11) 014409-1 ©2021 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.104.014409&domain=pdf&date_stamp=2021-07-21
https://doi.org/10.1103/PhysRevE.104.014409


SARAH E. MARZEN PHYSICAL REVIEW E 104, 014409 (2021)

There is some dynamical system state �x that evolves according
to the differential equation d�x

dt = f (�x). Different behaviors
result from different choices of f (�x).

It may seem a priori that one cannot hope to meaningfully
say much about the behavior of �x(t ) without knowing the
details of f , but, in fact, there is a simple qualitative character-
ization of such behavior. This is codified in the attractor-basin
portrait. Depending on where one starts, �x(0), one can find
different qualitative behaviors. The attractor-basin portrait
is simply a codification of which initial conditions lead to
which behaviors. Imagine coloring every point in the d-
dimensional space of possible initial conditions by a color
that describes the resulting qualitative behavior. It turns out
that the colors form connected regions. Each of these regions
is a basin for the “attractor” that describes the qualitative
behavior.

There are, surprisingly, only three different qualitative be-
haviors, though each may be stable, semistable, or unstable:
a fixed point, a limit cycle, and a strange attractor. We only
care about the stable versions of the attractors in this paper,
as the unstable versions will not be chosen by a reservoir
computer as described below. If an initial condition belongs to
a basin for a stable fixed point, then the state of the system will
approach some special point �x∗ such that f (�x∗) = �0 and stay
there. This is a stable fixed point. If an initial condition leads
to some sort of oscillation, such that the trajectory is a contin-
uous deformation of a circle, then the attractor is described as
a stable limit cycle. And all other stable attractors—those in
which one does not leave a certain region but where one does
not either stop somewhere or repeat a trajectory—are strange
attractors.

For our purposes, a key quantity will be the Jacobian,
J = ∇�x f (�x). [In the main text, W (t ) corresponds to J (t ) for
a fixed value of the input.] Stable fixed points are rather
simple, such that all points in the basin will approach and
remain, if J has only eigenvalues with negative real part. Other
trajectories have more complicated properties. To understand
them somewhat qualitatively, we turn to e

∫ t
0 J (t ′ )dt ′

, where the
Jacobian is measured along the trajectory. For large enough
t , the logarithm of the eigenvalues of this propagator, scaled
by 1/t , describe the type of trajectory. These quantities are
known as Lyapunov exponents. Strange attractors will lead to
some eigenvalues that have positive real part.

Strange attractors have many weird properties. The best
known of these properties is that if two initial conditions start
close together, they diverge in distance exponentially quickly,
known as chaos. This is a direct result of the positive real
part of some of the eigenvalues of the Jacobian. As a point of
interest, it is well known that randomly generated dynamical
systems are typically strange attractors.

III. SETUP

Suppose that the system’s state �x evolves according to the
equation

d�x
dt

= f (�x, s), (1)

where s(t ) is the environmental input signal at time t and f is
differentiable with respect to s. At this point, we assume that

s(t ) is quite small in its effect on d�x
dt , in that

s(t ) = scarrier (t ) + δs(t ), (2)

where scarrier is a carrier signal that changes very slowly and
δs(t ) is a quickly changing signal. For instance, scarrier can be
the mean of the environmental input and thus unchanging. In
that situation, it is appropriate to think of δs(t ), the fluctua-
tions, as being the signal that we desire to predict. We also
track only deviations from the natural trajectory, δ�x, defined
more concretely in Results, as this maximizes both memory
and predictive power of the reservoir.

A common way of characterizing the reservoir’s predictive
capabilities is via the memory and prediction function m(τ )
[5], which is the squared correlation coefficient of a multivari-
ate linear regression of δ�x(t ) against s(t + τ ). (This is also
1 minus the stimulus-normalized mean-squared error of the
optimal linear estimate of an input time τ in the future based
on past inputs.) Here, we take some liberties as was done in
Ref. [14] and allow for τ to be either positive or negative.
When τ is positive, we call m(τ ) the prediction function. One
can analytically solve for the memory and prediction function
in terms of the covariance matrix,

Ci j = 〈δxi(t )δx j (t )〉 − 〈δxi(t )〉〈δx j (t )〉 (3)

and

(pτ )i = 〈s(t + τ )δxi(t )〉 − 〈s(t + τ )〉〈δxi(t )〉
= 〈δs(t + τ )δxi(t )〉. (4)

The formula is simply

m(τ ) = 1

〈δs2〉 p�
τ C−1 pτ . (5)

We will view 〈δs2〉 as an unimportant constant that says more
about the input than the functioning of the system and that
cancels a corresponding factor in the covariance matrix C. In
this paper, we consider the prediction function at times before
the system could be considered ergodic and so m(τ ) is also a
function of the time since the start of simulation, t .

IV. RESULTS

A straightforward Taylor expansion gives

d�x
dt

≈ f (�x, scarrier ) + fs(�x, scarrier )δs, (6)

where we have assumed that deviations from scarrier are quite
small. For the rest of this paper, we will take this approxima-
tion as an equality.

