Solving classification problems with HD computing/VSA

Neuroscience 299: Module 9 October 27, 2021

Laura I. Galindez Olascoaga

About me

- BS Mechatronics Engineering: Tecnológico de Monterrey, Mexico, 2012.
- MS Systems and Control: Eindhoven University of Technology, The Netherlands, 2015.
- PhD Electrical Engineering: KU Leuven, Belgium, 2020. Dissertation: Hardware Aware Probabilistic Machine Learning Models.
- Postdoc at Berkeley Wireless Research Center working with Prof. Jan Rabaey since February 2021.

Outline

- Motivation and goals
- Background
- Classification with HD computing/VSAs
- Application Examples
- Useful resources and questions

Motivation and goals

Why should we discuss classification problems?

- Classification is a widely used task in many application domains.
- Amenable to the practical implementation of many of the concepts studied so far.
- Variety of implementations and compelling results are the outcome of interdisciplinary interest in the topic of HD computing/VSAs.

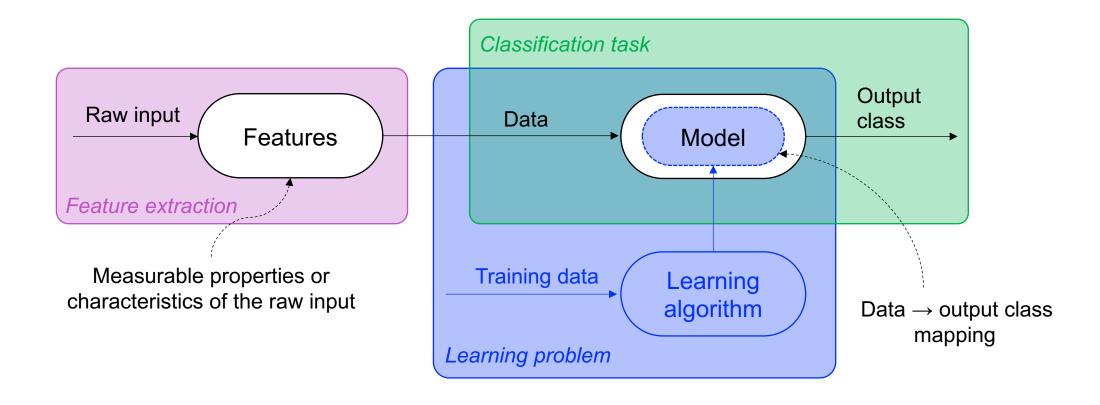
Goals for this lecture

- An overview of how HD computing/VSAs can be used to solve a classification problem.
- Highlight the different approaches available in the literature for each step of the "classification pipeline".
- Encourage you to think of how other properties or traits of HD computing/VSAs can be exploited in the classification realm and beyond.

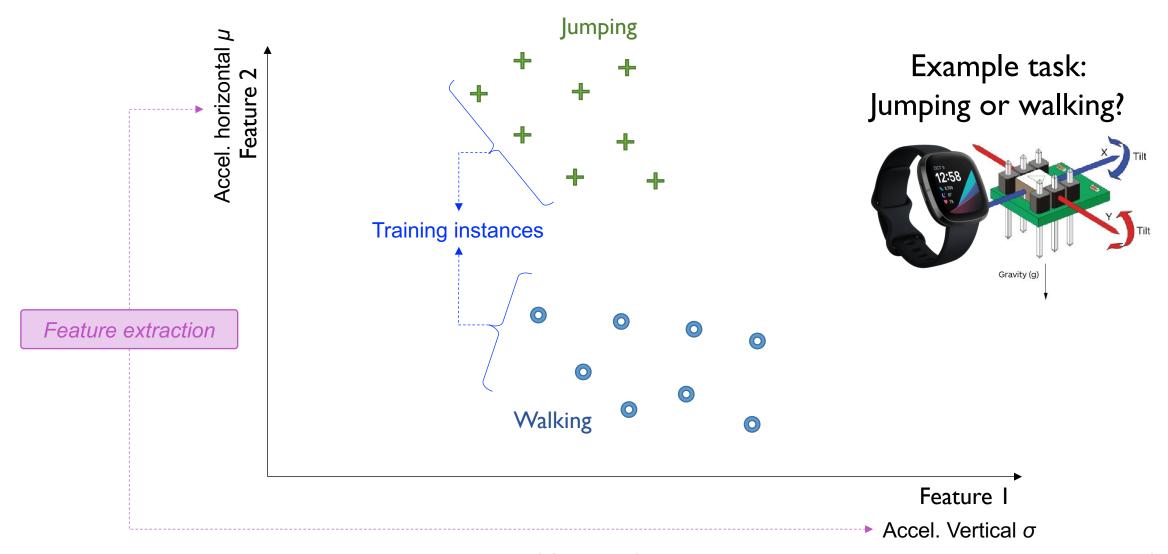
Background

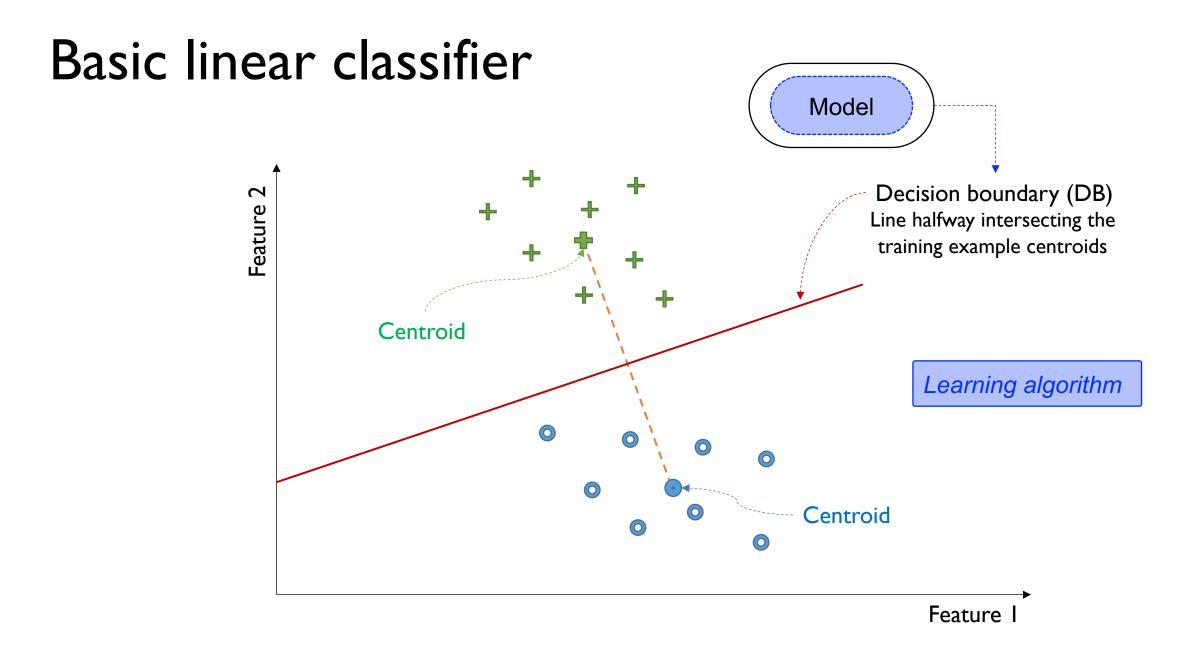
The "classification pipeline"

