
Solving classification problems with
HD computing/VSA

Neuroscience 299: Module 9
October 27, 2021

Laura I. Galindez Olascoaga

About me
• BS Mechatronics Engineering: Tecnológico de Monterrey, Mexico, 2012.
• MS Systems and Control: Eindhoven University of Technology, The

Netherlands, 2015.
• PhD Electrical Engineering: KU Leuven, Belgium, 2020. Dissertation:

Hardware Aware Probabilistic Machine Learning Models.
• Postdoc at Berkeley Wireless Research Center working with Prof. Jan

Rabaey since February 2021.

2Module 9: Solving classification problems

Outline
• Motivation and goals
• Background
• Classification with HD computing/VSAs
• Application Examples
• Useful resources and questions

3Module 9: Solving classification problems

Motivation and goals

4Module 9: Solving classification problems

Why should we discuss classification problems?

• Classification is a widely used task in many application domains.
• Amenable to the practical implementation of many of the

concepts studied so far.
• Variety of implementations and compelling results are the

outcome of interdisciplinary interest in the topic of HD
computing/VSAs.

5Module 9: Solving classification problems

Goals for this lecture

• An overview of how HD computing/VSAs can be used to solve a
classification problem.
• Highlight the different approaches available in the literature for

each step of the “classification pipeline”.
• Encourage you to think of how other properties or traits of HD

computing/VSAs can be exploited in the classification realm and
beyond.

6Module 9: Solving classification problems

Background
The “classification pipeline”

7Module 9: Solving classification problems

The classification pipeline in Machine Learning

8

Features

Learning
algorithm

Model
Data

Training data

Learning problem

Output
classRaw input

Feature extraction

Classification task

Based on Flach, P. (2012). Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press and
Galindez Olascoaga, L. I.. Meert, W., & Verhelst, M (2021). Hardware-Aware Probabilistic Machine Learning Models. Springer, Cham.

Data → output class
mapping

Measurable properties or
characteristics of the raw input

Basic linear classifier

9Module 9: Solving classification problems

Feature 1

Fe
at

ur
e

2

Feature extraction

Training instances

Accel. Vertical σ

Ac
ce

l.
ho

riz
on

ta
l μ

Jumping

Walking

Example task:
Jumping or walking?

Basic linear classifier

10

Decision boundary (DB)

Centroid

Centroid

Feature 1

Fe
at

ur
e

2

Learning algorithm

Model

Line halfway intersecting the
training example centroids

Example from Flach, P. (2012). Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press.

Basic linear classifier

11Module 9: Solving classification problems

Feature 1

Fe
at

ur
e

2

Inference
(decision rule)

>DB →
<DB →

Unlabeled
example

Decision boundary (DB)

Types of approaches/models*
• Geometric

12

Decision boundary

Feature 1

Fe
at

ur
e

2

Linear classifier

*Non exhaustive and non mutually exclusive list based on Flach, P. (2012). Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press.

Types of approaches/models*
• Geometric

13

Decision boundary

Centroid

Feature 1

Fe
at

ur
e

2

Support Vector
Machine

Finds the decision
boundary that
maximizes the distance
to all support vectors

*Non exhaustive and non mutually exclusive list based on Flach, P. (2012). Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press.

Types of approaches/models*
• Geometric

14

Feature 1

Fe
at

ur
e

2

(Multilayer) perceptron,
Deep neural networks

Decision boundary

Non-linearly
separable data

*Non exhaustive and non mutually exclusive list based on Flach, P. (2012). Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press.

Types of approaches/models*
• Geometric
• Distance based (geometric)

15

Fe
at

ur
e

2

Feature 1

Nearest neighbor classifiers
(e.g. K nearest neighbors)

*Non exhaustive and non mutually exclusive list based on Flach, P. (2012). Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press.

Majority vote from the
k(=3) nearest neighbors

Types of approaches/models*
• Geometric
• Distance based (geometric)

16

Centroid

Centroid

Fe
at

ur
e

2

Feature 1

distance(,) < distance(,)

Nearest neighbor classifiers
(e.g. nearest centroid)

*Non exhaustive and non mutually exclusive list based on Flach, P. (2012). Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press.

