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Motivation and goals



Why should we discuss classification problems?

* Classification is a widely used task in many application domains.

* Amenable to the practical implementation of many of the
concepts studied so far.

* Variety of implementations and compelling results are the
outcome of interdisciplinary interest in the topic of HD
computing/VSA:s.



Goals for this lecture

* An overview of how HD computing/VSAs can be used to solve a
classification problem.

* Highlight the different approaches available in the literature for
each step of the “classification pipeline”.

* Encourage you to think of how other properties or traits of HD
computing/VSAs can be exploited in the classification realm and
beyond.



Background

The “classification pipeline”

Module 9: Solving classification problems



The classification pipeline in Machine Learning
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Based on Flach, P. (2012). Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press and
Galindez Olascoaga, L. I.. Meert,W,, & Verhelst, M (202 1). Hardware-Aware Probabilistic Machine Learning Models. Springer, Cham.
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Basic linear classifier
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Example from Flach, P. (2012). Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press.



Basic linear classifier
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Types of approaches/models™
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*Non exhaustive and non mutually exclusive list based on Flach, P. (2012). Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press.



Types of approaches/models™
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*Non exhaustive and non mutually exclusive list based on Flach, P. (2012). Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press.



Types of approaches/models™
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*Non exhaustive and non mutually exclusive list based on Flach, P. (2012). Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press.



Types of approaches/models™

* Geometric
* Distance based (geometric)

Nearest neighbor classifiers
(e.g. K nearest neighbors)
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*Non exhaustive and non mutually exclusive list based on Flach, P. (2012). Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press.



Types of approaches/models™

* Geometric
* Distance based (geometric)

Nearest neighbor classifiers
(e.g. nearest centroid)
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*Non exhaustive and non mutually exclusive list based on Flach, P. (2012). Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press.



Types of approaches/models™

* Geometric

* Distance based (geometric) C
Acc. vertlcal 0

* Logical
/ Nl
Decision tree cc. horlzontal> cc. honzontal)

low high

jump 0 jump 10 jump 55
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Taken from Galindez Olascoaga, L. |.. Meert,W,, & Verhelst, M (2021).
Hardware-Aware Probabilistic Machine Learning Models. Springer, Cham.

*Non exhaustive and non mutually exclusive list based on Flach, P. (2012). Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press.



Types of approaches/models™

*Non exhaustive and non mutually exclusive list based on Flach, P. (2012). Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press.

Geometric
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Logical

Probabilistic, etc.

Bayesian network classifiers
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jump low |0.1 jump low | 0.6
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Taken from Galindez Olascoaga, L. |.. Meert,W.,, & Verhelst, M (2021).
Hardware-Aware Probabilistic Machine Learning Models. Springer, Cham.



Types of approaches/models™

* Geometric
* Distance based (geometric)
* Logical

* Probabilistic, etc.

* What kind of classification can HD computing/VSAs enable!?

*Non exhaustive and non mutually exclusive list based on Flach, P. (2012). Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press.



Classification with HD computing/VSAs



Main components of HD computing/VSAs

* High-dimensional vectors (HD vectors, hypervectors, HV) are
approximately orthogonal to each other.

* Hyperdimensional arithmetic comprises three simple operators:
* Bundling or superposition +
* Binding: typically, a multiplicative operation ®
* Permutation p

* Similarity metrics: dot product, Hamming distance, etc. distance( .)

* Associative memory and item memory (codebook).



Role of HD computing/VSAs in classification pipeline

* Input data representation and encoding.
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Can be done with HD computing/VSAs or
within a hybrid scheme with other models.
E.g. Module 10 on Relations to Neural
Networks by Denis.



Role of HD computing/VSAs in classification pipeline

* Model formulation with HD computing/VSAs.
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Classification with HD computing/VSAs

|. Mapping inputs to HD space

Input processing
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Mapping inputs to HD space

Determined by the type of input:

* Symbolic or categorical: Can be described by a finite
alphabet of independent values or symbols. For example,

letters in the alphabet (examples from Modules | by Pentti and
Module 3 by Ryan).

* Real-valued: Continuous input data or discrete variables with
correlated values. For example, accelerometer signals (see also

Module 8 by Chris).