The classification pipeline in Machine Learning

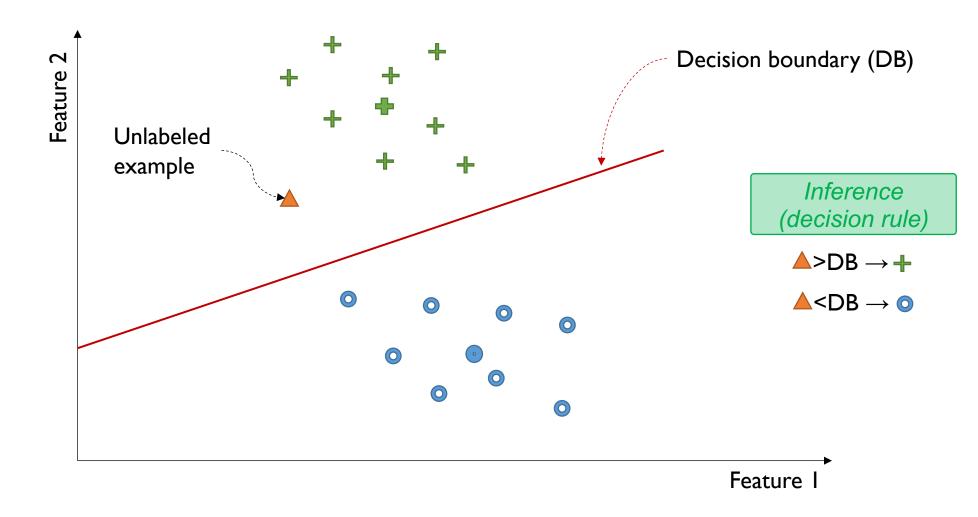


Basic linear classifier



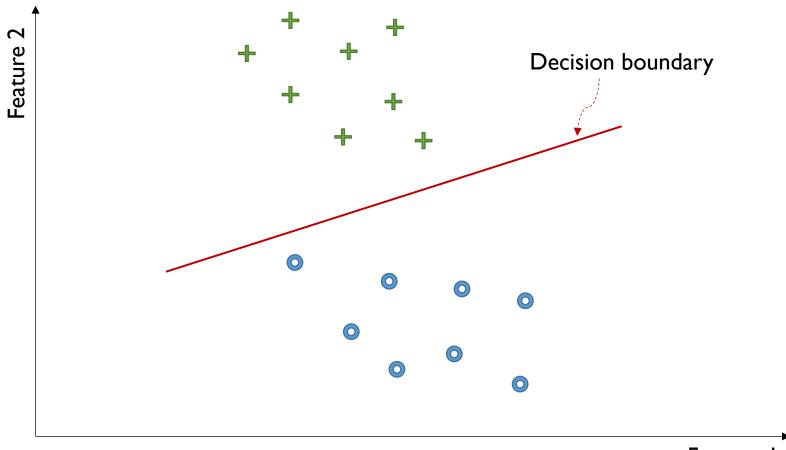


Basic linear classifier



Geometric

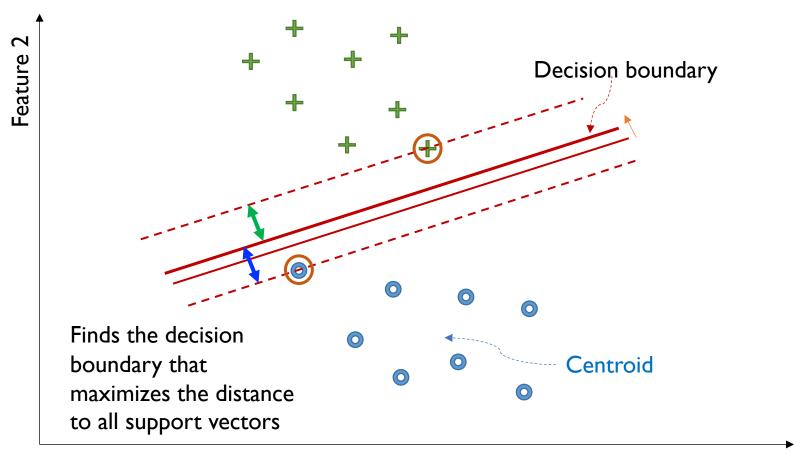
Linear classifier



Feature I

Geometric

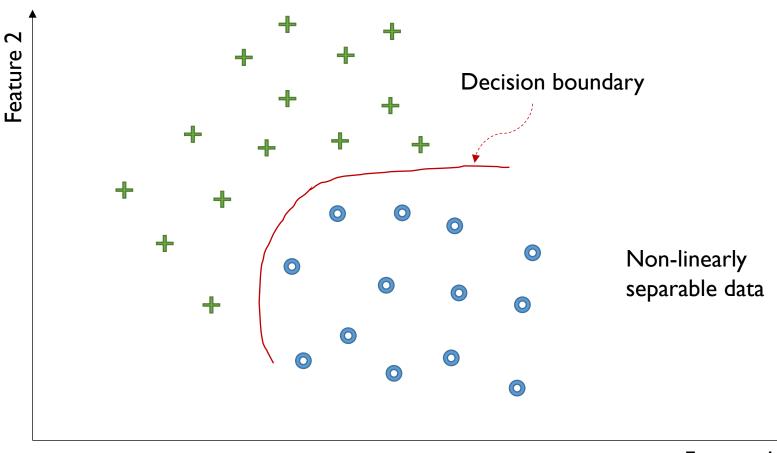
Support Vector Machine



Feature I

Geometric

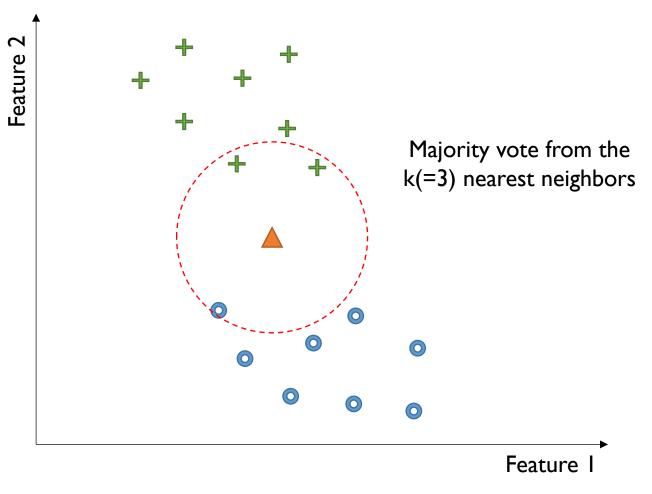
(Multilayer) perceptron, Deep neural networks



Feature I

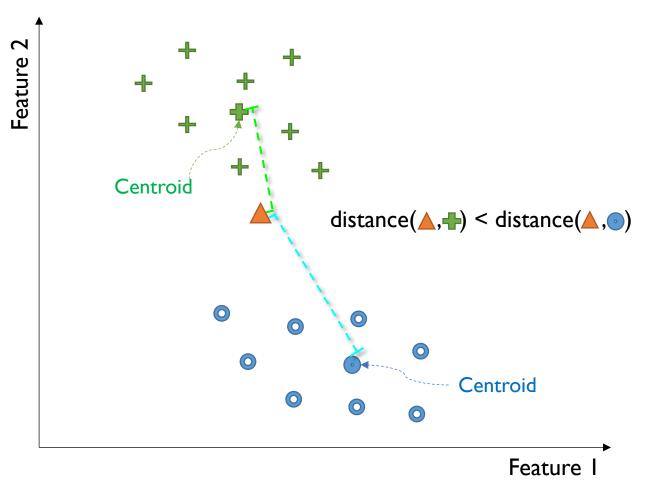
- Geometric
- Distance based (geometric)

Nearest neighbor classifiers (e.g. K nearest neighbors)



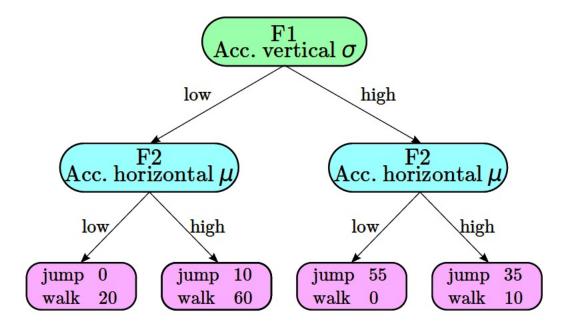
- Geometric
- Distance based (geometric)

Nearest neighbor classifiers (e.g. nearest centroid)



- Geometric
- Distance based (geometric)
- Logical

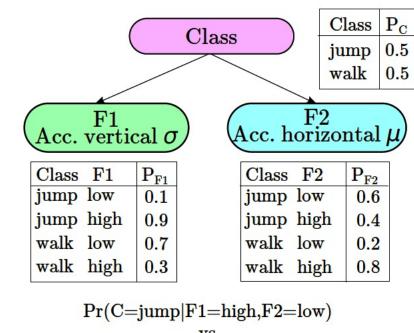
Decision tree



Taken from Galindez Olascoaga, L. I.. Meert, W., & Verhelst, M (2021). Hardware-Aware Probabilistic Machine Learning Models. Springer, Cham.

- Geometric
- Distance based (geometric)
- Logical
- Probabilistic, etc.

Bayesian network classifiers



Taken from Galindez Olascoaga, L. I., Meert, W., & Verhelst, M (2021). Hardware-Aware Probabilistic Machine Learning Models. Springer, Cham.

- Geometric
- Distance based (geometric)
- Logical
- Probabilistic, etc.

• What kind of classification can HD computing/VSAs enable?