Types of approaches/models*
• Geometric
• Distance based (geometric)
• Logical

17

Taken from Galindez Olascoaga, L. I.. Meert, W., & Verhelst, M (2021).
Hardware-Aware Probabilistic Machine Learning Models. Springer, Cham.

Decision tree

*Non exhaustive and non mutually exclusive list based on Flach, P. (2012). Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press.

Types of approaches/models*
• Geometric
• Distance based (geometric)
• Logical
• Probabilistic, etc.

18

Taken from Galindez Olascoaga, L. I.. Meert, W., & Verhelst, M (2021).
Hardware-Aware Probabilistic Machine Learning Models. Springer, Cham.

Bayesian network classifiers

*Non exhaustive and non mutually exclusive list based on Flach, P. (2012). Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press.

Types of approaches/models*
• Geometric
• Distance based (geometric)
• Logical
• Probabilistic, etc.

• What kind of classification can HD computing/VSAs enable?

19
*Non exhaustive and non mutually exclusive list based on Flach, P. (2012). Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press.

Classification with HD computing/VSAs
Overview

20Module 9: Solving classification problems

Main components of HD computing/VSAs

• High-dimensional vectors (HD vectors, hypervectors, HV) are
approximately orthogonal to each other.
• Hyperdimensional arithmetic comprises three simple operators:
• Bundling or superposition +
• Binding: typically, a multiplicative operation ⨂
• Permutation 𝜌

• Similarity metrics: dot product, Hamming distance, etc. distance(.)

• Associative memory and item memory (codebook).

Module 9: Solving classification problems 21

Role of HD computing/VSAs in classification pipeline

Module 9: Solving classification problems 22

Features Model
Data OutputRaw input

Feature extraction

Input processing

Mapping to
HD space

HD vector generation

HD
encoding

Inference

Can be done with HD computing/VSAs or
within a hybrid scheme with other models.
E.g. Module 10 on Relations to Neural
Networks by Denis.

• Input data representation and encoding.

Role of HD computing/VSAs in classification pipeline

Module 9: Solving classification problems 23

Features Model

Query
HD vectors OutputRaw input

Feature extraction

Input processing

Mapping to
HD space

HD vector generation

HD
encoding

Similarity based classification

Prototype
generation

Model formulation

FeaturesRaw input

Feature extraction

(Training) Input processing

Mapping to
HD space

HD vector generation

HD
encoding

Training
HD vectors

• Model formulation with HD computing/VSAs.

Classification with HD computing/VSAs
1. Mapping inputs to HD space

24Module 9: Solving classification problems

FeaturesRaw input

Feature extraction

Input processing

Mapping to
HD space

HD vector generation

HD
encoding

Mapping inputs to HD space
Determined by the type of input:

• Symbolic or categorical: Can be described by a finite
alphabet of independent values or symbols. For example,
letters in the alphabet (examples from Modules 1 by Pentti and
Module 3 by Ryan).

• Real-valued: Continuous input data or discrete variables with
correlated values. For example, accelerometer signals (see also
Module 8 by Chris).

25Module 9: Solving classification problems

26Module 9: Solving classification problems

• Orthogonal mapping: a unique HD vector, randomly chosen, is
assigned to each symbol.
• These unique HD vectors are saved in an item memory (I.M.)

and remain fixed for the rest of the system execution.

Mapping symbolic inputs to HD space

Mapping symbolic inputs to HD space

27

Each pixel is
treated as a

feature.
Features are

assumed to be
uncorrelated.

Values can be represented by shifting the pixel ID HD
vector: 0 bits for black and 1 bit for white.

1 0 0 1 0 0 0 1 1 1

1 1 0 0 1 0 0 0 1 1

Black

White

Each feature is assigned a randomly generated
binary HD vector, these are saved in I.M.

Pix1 1 0 0 1 0 0 0 1 1 1

Example 1: character recognition

Kleyko, D., Osipov, E., Senior, A., Khan, A. I., & Şekerciogğlu, Y. A. (2016). Holographic graph neuron: A bioinspired architecture for pattern
processing. IEEE transactions on neural networks and learning systems, 28(6), 1250-1262.