This Taylor expansion is somewhat similar in spirit to
Refs. [15,16], though we are dealing with a continuous-time
system and (relative to Ref. [15]) considering deviations at all
times rather than at just one time in the past. As such, our con-
clusions about the importance of the Jacobian’s eigenvalues in
determining memory are somewhat similar.

Though this looks somewhat impossible to solve, we make
a further approximation, valid only for a short time for most
dynamical systems, that �x is approximately that which solves

d�x∗

dt
= f (�x∗, scarrier ). (7)
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In general, �x∗ can be quite complicated. We approximate �x =
�x∗ + δ�x and expand to find, to first order in δs and δ�x,

dδ�x
dt

= ∇�x f (�x∗, scarrier )δ�x + fs(�x∗, scarrier )δs. (8)

This is exactly a continuous-time linear reservoir,

dδ�x
dt

= W (t )δ�x + v(t )δs, (9)

where the recurrent weights are W (t ) = ∇�x f (�x∗, scarrier ) and
the input is transformed according to the vector v(t ) =
fs(�x∗, scarrier ). One can explicitly solve for δ�x via

δ�x(t ) =
∫ t

0
exp

[∫ t

t ′
W (t ′′)dt ′′

]
v(t ′)δs(t ′)dt ′, (10)

with δ�x(0) = �0.
Notice already that this reservoir will have qualitatively

different behavior depending on if �x∗ is a stable fixed point,
limit cycle, or strange attractor. If �x∗ is a stable fixed point, all
of the eigenvalues of W (t ) will be negative and the reservoir
will have fading memory, i.e., the echo-state property [5]. If
�x∗ is a limit cycle, then all of the eigenvalues of W (t ) will
have nonpositive real part and imaginary parts, corresponding
to infinite memory for some dimensions of the input. And if �x∗
is chaotic, then some of the eigenvalues of W (t ) will even be
positive, corresponding to stronger memory of the past than
present, although exactly which aspects of the stimulus are

remembered strongly will change every time the linear ap-
proximation fails. In this sense, the typical dynamical systems
nomenclature [11] provides a framework for understanding
the predictive behavior of dynamical systems in the weak-
input limit. One can more easily design dynamical systems for
the desired prediction task by examining its behavior without
input first.

Note that this will not be a useful picture for understanding
prediction when the input is not weak. When the input is
strong, the attractor-basin portrait can change considerably as
a function of time, destroying our ability to understand the
trajectory of the system via recourse to the initial attractor-
basin portrait. We do not assume weak input because it is
biologically relevant or useful for engineering; we only as-
sume it so that we can make some headway in understanding
a special type of recurrent networks.

To elaborate on this intuition, we will pursue a more quan-
titative characterization of a reservoir’s predictive capabilities
via the memory and prediction function. Note that in calculat-
ing covariance for a time-varying reservoir, we are implicitly
taking an ensemble approach, averaging over realizations of
the input. The ergodic theorem does not usually apply for the
simulations in this paper—e.g., if one is dealing with a strange
attractor for relatively small snippets of stimulus—in that the
performance of a reservoir stimulated by many realizations of
input will be different than the performance of that reservoir
stimulated by a single long input.

In the Appendix A, we compute the following formula for
the memory and prediction function:

pτ =
∫ t

0
exp

[∫ t

t ′
W (t ′′)dt ′′

]
v(t ′)R(t + τ − t ′)dt ′, (11)

C =
∫ t

0

∫ t

0
exp

[∫ t

t ′
W (s′)ds′

]
v(t ′)R(t ′ − t ′′)v(t ′′)� exp

[∫ t

t ′′
W (s′′)�ds′′

]
dt ′dt ′′. (12)

We could use this to estimate the capability of a variety of
systems to remember select time series. An autocorrelation
function is selected, the system is simulated, and the integrals
above approximated as the squared correlation coefficients
from linear regression. In practice, however, these integrals
are difficult to compute accurately and so we simulate our
reservoirs with one of three kinds of input. Two are governed
by the same stochastic differential equations,

ds

dt
= vs, (13)

dvs

dt
= −γ vs − 3s + η(t ), (14)

such that η(t ) is zero-mean white noise with 〈η(t )η(t ′)〉 =
0.012δ(t − t ′). Constants were chosen somewhat arbitrarily,
though the variance on the white noise was chosen to be small
so that the input was “weak.” When γ = 0.1, the stimulus
oscillates and we say it is “underdamped”; when γ = 10,
the stimulus has exponentially decaying correlations, and we
say it is “overdamped.” We also aim to predict more compli-
cated types of input and so use a strange attractor to generate

stimuli:

ds1

dt
= 10(s2 − s1) + η(t ), (15)

ds2

dt
= s1(28 − s3) − s2, (16)

ds3

dt
= s1s2 − 8

3
s3, (17)

where η is unimportant mean-zero white noise. This Lorenz
attractor is known to generate chaotic behavior. The first co-
ordinate s1 is used as the stimulus for our reservoirs.