Classification with HD computing/VSAs

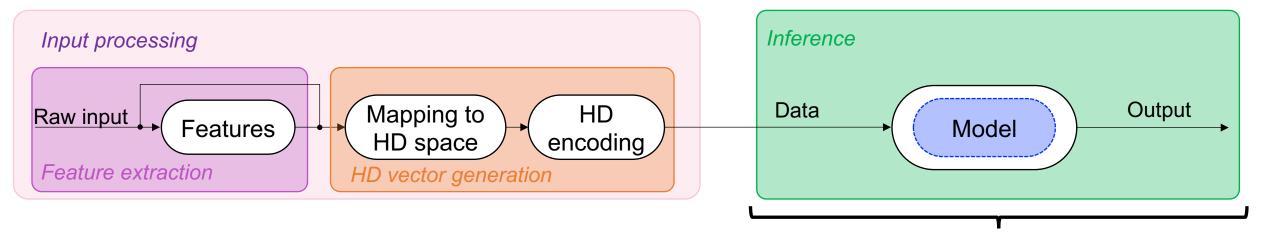
Overview

Main components of HD computing/VSAs

- High-dimensional vectors (HD vectors, hypervectors, HV) are approximately orthogonal to each other.
- Hyperdimensional arithmetic comprises three simple operators:
 - Bundling or superposition +
 - Binding: typically, a multiplicative operation 🚫
 - Permutation p
- Similarity metrics: dot product, Hamming distance, etc. distance(.)
- Associative memory and item memory (codebook).

Role of HD computing/VSAs in classification pipeline

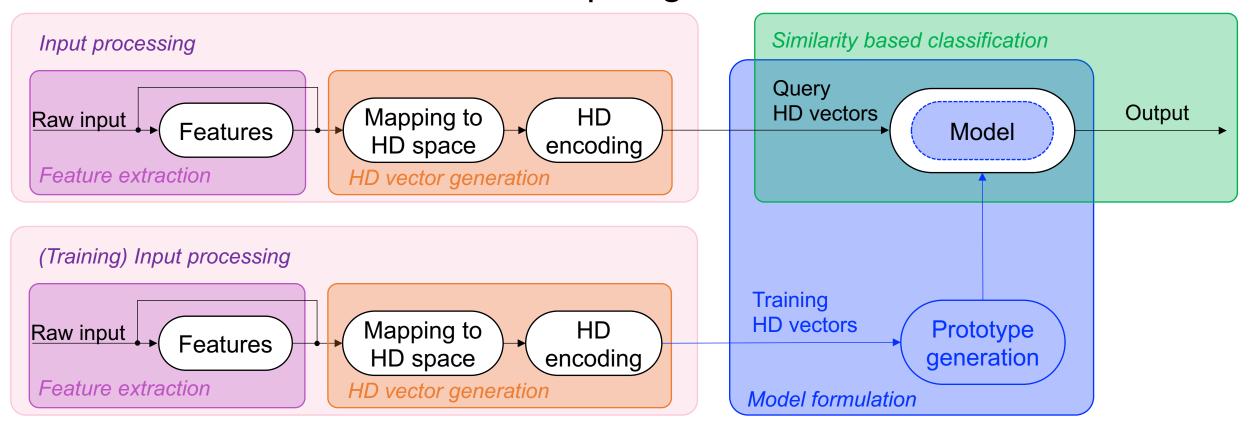
Input data representation and encoding.



Can be done with HD computing/VSAs or within a hybrid scheme with other models. E.g. Module 10 on Relations to Neural Networks by Denis.

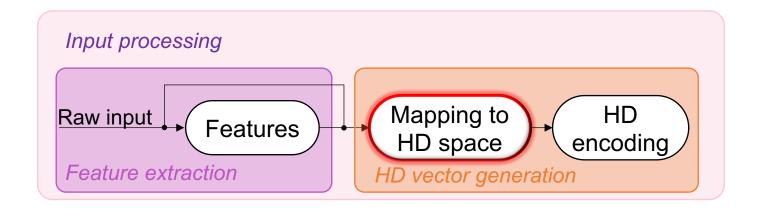
Role of HD computing/VSAs in classification pipeline

Model formulation with HD computing/VSAs.



Classification with HD computing/VSAs

I. Mapping inputs to HD space



Mapping inputs to HD space

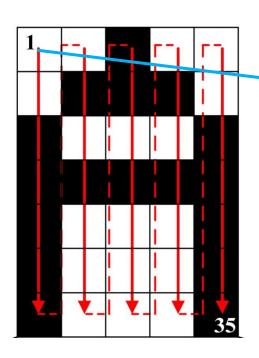
Determined by the type of input:

- Symbolic or categorical: Can be described by a finite alphabet of independent values or symbols. For example, letters in the alphabet (examples from Modules 1 by Pentti and Module 3 by Ryan).
- **Real-valued**: Continuous input data or discrete variables with correlated values. For example, accelerometer signals (see also Module 8 by Chris).

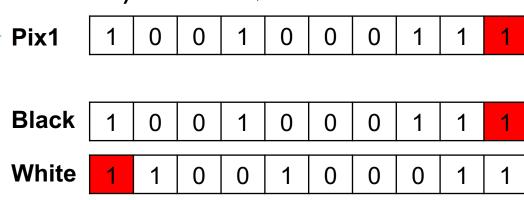
- Orthogonal mapping: a unique HD vector, randomly chosen, is assigned to each symbol.
- These unique HD vectors are saved in an *item memory* (I.M.) and remain fixed for the rest of the system execution.

Example I: character recognition

Each pixel is treated as a feature. Features are assumed to be uncorrelated.



Each feature is assigned a randomly generated binary HD vector, these are saved in *I.M.*

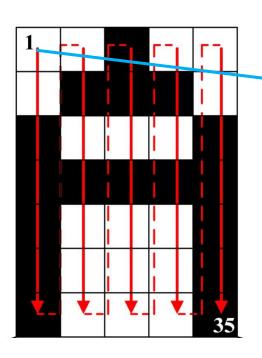


Values can be represented by shifting the pixel ID HD vector: 0 bits for black and 1 bit for white.

Example I: character recognition (key-value pair approach)

ABCDEEGHDUKLY NOPORSTUUWXYZ

Each pixel is treated as a feature. Features are assumed to be uncorrelated.



Each feature is assigned a randomly generated binary HD vector, these are saved in *PixID I.M.*

Pix1 1 0 0 1 0 0 1 1 1 1

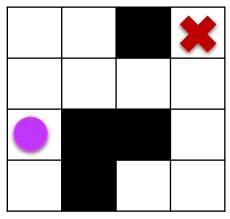
Each value is assigned a randomly generated binary HD vector, these are saved in the *Color I.M.*

 Black
 1
 1
 0
 0
 0
 1
 1
 0
 1
 0

 White
 0
 1
 1
 0
 0
 1
 0
 1
 0
 1

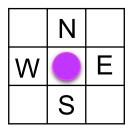
Encoding as {Pixel ID: value} pair: Pix I ⊗ White

Example 2: 2D robot navigation

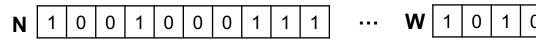


Agent navigating in 2D grid must reach goal while avoiding obstacles.

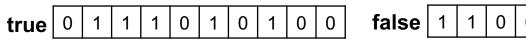
Sensors: presence or absence of obstacles in each cardinal direction



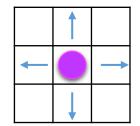
Sensor ID I.M.



Sensor value I.M.



Actuation: the robot can move up, down, right or left



Actuation I.M.

Related works:

Levy, Simon D., Suraj Bajracharya, and Ross W. Gayler. "Learning Behavior Hierarchies via High-Dimensional Sensor Projection." AAAI Workshop: Learning Rich Representations from Low-Level Sensors. 2013.

P. Neubert, S. Schubert, and P. Protzel, "Learning vector symbolic architectures for reactive robot behaviours," IROS Workshop: Machine Learning Methods for High-Level Cognitive Capabilities in Robotics, 2016.

0

Mapping real-valued inputs to HD space

Real-valued inputs call for locality preserving encodings (LPEs). Introduced in module 8 by Chris.

Approaches I will discuss today:

- Discrete mapping: discretize the real-valued input and assign HD vectors such that they preserve relevant correlations.
- Random projection: directly project real-valued inputs to HD space by means of scalar multiplication. Often used as an intermediate representation.

Other powerful approaches, still largely unexplored for practical applications:

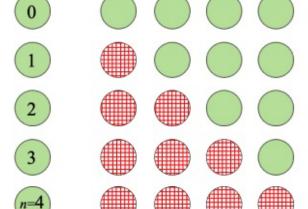
Vector Function Architectures (VFAs), kernel LPEs (in the context of HD computing/VSAs).

Linear similarity* preserving mapping:

- I. Discretize real-valued input into m+1 levels.
- 2. Randomly assign HD vector to level 0 (HV_0).
- Gradually flip a predefined number of bits starting from HV₀ such that HV₀ and HV_{m+1} are uncorrelated.