Mapping symbolic inputs to HD space

28

Encoding as {Pixel ID: value} pair: Pix1⨂White

1 1 0 0 0 1 1 0 1 0

0 1 1 0 0 1 0 1 0 1

Black

White

Pix1 1 0 0 1 0 0 0 1 1 1

Each value is assigned a randomly generated
binary HD vector, these are saved in the Color I.M.

Example 1: character recognition
(key-value pair approach)

Kleyko, D., Osipov, E., Senior, A., Khan, A. I., & Şekerciogğlu, Y. A. (2016). Holographic graph neuron: A bioinspired architecture for pattern
processing. IEEE transactions on neural networks and learning systems, 28(6), 1250-1262.

Each feature is assigned a randomly generated
binary HD vector, these are saved in PixID I.M.

Each pixel is
treated as a

feature.
Features are

assumed to be
uncorrelated.

Mapping symbolic inputs to HD space

29

Example 2: 2D robot navigation

Agent navigating in
2D grid must reach
goal while avoiding

obstacles.

Sensors: presence or absence of obstacles in each cardinal direction

N

S
EW

Actuation: the robot can move up, down, right or left

Sensor ID I.M.

N 1 0 0 1 0 0 0 1 1 1 1 0 1 0 0 1 0 0 1 0

Sensor value I.M.

W…

true 0 1 1 1 0 1 0 1 0 0 1 1 0 0 0 1 0 1 0 1false

Actuation I.M.

UP 1 1 1 0 0 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0LEFT…

Related works:
Levy, Simon D., Suraj Bajracharya, and Ross W. Gayler. "Learning Behavior Hierarchies via High-Dimensional Sensor
Projection." AAAI Workshop: Learning Rich Representations from Low-Level Sensors. 2013.
P. Neubert, S. Schubert, and P. Protzel, “Learning vector symbolic architectures for reactive robot behaviours,” IROS
Workshop: Machine Learning Methods for High-Level Cognitive Capabilities in Robotics, 2016.

Mapping real-valued inputs to HD space
Real-valued inputs call for locality preserving encodings (LPEs). Introduced in
module 8 by Chris.

Approaches I will discuss today:
• Discrete mapping: discretize the real-valued input and assign HD vectors such

that they preserve relevant correlations.
• Random projection: directly project real-valued inputs to HD space by means

of scalar multiplication. Often used as an intermediate representation.

Other powerful approaches, still largely unexplored for practical applications:
• Vector Function Architectures (VFAs), kernel LPEs (in the context of HD

computing/VSAs).

30Module 9: Solving classification problems

Similarity preserving discrete mapping
Linear similarity* preserving mapping:

1. Discretize real-valued input into m+1 levels.
2. Randomly assign HD vector to level 0 (HV0).
3. Gradually flip a predefined number of bits starting

from HV0 such that HV0 and HVm+1 are
uncorrelated.

Considerations:
• Sample without replacement for the bit flipping.
• Need to store the HD vectors for all levels.

Module 9: Solving classification problems 31

*Linear similarity also
preserved by e.g.
thermometer code.
(Taken from Chris’s slides,
module 8)

Similarity preserving discrete mapping
Linear similarity preserving mapping:
Example: accelerometer data

32

1 0 0 1 0 0 0 1 1 1 0 1

1 0 0 1 1 0 0 0 1 1 0 1

0 0 0 1 1 0 0 0 1 1 1 1

0 0 1 1 1 0 0 0 1 1 1 0

d=2

d=2

d=2

Store all in I.M.

dmax=6

Figure taken from Zhou, A., Muller, R., & Rabaey, J. (2021, March). Memory-Efficient, Limb Position-Aware Hand
Gesture Recognition using Hyperdimensional Computing. In Research Symposium on Tiny Machine Learning.

Similarity preserving discrete mapping
Approximately linear similarity preserving mapping*:

1. Discretize real-valued input into m+1 levels.
2. Randomly assign HD vectors to the first and last levels HV0 and HVm+1
3. Construct intermediate levels by concatenating sections of HV0 and

HVm+1.

Considerations:
• Might only need to store first and last level.
• Linear similarity preservation not guaranteed.