We start by analyzing a reservoir that is simply a sta-
ble fixed point. In the Appendix C, we show that for a
one-dimensional system with a stable fixed point, the predic-

tion function is simply m(τ ) = w
(
∫ A(λ)

w−λ
eλτ dλ)2∫

A(λ) λ
w−λ

dλ
, where we have

represented the input’s autocorrelation function as R(t ) =∫
A(λ)eλ|t |dλ. If, for instance, the input comes from an

overdamped harmonic oscillator, then m(τ ) = e−2λ∗τ w
w+λ∗ .

No matter if the input is an overdamped or underdamped
harmonic oscillator, higher w (higher restoring forces) are
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preferred for higher predictive power; and longer time hori-
zons are exponentially harder to predict.

These lessons hold for multidimensional stable fixed
points. To illustrate, we turn to a simple two-dimensional
dynamical system, the damped harmonic oscillator, where the
input affects the end position of the spring,

dx1

dt
= x2, (18)

dx2

dt
= f (x1 − s) − γ x2. (19)

Here, x1 plays the role of position, x2 plays the role of velocity,
and f is a nonlinear spring force. There is a stable fixed point
at x1 = 0, x2 = 0 with W = ( 0 1

− f ′(0) −γ ) and v = ( 0
f ′(0)). In

the weak-input limit, the predictive properties of this nonlin-
ear reservoir are equivalent to a completely linear reservoir, as
analyzed in Refs. [14,17]. One of the lessons from these works
was that maximizing predictive power requires, in general,
tuning the strength of the restoring force and the damping
force to the timescales of the input. However, it seems a highly
nontrivial task to predict exactly how the timescales of the
system should be optimally matched to the timescales of the
input. An additional lesson we learn here from examination of
m(τ ) and not just PC = ∫ ∞

0 m(τ )dτ is that, unsurprisingly, if
the autocorrelation function of the input decays with time in
some fashion, then it is harder to predict longer time horizons.

There is, however, a slight difference between the setup in
this article and that of Ref. [17]: namely, here, the state of the
system at t = 0 is identical for all realizations. Initially, then,
any deviations in the system state are directly attributable
to differences in the stimulus. Later, past differences in the
stimulus effectively amount to additional noise in the system
state, so that the system state is less able to correctly track
the present stimulus. Since our stimuli are designed so that
the present value provides the most information about future
values, the predictive power of the reservoir decreases with
time t . We see an example of this in Figs. 1–6 and in the
Appendices B and C.

We now turn to reservoirs that naturally oscillate. The
danger with using such systems to predict if input is weak is
that the system’s internal dynamics will eventually effectively
erase any memory it may have of the input in an oscillatory
fashion, since the system’s past positions will be largely de-
termined by its own internal dynamics. In the Appendix D,
we show that this intuition holds—strikingly—for a simple
oscillatory dynamical system. For illustration here, we turn to
the van der Pol oscillator,

dx1

dt
= x2, (20)

dx2

dt
= μ(1 − x2

1 )x2 − (x1 − s). (21)

The van der Pol oscillator is known to exhibit chaotic behavior
when driven strongly enough, but we avoid that possibil-
ity by focusing on weak input. We have made a choice to
imagine that the input signal primarily affects the restoring
force −x1 by jostling the other end of the “spring.” However,
our qualitative results seem to be somewhat insensitive to
this choice. For this oscillator, W = ( 0 1

−2μx1x2 − 1 μ(1 − x2
1 )) and

FIG. 1. The prediction function m(τ = 0.1) as it varies with time
since the stimulus was first presented. Shown are three different
reservoirs given an overdamped stimulus. The stable fixed point is
best equipped to predict this kind of input, as its prediction function
levels off at a high level. The van der Pol oscillator’s performance
oscillates about a decaying mean. The Lorenz attractor starts at a
high value, as predicted by short-time analysis in the Appendix, and
then decays to minimal predictive performance. All trajectories have
the same initial state of the system.

v = (0
1). No explicit solution exists for x1(t ), x2(t ), although,

in the Appendix D, we analyze the forecasting capabilities of
a reservoir with an infinite number of limit cycles and find
that the prediction function decays roughly inversely with
time t , with oscillations about this decaying mean. Perhaps
surprisingly, we see somewhat similar behavior for the van
der Pol oscillator in Figs. 1–6.

Finally, we examine a prototypical strange attractor, the
Lorenz attractor,

dx1

dt
= 10(x2 − x1) + s, (22)

dx2

dt
= x1(28 − x3) − x2, (23)

dx3

dt
= x1x2 − 8

3 x3. (24)

The coupling to the stimulus that we choose is arbitrary,
though our qualitative results do not depend so much on this
choice. From the prediction functions in Figs. 4–6, we see
an extreme version of the behavior shown for stable fixed
points and limit cycles. In particular, the prediction function is
quite large initially but decays to 0 for the damped harmonic
oscillator input considered above. This is strikingly unlike
the stable fixed point in that the prediction function does not
decay to a nonzero, if small, value, but to zero identically.
If the system state is initialized to a value not readily on the
attractor, then it takes longer for the prediction function to
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FIG. 2. The prediction function m(τ = 0.1) as it varies with time
since the stimulus was first presented. Shown are three different
reservoirs given a chaotic stimulus. The stable fixed point is, surpris-
ingly, best equipped to predict this kind of input, with a prediction
function that levels off at a nonzero level. The van der Pol oscillator’s
performance oscillates about a decaying mean, attaining nearly zero
predictive power at the simulation’s end. The Lorenz attractor starts
at a high value and stays at high values for longer than that in other
reservoirs, but then decays to minimal predictive performance. All
trajectories have the same initial state of the system.

decay to 0, as the path to the attractor is stereotyped enough
that the “noise” from past stimulus does not greatly affect the
system’s ability to sense the most recent stimulus.