Considerations:

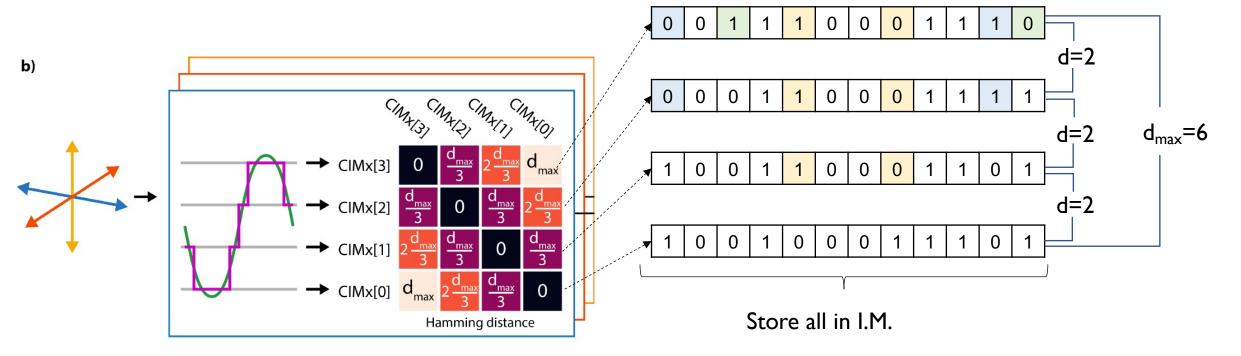
- Sample without replacement for the bit flipping.
- Need to store the HD vectors for all levels.



*Linear similarity also preserved by e.g. thermometer code. (Taken from Chris's slides, module 8)

Linear similarity preserving mapping:

Example: accelerometer data



Approximately linear similarity preserving mapping*:

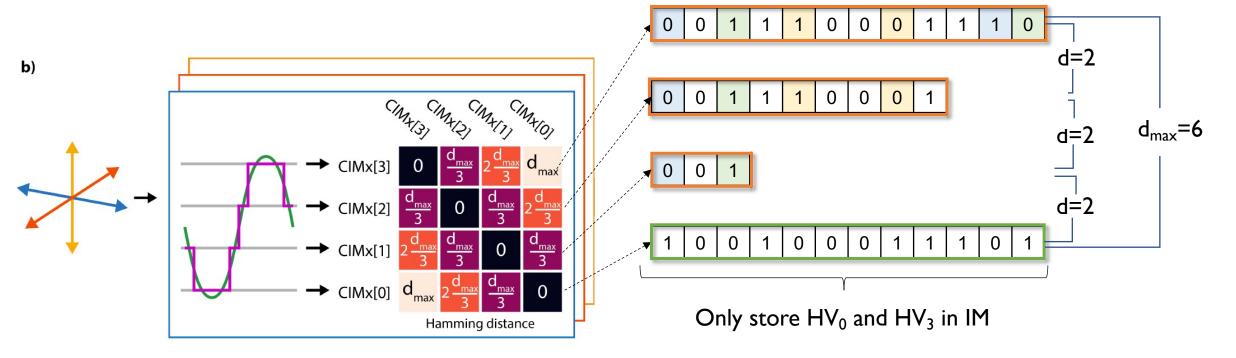
- I. Discretize real-valued input into m+1 levels.
- 2. Randomly assign HD vectors to the first and last levels HV_0 and HV_{m+1}
- 3. Construct intermediate levels by concatenating sections of HV_0 and HV_{m+1} .

Considerations:

- Might only need to store first and last level.
- Linear similarity preservation not guaranteed.

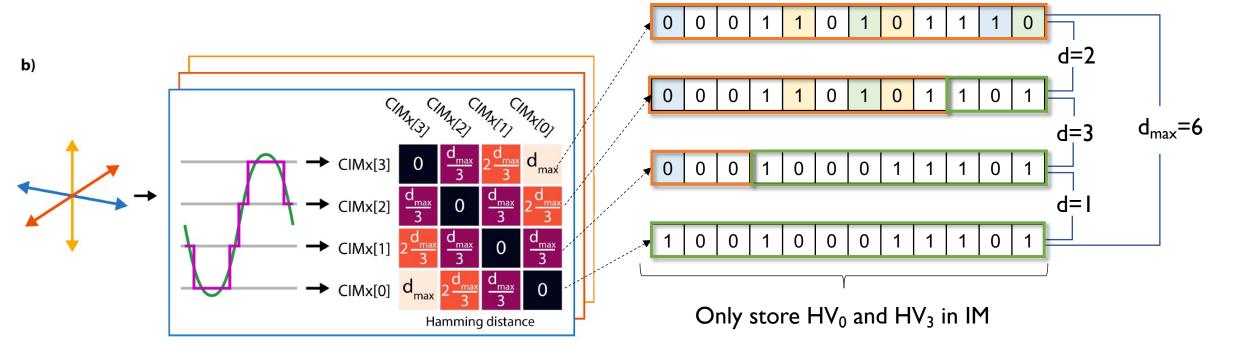
Approximately linear similarity preserving mapping:

Example: accelerometer data



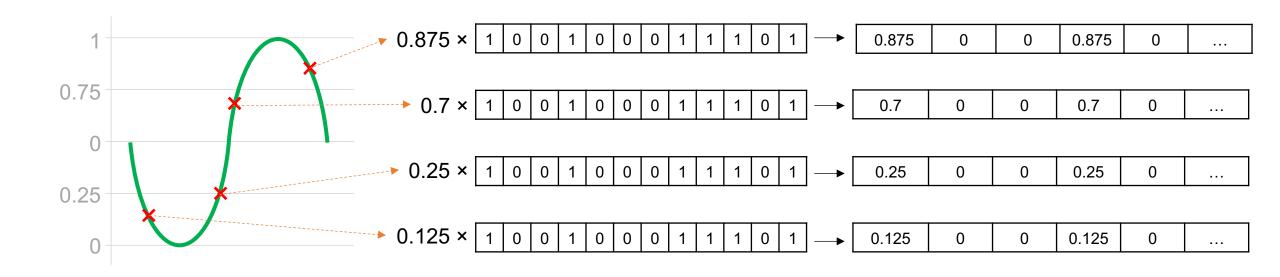
Approximately linear similarity preserving mapping:

Example: accelerometer data



Random projection

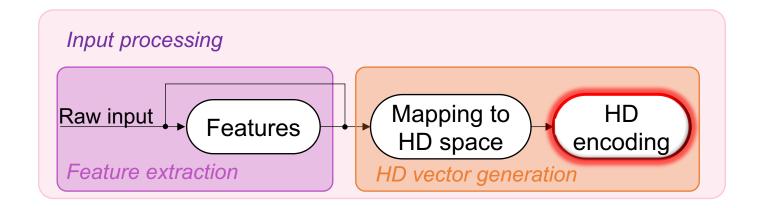
- Scalar multiplication of real value and HD vector.
- Useful when most appropriate quantization is unknown.
- Can be used as an intermediate representation, and normalized back to {-1,1} or {0,1} at a later step*.



^{*} See also Rachkovskij, D.A., I. S. Misuno, and S.V. Slipchenko. "Randomized projective methods for the construction of binary sparse vector representations." Cybernetics and Systems Analysis 48.1 (2012): 146-156.

Classification with HD computing/VSAs

2. Encoding

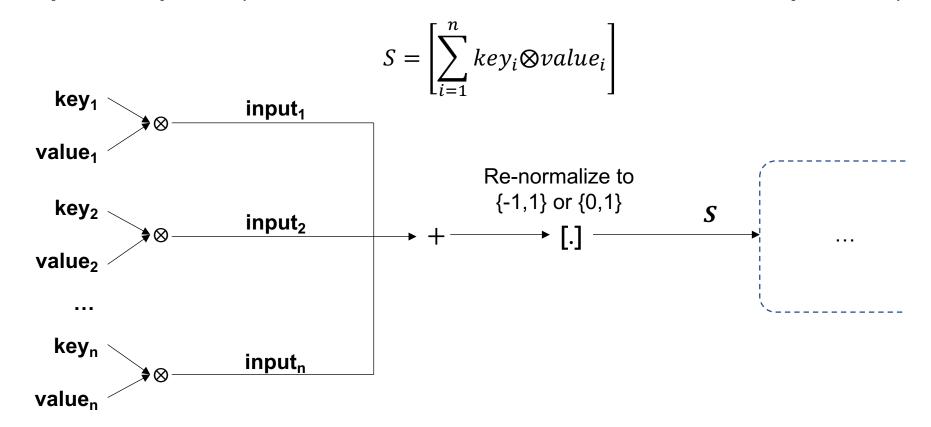


Encoding

- Exploit the properties of HD computing/VSAs, for example:
 - High capacity of HD vectors.
 - Binding: {key:value} / (variable:value) pairs.
 - Construction of data structures: sets, sequences, histograms, etc. Refer to Module 4: Representation and Manipulation of data structures by Denis.