33*Based on the ”encoding by concatenation” from Rachkovskiy, Dmitriy A., et al. "Sparse binary distributed encoding of scalars." Journal of
Automation and Information Sciences 37.6 (2005).

Similarity preserving discrete mapping
Approximately linear similarity preserving mapping:
Example: accelerometer data

34

1 0 0 1 0 0 0 1 1 1 0 1

0 0 1 1 0 0 0 1 1 1 0 1

0 0 1 1 1 0 0 0 1 1 0 1

0 0 1 1 1 0 0 0 1 1 1 0

Only store HV0 and HV3 in IM

d=2

d=2

d=2

dmax=6

Figure taken from Zhou, A., Muller, R., & Rabaey, J. (2021, March). Memory-Efficient, Limb Position-Aware Hand
Gesture Recognition using Hyperdimensional Computing. In Research Symposium on Tiny Machine Learning.

Similarity preserving discrete mapping
Approximately linear similarity preserving mapping:
Example: accelerometer data

35

1 0 0 1 0 0 0 1 1 1 0 1

0 0 0 1 0 0 0 1 1 1 0 1

0 0 0 1 1 0 1 0 1 1 0 1

0 0 0 1 1 0 1 0 1 1 1 0

d=2

d=3

d=1

Figure taken from Zhou, A., Muller, R., & Rabaey, J. (2021, March). Memory-Efficient, Limb Position-Aware Hand
Gesture Recognition using Hyperdimensional Computing. In Research Symposium on Tiny Machine Learning.

dmax=6

Only store HV0 and HV3 in IM

Random projection
• Scalar multiplication of real value and HD vector.
• Useful when most appropriate quantization is unknown.
• Can be used as an intermediate representation, and normalized back to

{-1,1} or {0,1} at a later step*.

36

1 0 0 1 0 0 0 1 1 1 0 1

0

1

0

0.25

0.75
×

×

×
×

1 0 0 1 0 0 0 1 1 1 0 1

1 0 0 1 0 0 0 1 1 1 0 1

1 0 0 1 0 0 0 1 1 1 0 1

0.875 0 0 0.875 0 …0.875 ×

0.7 ×

0.25 ×

0.125 ×

0.7 0 0 0.7 0 …

0.25 0 0 0.25 0 …

0.125 0 0 0.125 0 …

* See also Rachkovskij, D. A., I. S. Misuno, and S. V. Slipchenko. "Randomized projective methods for the construction of binary sparse vector
representations." Cybernetics and Systems Analysis 48.1 (2012): 146-156.

Classification with HD computing/VSAs
2. Encoding

37Module 9: Solving classification problems

FeaturesRaw input

Feature extraction

Input processing

Mapping to
HD space

HD vector generation

HD
encoding

Encoding

• Exploit the properties of HD computing/VSAs, for example:
• High capacity of HD vectors.
• Binding: {key:value} / (variable:value) pairs.
• Construction of data structures: sets, sequences, histograms, etc.

Refer to Module 4: Representation and Manipulation of data
structures by Denis.

Module 9: Solving classification problems 38

Spatial encoding
• Combine inputs available at a given time-aligned sample into a single HD vector.
• Set of key-value pairs (refer to Module 4 on data structures by Denis).

39

key1

value1

key2

value2

keyn

valuen

⨂

⨂

⨂

+

input1

input2

inputn

…

[.]

Re-normalize to
{-1,1} or {0,1}

…

𝑆 = $
!"#

$

𝑘𝑒𝑦!⨂𝑣𝑎𝑙𝑢𝑒!

𝑺

P. Neubert and P. Protzel, “Towards HypervectorRepresentations for Learning and Planning with Schemas,” Joint German/Austrian Conference on Artificial Intelligence, 2018

Spatial encoding
• Example: 2D robot navigation

40Module 9: Solving classification problems

Sensor ID I.M.
N 1 0 0 1 0 0 0 1 1 1

Sensor value I.M.