Initial conditions were set so that there was no jitter in the
initial state of the system, but when this condition is removed,
the behavior of the prediction function is similar, as these are
stable fixed points, stable limit cycles, or strange attractors.
The effect of noise has been discussed at greater length in
Ref. [18]; its main effect is to add to the covariance matrix
and thus degrade both the memory and prediction function.

From Figs. 1–6, we see that it takes some time for the
Lyapunov exponents to govern the ability of the reservoir
to predict. Exactly how much time this takes depends on
exactly the trajectory. The prediction functions shown here for
τ = 0.1 and τ = 1 with Gaussian noise determining the jitter
in initial conditions shown here for τ = 0.1 is qualitatively
typical. An alternative explanation that only appears to work
in certain special cases, however, comes from the Appendix D,
in which the covariance matrix has eigenvalues that increase
linearly with time for limit cycles. This might be expected
from the analysis of Ref. [18] if one is to think of the instan-
taneous filters as having exponential amplification for strange
attractors or no exponential decrease for limit cycles. In fact,
one might expect the bounds of Ref. [19] to be weaker for the
limit cycles and strange attractors.

Why are strange attractors such comparatively bad dy-
namical systems for use as predictive reservoirs? Along the

FIG. 3. The prediction function m(τ = 0.1) as it varies with time
since the stimulus was first presented. Shown are three different
reservoirs given an underdamped stimulus. The stable fixed point has
a prediction function that levels off at a small but nonzero value. The
van der Pol oscillator’s performance oscillates about a slowly decay-
ing mean. The Lorenz attractor starts at a high value, as predicted by
short-time analysis in the Appendix B, and then decays to minimal
predictive performance. All trajectories have the same initial state of
the system.

strange attractor trajectory, the eigenvalues of the Jacobian
will contain some positive values. These positive eigenvalues
essentially introduce noise into the system’s state, so that
the incoming stimulus value has to compete with a large
amount of past stimulus-induced noise. In other reservoirs,
this stimulus-induced noise is more or less useful for under-
standing future input (see the Appendix B). The dependence
on stimulus “noise” could in theory be a boon for specially
designed input, such that the right aspect of the past is am-
plified by the natural dynamics of the system. In practice, we
conjecture that these types of input are nearly impossible to
design. This does not mean that strange attractors are useless
as predictive recurrent networks for input that is not weak, so
that this attractor-basin portrait does not hold.

V. CONCLUSION

Overall, we have found that the characteristics of both the
memory and prediction function are qualitatively different for
different types of attractors in the limit of weak input, almost
regardless of the type of weak input. When the attractor is a
stable fixed point, the prediction function decays from a large
initial value to a smaller nonzero value; when the attractor is a
stable limit cycle, the prediction function decays from its large
initial value and oscillates; and when the attractor is a strange
attractor, the prediction function decays from its large initial
value to a value of 0. These attributes are understandable after
an appeal to the eigenvalues of the Jacobian of the natural
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FIG. 4. The prediction function m(τ = 1) as it varies with time
since the stimulus was first presented. Shown are three different
reservoirs given an overdamped stimulus. The stable fixed point is
best equipped to predict this kind of input, as its prediction function
levels off at a high level. The van der Pol oscillator’s performance
oscillates about a decaying mean. The Lorenz attractor starts at a
high value, as predicted by short-time analysis in the Appendix B,
and then decays to minimal predictive performance. All trajectories
have the same initial state of the system.

system dynamics. Negative eigenvalues lead to exponential
decay of the prediction function to a nonzero value; purely
imaginary eigenvalues usually lead to some sort of cycling;
and positive eigenvalues eventually destroy any and all pre-
dictive capability.

Again, this does not necessarily mean that using a strange
attractor as a reservoir is always a bad idea, and the analysis
in this paper only applies if input is weak. However, if one
desires higher predictive capacity or forecasting capacity, the
analysis here suggests that one is better served by stable
fixed points or limit cycles, unless one takes care to only
use short snippets of input time series. This classification is
mostly in line with current thinking on the types of reservoirs
that predict well, as practitioners prefer reservoirs to have
the echo-state property [10]. Reservoirs that are inherently
chaotic, while internally rich [16], will likely not predict well,
unless the input itself has unusual long-range memory. For
specially designed networks, this may not be true [20], though
see Ref. [21]. On the other hand, perhaps surprisingly, reser-
voirs that inherently support stable fixed points or even limit
cycles can have rich enough dynamics for prediction while
satisfying this echo-state property.