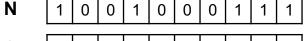
Spatial encoding

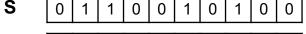
- Combine inputs available at a given time-aligned sample into a single HD vector.
- Set of key-value pairs (refer to Module 4 on data structures by Denis).

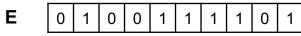


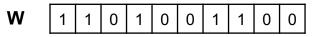
Spatial encoding

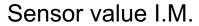
• Example: 2D robot navigation

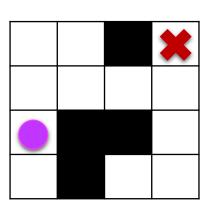




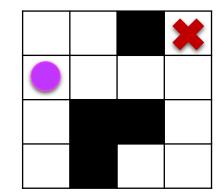




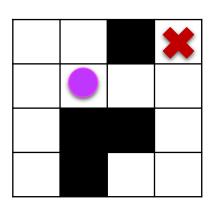




$$S_{t=1}$$
=[N \otimes F + S \otimes F+E \otimes T +W \otimes T



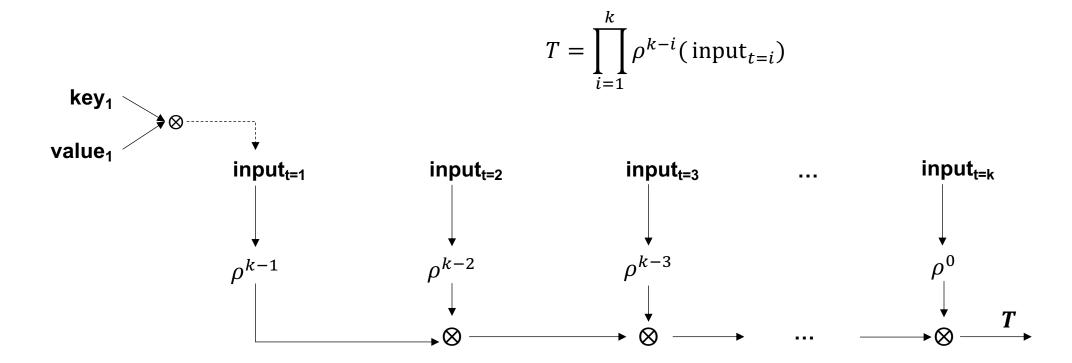
$$S_{t=2}=[N\otimes F + S\otimes F + E\otimes F + W\otimes F]$$



$$S_{t=1} = [N \otimes F + S \otimes F + E \otimes T + W \otimes T] \qquad S_{t=2} = [N \otimes F + S \otimes F + E \otimes F + W \otimes T] \qquad S_{t=3} = [N \otimes F + S \otimes T + E \otimes F + W \otimes F]$$

Temporal encoding

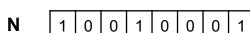
- Represent time dependencies of the inputs through sequences or n-grams over a specific window of length k.
- Sequence (of key-value pairs). Refer to Module 4.

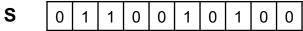


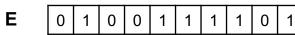
Temporal encoding

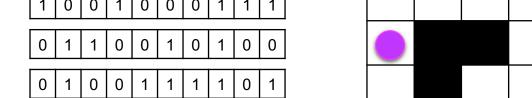
• Example: 2D robot navigation

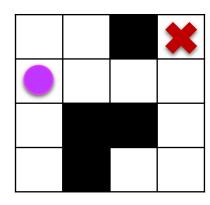
Sensor ID I.M.

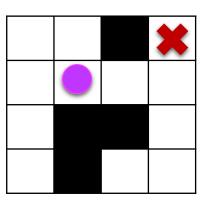












$$S_{t=1}=[N\otimes F + S\otimes F + E\otimes T + W\otimes T]$$

t=1

$$S_{t=2}=[N\otimes F + S\otimes F + E\otimes F + W\otimes T]$$

$$S_{t=2} = [N \otimes F + S \otimes F + E \otimes F + W \otimes T] \quad S_{t=3} = [N \otimes F + S \otimes T + E \otimes F + W \otimes F]$$

$$T=\rho^2(S_{t=1})\otimes \rho(S_{t=2})\otimes S_{t=3}$$

Histogram encoding

• Some applications may benefit from frequency distribution representations. \underline{n}

$$H = \sum_{i=1}^{n} input_i$$

E.g. Language identification (Lecture 1 by Pentti)

Trigrams from letter seed vectors

THE =
$$r(r(T)) * r(H) * E$$

Accumulate to form language profile (histogram of trigrams)

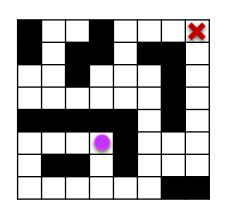
Engl
$$+=$$
 THE $+$ HE# $+$ E#Q $+$ #QU $+$ QUI $+$ UIC $+$...

Compare to other language profiles

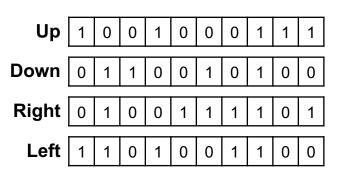
Query most likely letter after e.g.TH

Histogram encoding

• Example: 2D robot navigation, anomaly detection



Actuation I.M.



Histogram over x time steps

$$H = \sum_{i=1}^{x} S_{t_i}$$

2-step sequences (bi-grams)

$$S_1 = \rho(L) \otimes L$$

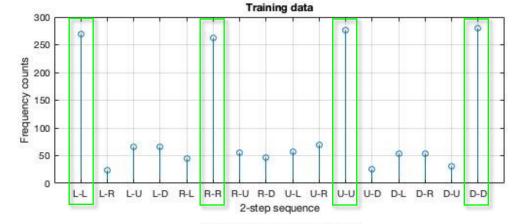
$$S_2 = \rho(L) \otimes R$$

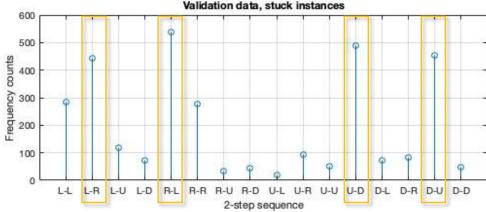
$$S_3 = \rho(L) \otimes U$$

$$S_4 = \rho(L) \otimes D$$

••

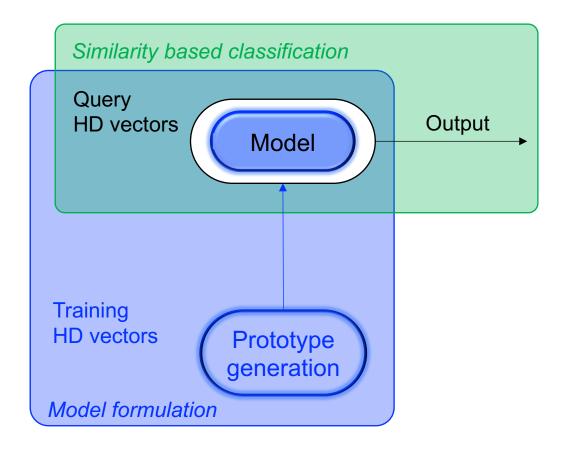
$$S_{16} = \rho(D) \otimes D$$





Classification with HD computing/VSAs

3. Model formulation and classification

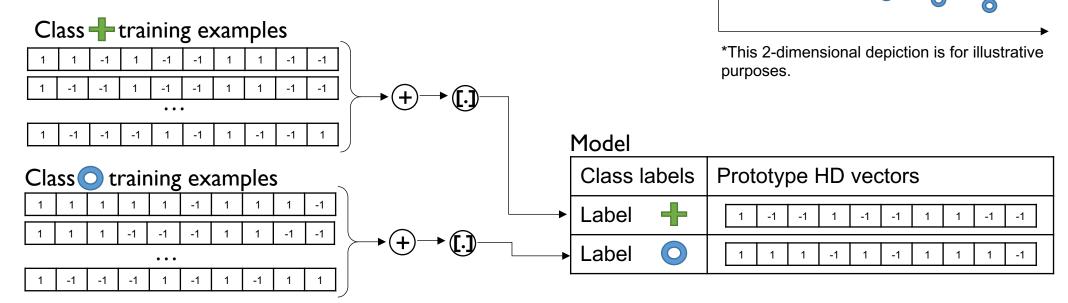


Model formulation

- Class prototype HD vector generation.
- Multiple approaches:
 - Centroid based prototype generation
 - One-shot prototype generation
 - Learning Vector Quantization (LVQ) family of representations
 - Multiple prototypes per class
 - Storing models in superposition

Class prototype generation (centroid computation)

- A prototype HD vector for each class is formed by computing the class centroid.
- For binary and bipolar HD vectors, this amounts to finding the majority of each element across all training examples.