S 0 1 1 0 0 1 0 1 0 0

E 0 1 0 0 1 1 1 1 0 1

W 1 1 0 1 0 0 1 1 0 0

True 0 1 0 0 1 1 1 1 0 1

False 1 1 0 1 0 0 1 1 0 0
St=1=[N⨂F + S⨂F+E⨂T +W⨂T] St=2=[N⨂F + S⨂F+E⨂F +W⨂T] St=3=[N⨂F + S⨂T+E⨂F +W⨂F]

t=1 t=2 t=3

Temporal encoding
• Represent time dependencies of the inputs through sequences or n-grams over

a specific window of length k.
• Sequence (of key-value pairs). Refer to Module 4.

41Module 9: Solving classification problems

inputt=1 inputt=2 inputt=kinputt=3 …

𝜌%&# 𝜌%&' 𝜌%&(𝜌)

𝑇 =/
!"#

%

𝜌%&!(input*"!)

⨂ ⨂ ⨂… 𝑻

key1

value1
⨂

Temporal encoding
• Example: 2D robot navigation

42Module 9: Solving classification problems

Sensor ID I.M.
N 1 0 0 1 0 0 0 1 1 1

Sensor value I.M.

S 0 1 1 0 0 1 0 1 0 0

E 0 1 0 0 1 1 1 1 0 1

W 1 1 0 1 0 0 1 1 0 0

True 0 1 0 0 1 1 1 1 0 1

False 1 1 0 1 0 0 1 1 0 0

St=1=[N⨂F + S⨂F+E⨂T +W⨂T] St=2=[N⨂F + S⨂F+E⨂F +W⨂T] St=3=[N⨂F + S⨂T+E⨂F +W⨂F]

t=1 t=2 t=3

T= 𝜌!(St=1)⨂ 𝜌(St=2) ⨂ St=3

Histogram encoding
• Some applications may benefit from frequency distribution

representations.

43

𝐻 =$
!"#

$

𝑖𝑛𝑝𝑢𝑡!

E.g. Language identification (Lecture 1 by Pentti)

Trigrams from letter seed vectors

Accumulate to form language profile
(histogram of trigrams)

Compare to other language profiles Query most likely letter after e.g. TH

Joshi, Aditya, Johan T. Halseth, and Pentti Kanerva. "Language geometry using random
indexing." International Symposium on Quantum Interaction. Springer, Cham, 2016.

Histogram encoding
• Example: 2D robot navigation, anomaly detection

44Module 9: Solving classification problems

Actuation I.M.
Up 1 0 0 1 0 0 0 1 1 1

Down 0 1 1 0 0 1 0 1 0 0

Right 0 1 0 0 1 1 1 1 0 1

Left 1 1 0 1 0 0 1 1 0 0

𝑆! = 𝜌(𝐿)⨂𝐿
𝑆" = 𝜌(𝐿)⨂𝑅
𝑆# = 𝜌(𝐿)⨂𝑈
𝑆$ = 𝜌(𝐿)⨂𝐷
…
𝑆!% = 𝜌(𝐷)⨂𝐷

2-step sequences (bi-grams)

Histogram over x time steps

𝐻 =$
!"#

+

𝑆*!

Classification with HD computing/VSAs
3. Model formulation and classification

45Module 9: Solving classification problems

Model

Query
HD vectors Output

Similarity based classification

Prototype
generation

Model formulation

Training
HD vectors

Model formulation
• Class prototype HD vector generation.
• Multiple approaches:
• Centroid based prototype generation
• One-shot prototype generation
• Learning Vector Quantization (LVQ) family of representations
• Multiple prototypes per class
• Storing models in superposition

46Module 9: Solving classification problems

Class labels Prototype HD vectors

Label

Label

Class prototype generation (centroid computation)

• A prototype HD vector for each class is
formed by computing the class centroid.
• For binary and bipolar HD vectors, this

amounts to finding the majority of each
element across all training examples.

Module 9: Solving classification problems 47

Centroid
prototype

Centroid
prototype

1 1 -1 1 -1 -1 1 1 -1 -1

1 -1 -1 1 -1 -1 1 1 -1 -1

1 -1 -1 -1 1 -1 1 -1 -1 1

… +

1 -1 -1 1 -1 -1 1 1 -1 -1

[.]