This analysis also complements a previous understanding
of chaotic synchronization and other types of synchronization.
Suppose that one has access to the dynamical system produc-
ing the stimulus. One can replicate this dynamical system,
knock out one of the nodes, and feed in that aspect of the
stimulus instead. For instance, one can generate chaotic trajec-

FIG. 5. The prediction function m(τ = 1) as it varies with time
since the stimulus was first presented. Shown are three different
reservoirs given an underdamped stimulus. The stable fixed point has
a prediction function that levels off at a small but nonzero value. The
van der Pol oscillator’s performance oscillates about a slowly decay-
ing mean. The Lorenz attractor starts at a high value, as predicted
by short-time analysis in the Appendix, and then decays to minimal
predictive performance. All trajectories have the same initial state of
the system.

tories from the Lorenz equation and feed s into the reservoir
given by

dx2

dt
= s(28 − x2) − x1, (25)

dx3

dt
= sx1 − 8

3 x2. (26)

The trajectory of the reservoir will converge to the trajectory
of the hidden inputs in the stimulus [22]. If we analyze this
reservoir using our methods, we would classify this reser-
voir as having a stable fixed point attractor and a specially
designed v, a classification that is borne out by simulations.
The presence of chaotic synchronization therefore proves that
it is possible to match the reservoir to the input by specially
designing not just W , but also v. Surprisingly, the existence
of chaotic synchronization is not at odds with our analysis,
but complementary, as our analysis has found that stable fixed
points are well suited to the prediction of nearly all signals,
and that by designing W and v, one can get larger and larger
predictive capabilities.

It is unlikely that these insights will hold when the input is
not weak, in which case the attractor-basin portrait of dynam-
ical systems will likely not be useful in trying to understand
the predictive capabilities of nonlinear reservoirs. However,
when the input is weak, the analyses in this paper suggest that
one should use a recurrent network whose attractor is a stable
fixed point. The design of the stable fixed point is nontrivial
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FIG. 6. The prediction function m(τ = 1) as it varies with time
since the stimulus was first presented. Shown are three different
reservoirs given a chaotic stimulus. The stable fixed point is, surpris-
ingly, best equipped to predict this kind of input, with a prediction
function that levels off at a nonzero level. The van der Pol oscillator’s
performance oscillates about a decaying mean, attaining nearly zero
predictive power at the simulation’s end. The Lorenz attractor starts
at a high value and stays at high values for longer than that in other
reservoirs, but then decays to minimal predictive performance. All
trajectories have the same initial state of the system.

[14,17]. It may be useful to use a stable limit cycle when
the input is noisy and periodic. Strange attractors seem less
well performing, but they are generic, and so one must take
care when designing reservoir computers with weak input as
a result.
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APPENDIX A: COMPUTATION OF MEMORY AND
PREDICTION FUNCTION

We have

pτ = 〈δs(t + τ )δx(t )〉 (A1)

= 〈δs(t + τ )
∫ t

0
exp

[∫ t

t ′
W (t ′′)dt ′′

]
v(t ′)δs(t ′)dt ′〉 (A2)

=
∫ t

0
exp

[∫ t

t ′
W (t ′′)dt ′′

]
v(t ′)〈δs(t + τ )δs(t ′)〉dt ′ (A3)

=
∫ t

0
exp

[∫ t

t ′
W (t ′′)dt ′′

]
v(t ′)R(t + τ − t ′)dt ′, (A4)

and since 〈δs〉 = 0, 〈δx〉 = �0, we have

C = 〈δ�xδ�x�〉 (A5)

=
〈{∫ t

0
exp

[∫ t

t ′
W (t ′′)dt ′′

]
v(t ′)δs(t ′)dt ′

}{∫ t

0
exp

[∫ t

t ′
W (t ′′)dt ′′

]
v(t ′)δs(t ′)dt ′

}�〉
(A6)

=
〈{∫ t

0
exp

[∫ t

t ′
W (t ′′)dt ′′

]
v(t ′)δs(t ′)dt ′

}{∫ t

0
δs(t ′)v(t ′)� exp

[∫ t

t ′
W �(t ′′)dt ′′

]
dt ′

}〉
(A7)

=
∫ t

0

∫ t

0
exp

[∫ t

t ′
W (s′)ds′

]
v(t ′)〈δs(t ′)δs(t ′′)〉v(t ′′)� exp

[∫ t

t ′′
W (s′′)�ds′′

]
dt ′dt ′′ (A8)

=
∫ t

0

∫ t

0
exp

[∫ t

t ′
W (s′)ds′

]
v(t ′)R(t ′ − t ′′)v(t ′′)� exp

[∫ t

t ′′
W (s′′)�ds′′

]
dt ′dt ′′. (A9)

So only the autocorrelation function matters, as usual, for the
memory and prediction function.

APPENDIX B: MEMORY AND PREDICTION FUNCTION
NEAR t = 0 AND AT LARGE TIMES

Initially, the reservoirs are initialized so that there is no
variability in where they start. As the reservoirs progress, vari-
ability in the stimuli being presented translates into effective
variability in their system states, degrading their ability to
sense new stimuli values for all the stimuli considered here.
(It should be said that the stimuli considered here are all
representatives of a special class of stimuli—a quite common

one—for which the most recent value is typically the most in-
formative.) But initially, all reservoirs show strikingly similar
performance.