Centroid

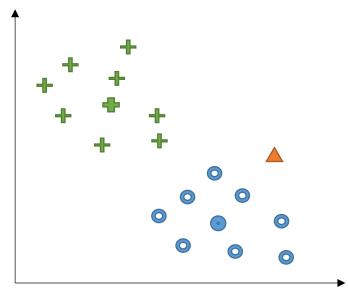
prototype

Centroid

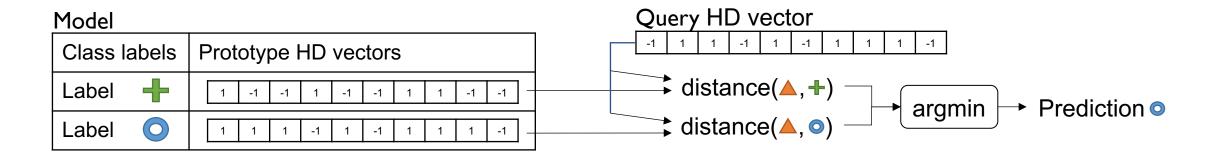
prototype

Classification

- Query HD vectors are formed using the same encoding as the training ones.
- Classification takes place by finding the nearest neighboring prototype to this query HD vector.
- Akin to a nearest centroid classifier in ML (https://en.wikipedia.org/wiki/Nearest_centroid_classifier)

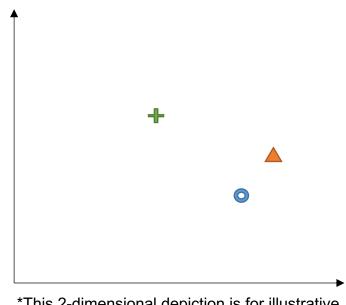


*This 2-dimensional depiction is for illustrative purposes.

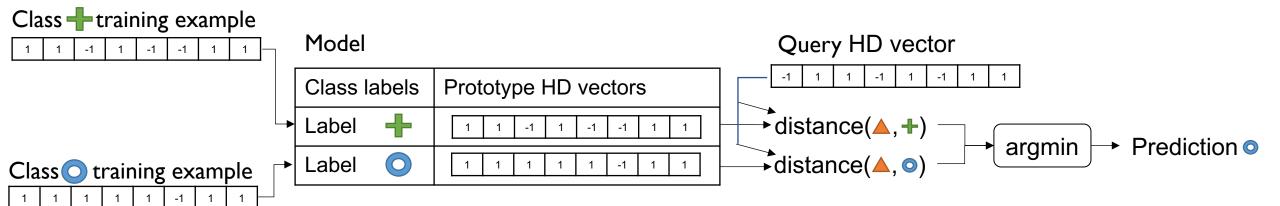


One-shot classification

- Single training sample constitutes the class prototype.
- Classification proceeds as usual.
- Works well with HD computing/VSAs because of information-rich representations enabled by HD vectors + encoding.



*This 2-dimensional depiction is for illustrative purposes.



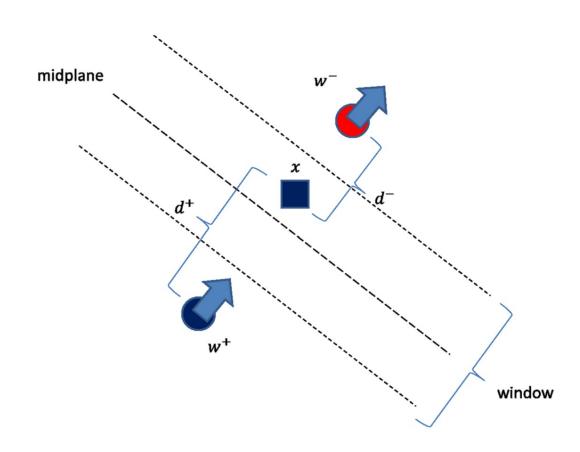
Learning Vector Quantization approaches

- Prototypes represent class regions.
- These prototypes are learned iteratively.

Heuristic approach:

$$w^{+} = w^{+} - \alpha(x - w^{+})$$

$$w^{-} = w^{-} + \alpha(x - w^{-})$$
Learning rate



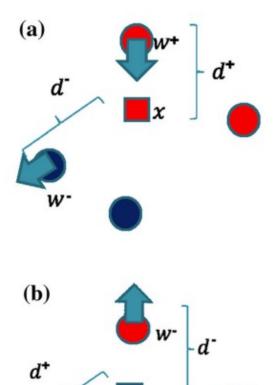
Learning Vector Quantization approaches

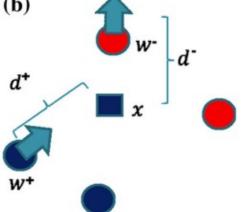
Margin maximalization approaches (e.g. Generalized LVQ):

Define a cost function from which the learning rule is derived via gradient descent.

Cost function Relative distance difference
$$w^{+} = w^{+} - 2\alpha \frac{\delta g}{\delta \mu} \mu^{-} (x - w^{+})$$

$$w^{-} = w^{-} + 2\alpha \frac{\delta g}{\delta \mu} \mu^{+} (x - w^{-})$$



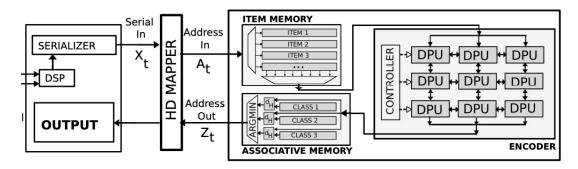


Classification with HD computing/VSAs

4. Performance trade-offs

Energy efficiency

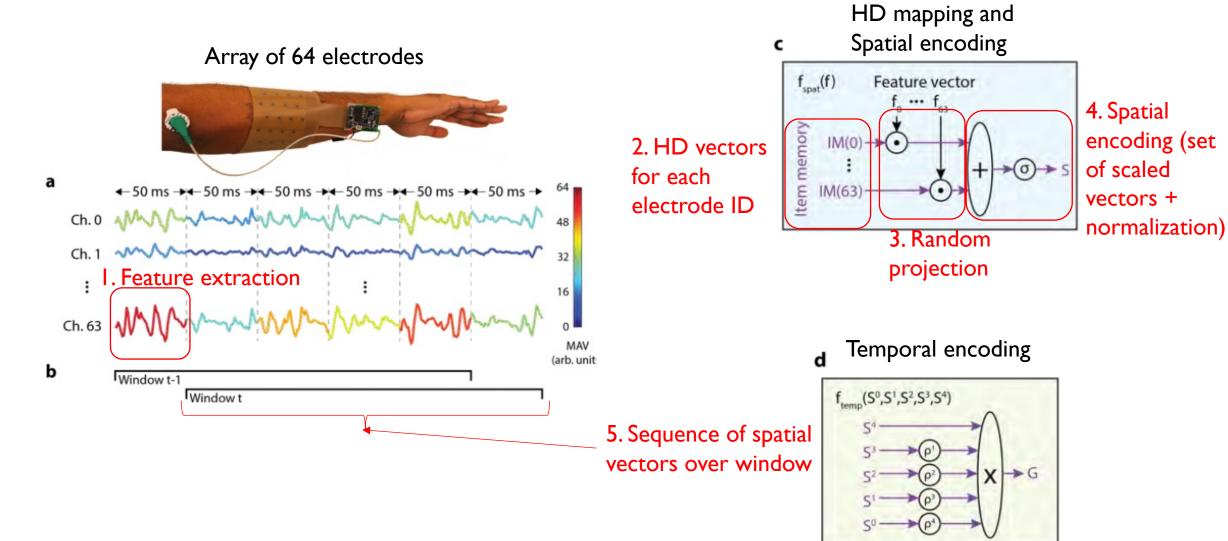
- Departure from traditional von Neumann architectures with inefficient memory exchanges.
- Enables bit-wise operations when using Binary Spatter Codes model.
- Robustness under low SNR and sparsity can enable resource efficiency.
- Will be discussed in detail by Mohamed in Module 11: Hardware implementations.