1 1 1 1 1 -1 1 1 1 -1

1 1 1 -1 -1 -1 1 1 -1 -1

1 -1 -1 -1 1 -1 1 -1 1 1

… + [.]
1 1 1 -1 1 -1 1 1 1 -1

Class training examples

Class training examples
Model

*This 2-dimensional depiction is for illustrative
purposes.

distance(,)
Class labels Prototype HD vectors

Label

Label

Classification
• Query HD vectors are formed using the

same encoding as the training ones.
• Classification takes place by finding the

nearest neighboring prototype to this query
HD vector.
• Akin to a nearest centroid classifier in ML
(https://en.wikipedia.org/wiki/Nearest_centroid_classifier)

Module 9: Solving classification problems 48

1 -1 -1 1 -1 -1 1 1 -1 -1

1 1 1 -1 1 -1 1 1 1 -1

Model

*This 2-dimensional depiction is for illustrative
purposes.

-1 1 1 -1 1 -1 1 1 1 -1

Query HD vector

distance(,)
argmin Prediction

Class labels Prototype HD vectors

Label

Label

One-shot classification
• Single training sample constitutes the class

prototype.
• Classification proceeds as usual.
• Works well with HD computing/VSAs because

of information-rich representations enabled by
HD vectors + encoding.

49

1 1 -1 1 -1 -1 1 1

1 1 1 1 1 -1 1 1

Class training example

Class training example

Model

1 1 -1 1 -1 -1 1 1

1 1 1 1 1 -1 1 1

distance(,)

-1 1 1 -1 1 -1 1 1

Query HD vector

distance(,)
argmin Prediction

Example: Rahimi, A., Tchouprina, A., Kanerva, P., Millán, J. D. R. & Rabaey, J. M. Hyperdimensional Computing for Blind and
One-Shot Classification of EEG Error-Related Potentials. Mob. Networks Appl. 1–12 (2017)

*This 2-dimensional depiction is for illustrative
purposes.

Learning Vector Quantization approaches
• Prototypes represent class regions.
• These prototypes are learned iteratively.

50

w= = w= − 𝛼(𝑥 − w=)
w> = w> + 𝛼(𝑥 − w>)

Heuristic approach:

Learning rate

Diao, Cameron, et al. "Generalized Learning Vector Quantization for Classification in Randomized Neural Networks and Hyperdimensional
Computing." arXiv preprint arXiv:2106.09821 (2021).
Nova, David, and Pablo A. Estévez. "A review of learning vector quantization classifiers." Neural Computing and Applications 25.3 (2014): 511-524.

Learning Vector Quantization approaches

51

Margin maximalization approaches (e.g.
Generalized LVQ):

Define a cost function from which the
learning rule is derived via gradient descent.

w= = w= − 2𝛼
𝛿𝑔
𝛿𝜇
𝜇> (𝑥 − w=)

w> = w> + 2𝛼
𝛿𝑔
𝛿𝜇 𝜇

= (𝑥 − w>)

Cost function Relative
distance
difference

Diao, Cameron, et al. "Generalized Learning Vector Quantization for Classification in Randomized Neural Networks and Hyperdimensional
Computing." arXiv preprint arXiv:2106.09821 (2021).
Nova, David, and Pablo A. Estévez. "A review of learning vector quantization classifiers." Neural Computing and Applications 25.3 (2014): 511-524.

Classification with HD computing/VSAs
4. Performance trade-offs

52Module 9: Solving classification problems

Energy efficiency
• Departure from traditional von Neumann architectures with inefficient

memory exchanges.
• Enables bit-wise operations when using Binary Spatter Codes model.
• Robustness under low SNR and sparsity can enable resource efficiency.
• Will be discussed in detail by Mohamed in Module 11: Hardware

implementations.

53Module 9: Solving classification problems

Datta, Sohum, et al. "A programmable hyper-dimensional processor architecture for human-centric IoT." IEEE Journal on Emerging and Selected Topics in
Circuits and Systems 9.3 (2019): 439-452.