We can Taylor expand pτ and C to understand this phe-
nomenon. Let v0 be the initial value of v(t ). For pτ , we
find

pτ ≈ R(τ )tv0, (B1)

where corrections are of the order of t2 and up. For the covari-
ance matrix, we find

C ≈ 1
2 t2R(0)v0v

�
0 , (B2)
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although this expression is delicate, as this covariance matrix
approximation is singular. Higher-order terms—of the order
of t3 and up—turn the covariance matrix nonsingular and
depend on not only v0, but also the initial value of W , which
we call W0. We obtain those expressions as follows:

C = [
1
2 t2R(0) + 1

3 t3R′(0)
]
v0v

�
0

+ 1
2 R(0)t3(W0v0v

�
0 + v0v

�
0 W �

0 ). (B3)

Usually, the right-hand terms will ensure nonsingularity of the
approximate covariance matrix, though approximate inversion
is delicate because the higher-order terms are ensuring that the
matrix actually can be inverted. The memory and prediction
function is therefore

m(τ ) = 1

σ 2
y

p�
τ C−1 pτ (B4)

= 1

σ 2
y

R(τ )2t2v�
0 C−1v0. (B5)

Essentially, one of the eigenvalues of C will be of the order
of t2, and the remaining eigenvalues will be of the order of t3.
(Imagine rotating into a basis in which v0 is a unit vector.) The
one eigenvalue of the order of t2 will be 1

2 t2R(0). Then,

m(τ ) ≈ 1

σ 2
y

2R(τ )2t2

R(0)t2
= 1

σ 2
y

2R(τ )2

R(0)
. (B6)

Note that this is independent of v0 and so independent of
exactly what the reservoir is, or even where we start the
reservoir. The factor 2R(τ )2

R(0)σ 2
y

is only dependent on the type

of stimulus. This explains why, in simulation, all reservoirs
seemed to do roughly the same near t = 0.

At larger times, we can roughly think of the reservoir as
having turned past stimulus values into effective noise. In
other words, past stimulus values (with some stochasticity)
will affect the exact system state. In the worst-case scenario,
the variations in the system state will be essentially uncor-
related with the future stimulus value because the reservoir
will have amplified the wrong aspects of the past stimulus.
Then, we can understand the memory and prediction function
by returning to a discrete-time linear reservoir,

x(1) = W x(0) + vs(0). (B7)

Unlike the setup in the main text, we think of x(0) as being a
random variable due to the stochasticity of past inputs that is
completely uncorrelated with the present and future stimulus,
so that our ability to predict the future essentially relies on
our ability to record information about s(0). The memory and
prediction function can be obtained from

pτ = 〈x(1)s(1 + τ )〉 (B8)

= W 〈x(0)s(1 + τ )〉 + v〈s(0)s(1 + τ )〉 (B9)

= vR(τ + 1) (B10)

and

C = 〈x(1)2〉 (B11)

= W 2〈x(0)2〉 + v2R(0), (B12)

and so, putting these together,

m(τ ) = p2
τ

C
(B13)

= R(τ + 1)2v2

W 2〈x(0)2〉 + v2R(0)
(B14)

= R(τ + 1)2

1 + W 2

v2 〈x(0)2〉 . (B15)

As 〈x(0)2〉 grows, m(τ ) decreases. The longer the past of the
stimulus that is presented, the larger 〈x(0)2〉 is expected to
become, and so, the smaller the memory and prediction func-
tion. This problem is especially pernicious for the reservoir
based on strange attractors as the positive eigenvalues of the
Jacobian amplify past stimulus values in a typically useless
way. Past values are preferred over more recent values, but for
most stimuli, the most recent value contains more information
about future values.

In between the small and large time limits, we expect
intermediate behavior. x(t ) will be somewhat correlated with
s(t ) and thus s(t + τ ), but the strength of this correlation
will decrease as the attractor stores unnecessary information
about the growing past stimulus. We will therefore go from
the small-t limit above, in which the memory and prediction
function attains a maximal, reservoir-independent value, to
something closer to the large-t limit, in which the memory
and prediction function attains a small, reservoir-dependent
value. For the reservoir that is the Lorenz attractor, 〈x(t )s(t )〉
seems to tend to values that are of the order of 10−3, while
the eigenvalues of the covariance matrix 〈x(t )x(t )�〉 tend to
larger values in the hundreds no matter the type of input. This
is not the case for the reservoir whose attractor is a stable fixed
point or for the stable limit cycle, for which the eigenvalues of
〈x(t )x(t )�〉 and the values of 〈s(t )x(t )〉 are comparable. This
makes sense in that the positive eigenvalues of the Jacobian
of the Lorenz attractor are liable to amplify aspects of the
stimulus that are essentially noise, while the nonpositive real
parts of the eigenvalues of the Jacobian for stable fixed points
and stable limit cycles will reward more salient aspects of the
past stimulus.

APPENDIX C: SEMIQUANTITATIVE RESULTS FOR
STABLE FIXED POINTS

To get some intuition for what memory and prediction
functions look like for two types of attractors, i.e., that of
stable fixed points and that of limit cycles, for both cases, we
imagine that we start on the attractor, avoiding a discussion of
transients that take us closer to the stable fixed point or limit
cycle.