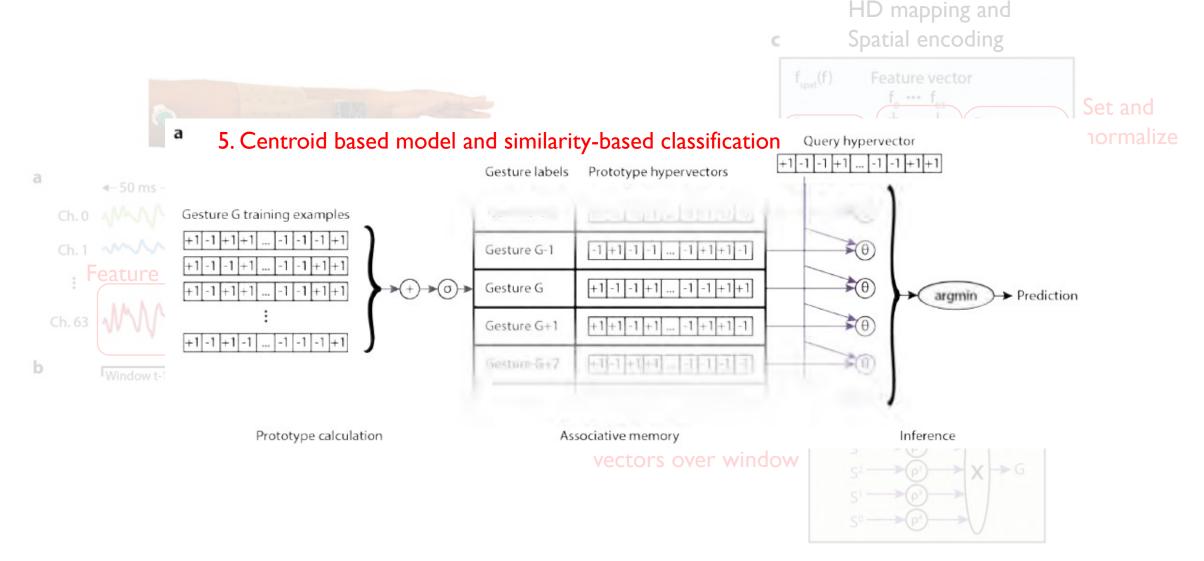


Datta, Sohum, et al. "A programmable hyper-dimensional processor architecture for human-centric IoT." *IEEE Journal on Emerging and Selected Topics in Circuits and Systems* 9.3 (2019): 439-452.

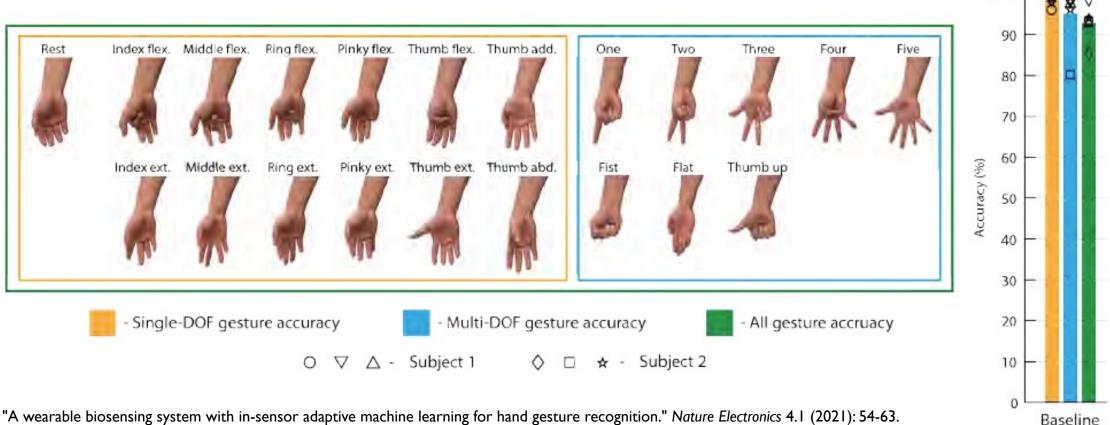
Application examples

ExG signal classification, Robotics



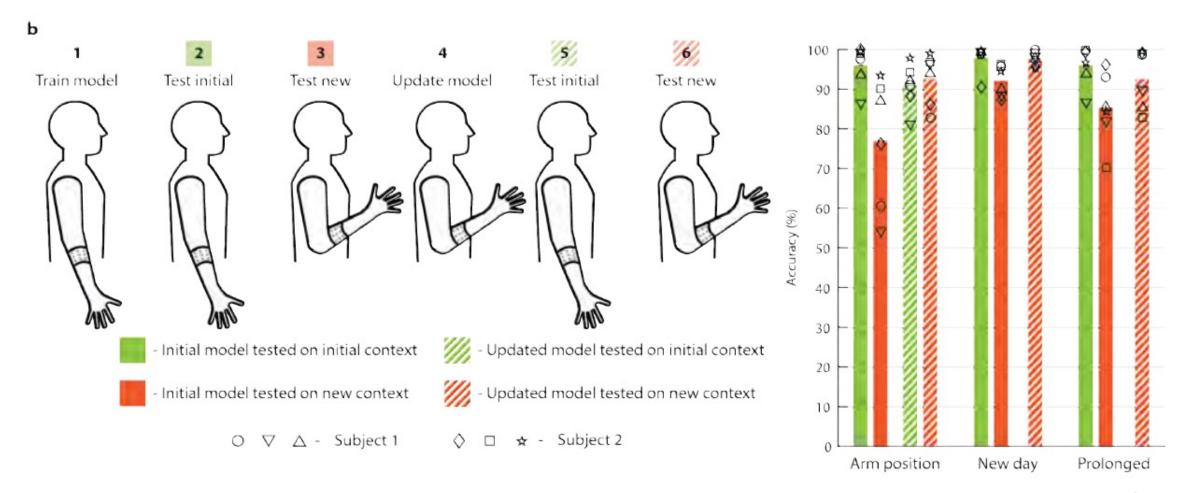


• Results: high accuracy and robustness to variations from different users.

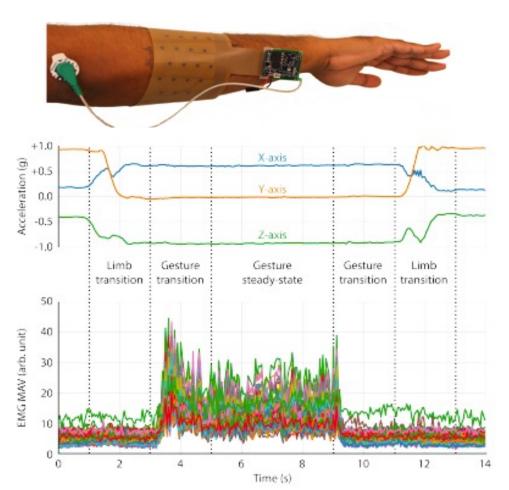


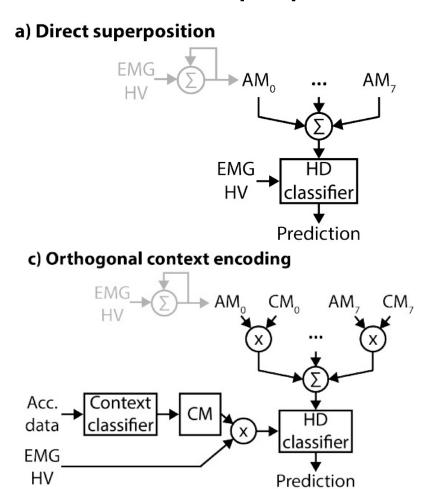
A. Moin, et al. "A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition." Nature Electronics 4.1 (2021): 54-63.

Adaptive learning without significant overhead.



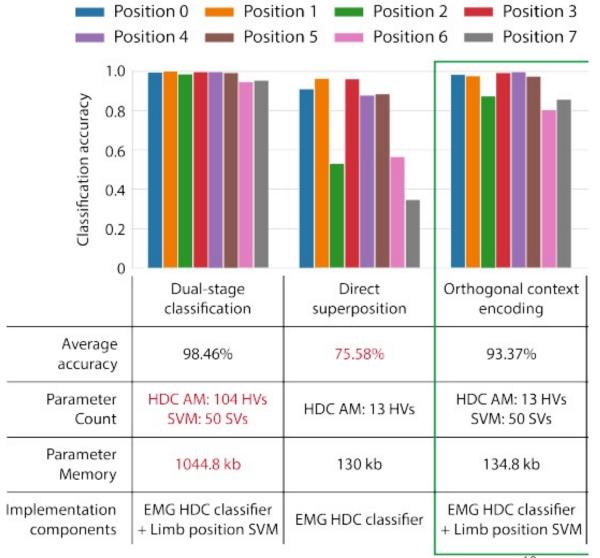
• Sensor fusion and storing context-specific models in superposition.