Application examples
ExG signal classification, Robotics

54Module 9: Solving classification problems

EMG-based hand gesture recognition

55
A. Moin, et al. "A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition." Nature Electronics 4.1 (2021): 54-63.

1. Feature extraction

2. HD vectors
for each
electrode ID

HD mapping and
Spatial encoding

Temporal encoding

3. Random
projection

4. Spatial
encoding (set
of scaled
vectors +
normalization)

5. Sequence of spatial
vectors over window

Array of 64 electrodes

EMG-based hand gesture recognition

56
A. Moin, et al. "A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition." Nature Electronics 4.1 (2021): 54-63.

Feature extraction

HD vectors
for each
electrode ID

HD mapping and
Spatial encoding

Temporal encoding

Random
projection

Set and
normalize

Sequence of spatial
vectors over window

5. Centroid based model and similarity-based classification

EMG-based hand gesture recognition
• Results: high accuracy and robustness to variations from different users.

57
A. Moin, et al. "A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition." Nature Electronics 4.1 (2021): 54-63.

EMG-based hand gesture recognition
• Adaptive learning without significant overhead.

58
A. Moin, et al. "A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition." Nature Electronics 4.1 (2021): 54-63.

EMG-based hand gesture recognition
• Sensor fusion and storing context-specific models in superposition.

59Zhou, A., Muller, R., & Rabaey, J. (2021, March). Memory-Efficient, Limb Position-Aware Hand Gesture Recognition using
Hyperdimensional Computing. In Research Symposium on Tiny Machine Learning

EMG-based hand gesture recognition
• Results: the proposed orthogonal

context encoding improves
accuracy with respect to direct
superposition and is significantly
more efficient than dual-stage
classification.

60
A. Moin, et al. "A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition." Nature Electronics 4.1 (2021): 54-63.

iEEG-based Seizure Detection
• Interictal (precede seizure) and

ictal (during seizure) states of
brain activity have distinct
pattern frequency distributions.
• These patterns can be captured

through short bit strings or
local binary patterns (LBPs).
• The two brain states can be

identified by comparing the
frequency distributions.

61

Burrello, A., Schindler, K., Benini, L., & Rahimi, A. (2018, October). One-shot learning for iEEG
seizure detection using end-to-end binary operations: Local binary patterns with
hyperdimensional computing. In 2018 IEEE Biomedical Circuits and Systems Conference
(BioCAS) (pp. 1-4). IEEE..

iEEG-based Seizure Detection
• HD computing/VSAs can be used to represent the LBP and encode

histograms over a pre-determined window. Similarity metrics are used to
infer whether the current brain state is ictal or interictal.

62Burrello, A., Schindler, K., Benini, L., & Rahimi, A. (2018, October). One-shot learning for iEEG seizure detection using end-to-end binary operations: Local binary patterns
with hyperdimensional computing. In 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS) (pp. 1-4). IEEE..

Robotics (vision)
Object recognition from
multiple viewpoints
• Exploit bundling to combine

multiple viewpoints in
superposition.

• Then the comparison of a query
vector to all views can be made
with a single vector comparison.

• Straightforwardly update the
representation of an object
during online execution.

63Module 9: Solving classification problems

Neubert P., Schubert S., Protzel P. "An introduction to hyperdimensional computing for robotics." KI-Künstliche Intelligenz 33.4 (2019): 319-330.

Robotics (vision)
Sequence processing for place recognition
• Individual scenes are represented by binding their

vector representation to their current position.
• Sequences of scenes are formed by bundling a set

of the representations above.
• Prototype encodings are then compared to query

ones to infer the scene.
• This representation is robust even through

seasonal changes.

64Module 9: Solving classification problems

Neubert P., Schubert S., Protzel P. "An introduction to hyperdimensional computing for robotics." KI-Künstliche Intelligenz 33.4 (2019): 319-330.

Robotics
• Learning and recall of reactive behavior:
• Learn from demonstrations a representation that encodes sensor-action pairs.
• This behavior can be resembled at run-time by extracting the action corresponding

to the current sensor value through an unbinding operation.

65
Neubert P., Schubert S., Protzel P. Learning vector symbolic architectures for reactive robot behaviours. Universitätsbibliothek Chemnitz, 2017.

Other applications of HD computing/VSAs
• Survey papers:

• Comprehensive list of VSA/HD
computing works

66

Questions?
Thank you!

67Module 9: Solving classification problems