We can get slightly more illuminating expressions by con-
sidering the integral

R(τ ) =
∫

A(λ)eλ|τ |dλ, (C1)

integrated over the complex plane. Unlike in previous at-
tempts, integration over the complex plane is necessary, as the
input that is best matched to a limit cycle might be something
that has oscillations in its autocorrelation function.
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In the case of a stable fixed point—and we consider a
one-dimensional example here so that we can get a little more
intuition, though the intuition carries over to the multidimen-
sional case based on the simulations in the main text—we
have W (t ) = −w and v(t ) = v with w positive, and so

pτ =
∫ t

0
e−w(t−t ′ )vR(t + τ − t ′)dt ′ (C2)

=
∫ t

0
e−w(t−t ′ )v

∫
A(λ)eλ|t+τ−t ′|dλ (C3)

=
∫

A(λ)
∫ t

0
e−w(t−t ′ )veλ(t+τ−t ′ )dt ′dλ (C4)

=
∫

A(λ)veλτ

∫ t

0
e(−w+λ)(t−t ′ )dt ′dλ (C5)

=
∫

A(λ)veλτ e(−w+λ)t − 1

−w + λ
dλ, (C6)

which in the long-time limit (equivalent to nonequilibrium
steady state) converges to

pτ =
∫

A(λ)eλτ v

w − λ
dλ. (C7)

Similarly, we can treat the covariance matrix,

C =
∫ t

0

∫ t

0
e−w(t−t ′ )vR(t ′ − t ′′)ve−w(t−t ′′ )dt ′dt ′′ (C8)

=
∫

A(λ)v2
∫ t

0

∫ t

0
e−w(2t−t ′−t ′′ )eλ|t ′−t ′′ |dt ′dt ′′ (C9)

=
∫

A(λ)v2
∫ t

0

(∫ t ′

0
e−w(2t−t ′−t ′′ )eλ(t ′−t ′′ )dt ′′

+
∫ t

t ′
e−w(2t−t ′−t ′′ )eλ(t ′′−t ′ )dt ′′

)
dt ′ (C10)

≈
∫

A(λ)v2

[
− 1

w(λ − w)

]
dλ, (C11)

where we have again taken the long-time limit. Then we find

m(τ ) = w

(∫ A(λ)
w−λ

eλτ dλ
)2∫

A(λ) λ
w−λ

dλ
. (C12)

Note that the expression for the case of higher-dimensional
stable fixed points is far more complicated, e.g., see Ref. [17].

To see what kind of input the stable fixed point is best
tuned for, we stimulate with an input with exponentially
decaying autocorrelation function, A(λ) = σ 2

s δ(λ + λ∗), and

an input that oscillates and decoheres, A(λ) = σ 2
s
2 δ(λ + γ +

iω) + σ 2
s
2 δ(λ + γ − iω).

For the first, we find that

m(τ ) = e−2λ∗τ w

w + λ∗ . (C13)

In this case, the stronger the restoring force towards the stable
fixed point, the higher the memory and prediction function
and, as expected, memory strictly decays as the time horizon
increases. One can also decrease memory by having the input
have more strongly decaying correlations. A system with a

stable fixed point that is well suited for this kind of input will
try, paradoxically, to get the input back to the stable fixed
point as soon as possible. In that way, only the most recent
information about δs matters for determining the system state.

For the second kind of input, we find

pτ = e−γ τ

(w + γ )2 + ω2
[(w + γ ) cos(ωτ ) + ω sin(ωτ )],

(C14)

C = w + γ

w

1

(w + γ )2 + ω2
, (C15)

m(τ ) = e−2γ τ w

w + γ

[(w + γ ) cos(ωτ ) + ω sin(ωτ )]2

(w + γ )2 + ω2
.

(C16)

Note that this memory and prediction function is essentially
the memory and prediction function of the input with an ex-
ponentially decaying autocorrelation function, but augmented
with an oscillatory component that oscillates at the same fre-
quency as the oscillations in the input.

APPENDIX D: SEMIQUANTITATIVE RESULTS FOR
LIMIT CYCLES

To get some intuition for what memory and prediction
functions look like for two types of attractors, i.e., that of
stable fixed points and that of limit cycles, for both cases, we
imagine that we start on the attractor, avoiding a discussion of
transients that take us closer to the stable fixed point or limit
cycle.

We can get slightly more illuminating expressions by con-
sidering the integral

R(τ ) =
∫

A(λ)eλ|τ |dλ, (D1)

integrated over the complex plane. Unlike in previous at-
tempts, integration over the complex plane is necessary, as the
input that is best matched to a limit cycle might be something
that has oscillations in its autocorrelation function.

At this point, we have to choose the limit cycle that we
wish to study. For analytic ease, we focus on the system

dx1

dt
= x2 + x2δs, (D2)

dx2

dt
= −x1 − x1δs, (D3)

to which the solution (choosing the time origin properly) is al-
ways x1(t ) = a cos t , x2(t ) = −a sin t . This dynamical system
does not actually have stable limit cycles, in that you are not
attracted to this limit cycle in particular; depending on one’s
initial conditions, you travel on one of an infinite number of
possible limit cycles. But this dynamical system will suffice
for our purposes, as all we need is some sense of W and v for
a system with stable limit cycles.