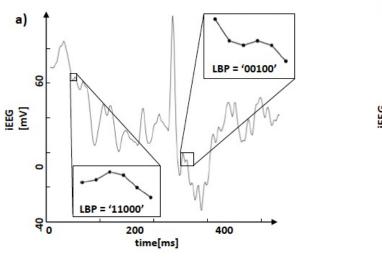
59

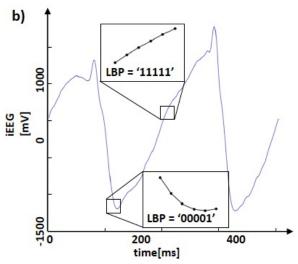
 Results: the proposed orthogonal context encoding improves accuracy with respect to direct superposition and is significantly more efficient than dual-stage classification.

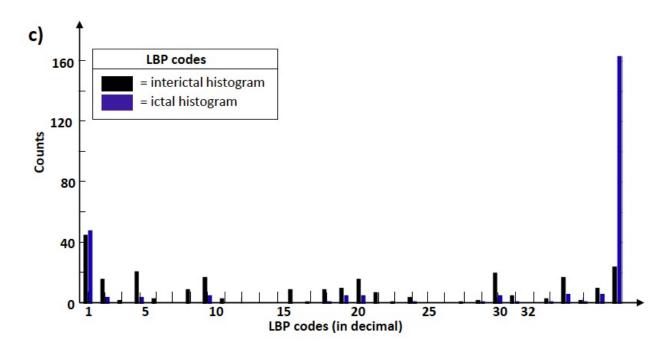


iEEG-based Seizure Detection

- Interictal (precede seizure) and ictal (during seizure) states of brain activity have distinct pattern frequency distributions.
- These patterns can be captured through short bit strings or local binary patterns (LBPs).
- The two brain states can be identified by comparing the frequency distributions.



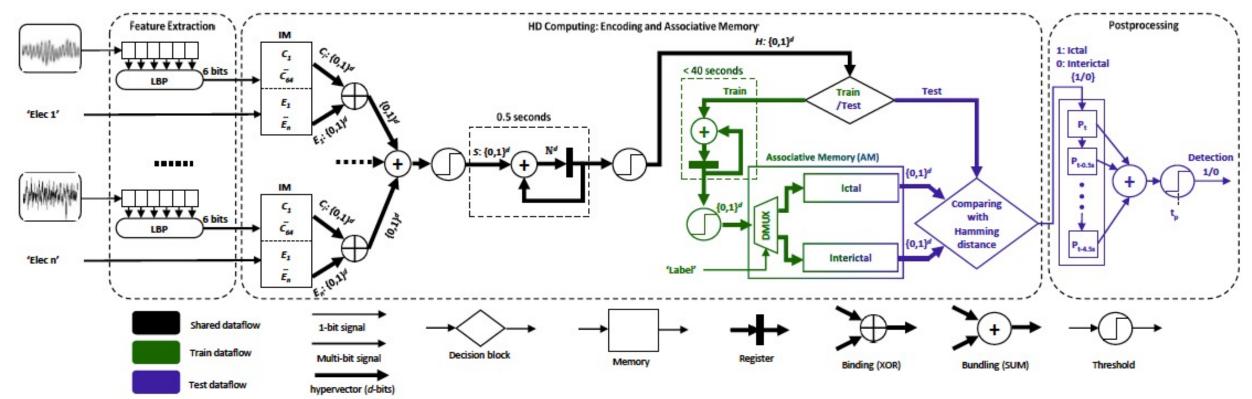




Burrello, A., Schindler, K., Benini, L., & Rahimi, A. (2018, October). One-shot learning for iEEG seizure detection using end-to-end binary operations: Local binary patterns with hyperdimensional computing. In 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS) (pp. 1-4). IEEE..

iEEG-based Seizure Detection

 HD computing/VSAs can be used to represent the LBP and encode histograms over a pre-determined window. Similarity metrics are used to infer whether the current brain state is ictal or interictal.

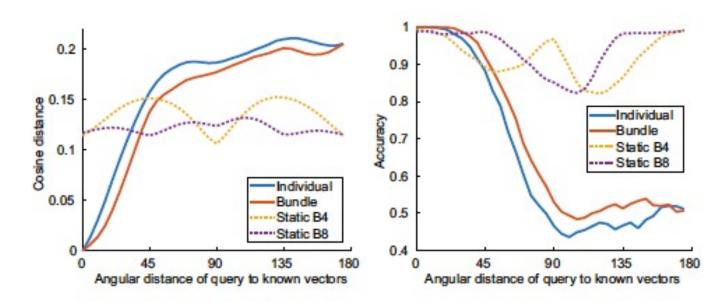


Burrello, A., Schindler, K., Benini, L., & Rahimi, A. (2018, October). One-shot learning for iEEG seizure detection using end-to-end binary operations: Local binary patterns with hyperdimensional computing. In 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS) (pp. 1-4). IEEE...

Robotics (vision)

Object recognition from multiple viewpoints

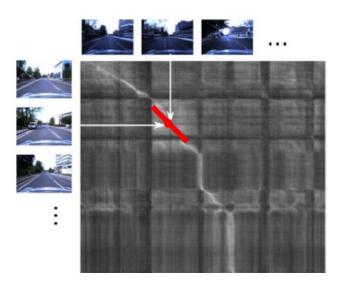
- Exploit bundling to combine multiple viewpoints in superposition.
- Then the comparison of a query vector to all views can be made with a single vector comparison.
- Straightforwardly update the representation of an object during online execution.



Robotics (vision)

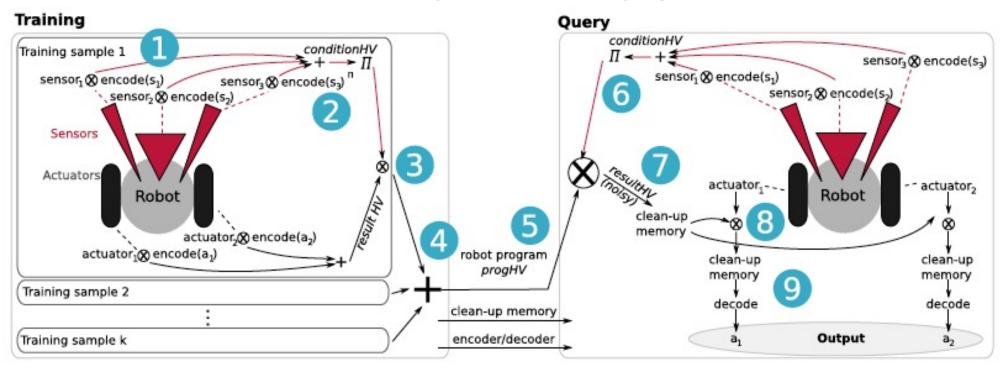
Sequence processing for place recognition

- Individual scenes are represented by binding their vector representation to their current position.
- Sequences of scenes are formed by bundling a set of the representations above.
- Prototype encodings are then compared to query ones to infer the scene.
- This representation is robust even through seasonal changes.



Robotics

- Learning and recall of reactive behavior:
 - Learn from demonstrations a representation that encodes sensor-action pairs.
 - This behavior can be resembled at run-time by extracting the action corresponding to the current sensor value through an unbinding operation.



Other applications of HD computing/VSAs

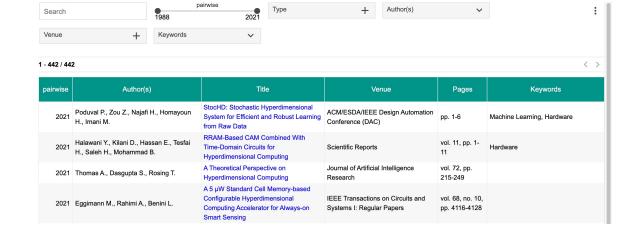
• Survey papers:

Module 9 (10/27): Solving classification problems

- Focus paper: Rahimi, Kanerva, Benini, Rabaey: Efficient Biosignal Processing Using Hyperdimensional Computing: Network Templates for Combined Learning and Classification of ExG Signals
- Further recommended reading:
 - Ge, Parhi: Classification using Hyperdimensional Computing: A Review
 - Neubert, Schubert, Protzel: An Introduction to Hyperdimensional Computing for Robotics
 - Joshi, Halseth, Kanerva. Language Geometry Using Random Indexing
 - Rahimi, Benatti, Kanerva, Benini, Rabaey: Hyperdimensional Biosignal Processing: A Case Study for EMG-based Hand Gesture Recognition
 - Kleyko, Rahimi, Rachkovskij, Osipov, Rabaey: Classification and Recall with Binary Hyperdimensional Computing: Tradeoffs in Choice of Density and Mapping Characteristic
- Comprehensive list of VSA/HD computing works

This page lists VSAs/Hyperdimensional Computing publications in the chronological order

We strive to keep this collection up-to-date but <u>please let us know</u> if some publications are currently missing and should be added to this list. We will take care of updating it.



Questions?

Thank you!