Note that the choice of v here is somewhat ad hoc and does
affect the memory and prediction function—but the results
that we find for the v chosen here seem to hold true for some
other choices of v as well.
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For this dynamical system and the trajectory that are given, we find that

W =
(

0 1
−1 0

)
, v(t ) =

(−a sin t
−a cos t

)
. (D4)

From there, we find that

pτ =
∫ t

0
exp [W (t − t ′)]

(−a sin t ′
−a cos t ′

)
R(t + τ − t ′)dt ′ (D5)

=
∫

A(λ)
∫ t

0
exp [W (t − t ′)]

(−a sin t ′
−a cos t ′

)
eλ(t+τ−t ′ )dt ′ (D6)

=
∫

A(λ)eλτ

∫ t

0

(
a sin(t − 2t ′)
a cos(t − 2t ′)

)
eλ(t−t ′ )dt ′dλ (D7)

≈
∫

aA(λ)
eλτ

4 + λ2

(
2 cos t + λ sin t

−λ cos t + 2 sin t

)
dλ, (D8)

again taking the long-time limit, and that

C =
∫ t

0

∫ t

0
eW (t−t ′ )v(t ′)R(t ′ − t ′′)v(t ′′)�eW �(t−t ′′ )dt ′dt ′′ (D9)

= a2
∫ t

0

∫ t

0

(
sin(t − 2t ′)
cos(t − 2t ′)

)
R(t ′ − t ′′)(sin(t − 2t ′′) cos(t − 2t ′′))dt ′dt ′′ (D10)

= a2
∫

A(λ)
∫ t

0

∫ t

0
eλ|t ′−t ′′|

(
sin(t − 2t ′) sin(t − 2t ′′) sin(t − 2t ′) cos(t − 2t ′′)
cos(t − 2t ′) sin(t − 2t ′′) cos(t − 2t ′) cos(t − 2t ′′)

)
dt ′dt ′′dλ (D11)

≈ a2
∫

A(λ)
λ

4 + λ2

(
t 0
0 −t

)
dλ, (D12)

again taking the long-time limit, where we have ignored many oscillatory components. We already see strikingly different
behavior for the covariance matrix than with the stable fixed point, in that the covariance elements decay linearly with time
rather than approaching a finite value. This then leads to a huge degradation in predictive capacity via a decrease in the memory
and prediction function,

m(τ ) = 1

σ 2
s

p�
τ C−1 pτ . (D13)

We again specialize to the two kinds of input considered in the last section of the Appendix. First, in the case of R(τ ) = e−λ∗|τ |,
we have that

pτ = a
e−λ∗τ

4 + (λ∗)2

(
2 cos t − λ∗ sin t
λ∗ cos t + 2 sin t

)
, (D14)

C = −a2 λ∗

4 + (λ∗)2

(
t 0
0 −t

)
, (D15)

m(τ ) = 1

t

λ∗e−2λ∗τ

4 + (λ∗)2

{
4λ∗ sin(2t ) + [4 + (λ∗)2] cos(2t )

}
. (D16)

The 1/t factor implies that the limit cycle is incredibly bad at forming predictive features of the input with an exponentially
decaying autocorrelation function. This holds true not just for the likely Markovian input, but also for the oscillatory input.

But to see if the oscillatory input is also badly predicted by the limit cycle, we turn to

A(λ) = 1
2δ(λ + γ + iω) + 1

2δ(λ + γ − iω), (D17)

so that

pτ = a

2

e(−γ+iω)τ

4 + (−γ + iω)2

(
2 cos t + (−γ + iω) sin t

−(−γ + iω) cos t + 2 sin t

)
+ a

2

e(−γ−iω)τ

4 + (−γ − iω)2

(
2 cos t + (−γ − iω) sin t

−(−γ − iω) cos t + 2 sin t

)
, (D18)

which is o(t ) and

C ≈ a2

2

[ −γ + iω

4 + (−γ + iω)2
+ −γ − iω

4 + (−γ − iω)2

](
t 0
0 −t

)
(D19)

= −a2 γ (4 + γ 2 − ω2) + 2ω2γ

(4 + γ 2 − ω2)2 + (2ωγ )2

(
t 0
0 −t

)
, (D20)
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which is O(t ) in terms of its eigenvalues. We can conclude
that for oscillatory input as well, the memory and prediction
function decays as 1/t .

One might think that a naturally oscillatory dynamical
system would be a well-designed predictive dynamical sensor
of oscillatory input, but, in fact, the dynamics of the system
interfere with its sensory capabilities. Its motion is determined
not by the sensor input, but by its own internal dynamics, and

so the system becomes solipsistic, losing sight of what it is
trying to sense.

APPENDIX E: EFFECT OF τ AND NOISE IN THE INITIAL
CONDITION

Figures 4–6 show the prediction functions for when τ = 1
and when there is a small amount of Gaussian noise added to
the initial state of the system.
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