Mapping symbolic inputs to HD space

* Orthogonal mapping: a unique HD vector, randomly chosen, is
assigned to each symbol.

* These unique HD vectors are saved in an item memory (1.M.)
and remain fixed for the rest of the system execution.



Mapping symbolic inputs to HD space

Example |: character recognition ABCOEFGHIJKLH
HUPHRSTULHET S

Each feature is assigned a randomly generated

| e e binary HD vector, these are saved in M.
Each pixel is :
RSN | Pixt1 [1]ofof[1]ololo[1]1 ]l
feature. L]
Features are Black O|0(1|0|0]|O0|1 1.

assumed to be
uncorrelated.

Whlte.10010001

i<

Values can be represented by shifting the pixel ID HD
vector: 0 bits for black and | bit for white.

Kleyko, D., Osipoy, E., Senior, A., Khan,A. |, & Sekerciogglu,Y.A. (2016). Holographic graph neuron:A bioinspired architecture for pattern
processing. IEEE transactions on neural networks and learning systems, 28(6), 1250-1262.



Mapping symbolic inputs to HD space

(ermalie pai approach) AELOEFLHIIRLY
MUPERSTUVHATE

Each feature is assigned a randomly generated

| e e binary HD vector, these are saved in PixID |.M.
ach pixel is | Pix1 |1[0]|0[1]|0fo0f0|1]1]H1
treated as a
feature. L]

Each value is assigned a randomly generated

Features are , )
binary HD vector, these are saved in the Color M.

assumed to be
uncorrelated.

Black [ 1 |1|0|0|0|1]|1|0]1]0

<

White |0 |1 (1|0 |0 |1 |0|1]0]1

Encoding as {Pixel ID: value} pair: Pix | ® White

Kleyko, D., Osipoy, E., Senior, A., Khan,A. |, & Sekerciogglu,Y.A. (2016). Holographic graph neuron:A bioinspired architecture for pattern
processing. IEEE transactions on neural networks and learning systems, 28(6), 1250-1262.



Mapping symbolic inputs to HD space

Example 2: 2D robot navigation

Sensors: presence or absence of obstacles in each cardinal direction

x Sensor ID .M.
N N|[1|o|lo|1|oflofo|1|1|1| -+ W[1|o|1]|0]O
W (@ E

‘ S Sensor value |.M.
— true|0|1|1[1]|0o|1]|0o[1]0|0]| false|1|1]|0|0]0O
Agent navigating in Actuation: the robot can move up, down, right or left
2D grid must reach
goal while avoiding Actuation |.M.

obstacles. ® up|[1]1]1]ofofofol1]1]0o] -+ LEFT|[0|1]1]0

Related works:

Levy, Simon D., Suraj Bajracharya, and Ross W. Gayler. "Learning Behavior Hierarchies via High-Dimensional Sensor
Projection." AAAl Workshop: Learning Rich Representations from Low-Level Sensors. 201 3.

P.Neubert, S. Schubert, and P. Protzel,“Learning vector symbolic architectures for reactive robot behaviours,” IROS
Workshop: Machine Learning Methods for High-Level Cognitive Capabilities in Robotics, 2016.



Mapping real-valued inputs to HD space

Real-valued inputs call for locality preserving encodings (LPEs). Introduced in
module 8 by Chris.

Approaches | will discuss today:

* Discrete mapping: discretize the real-valued input and assign HD vectors such
that they preserve relevant correlations.

* Random projection: directly project real-valued inputs to HD space by means
of scalar multiplication. Often used as an intermediate representation.

Other powerful approaches, still largely unexplored for practical applications:

* Vector Function Architectures (VFAs), kernel LPEs (in the context of HD
computing/VSAs).



Similarity preserving discrete mapping

Linear similarity* preserving mapping:

@ 000
|. Discretize real-valued input into m+1 levels. @ &800 0
2. Randomly assign HD vector to level 0 (HV,). @ @& O O
3. Gradually flip a predefined number of bits starting @ & & aé o
from HV,such that HV, and HV,,, are =4 2 o e
uncorrelated. & @ W B @

*Linear similarity also
preserved by e.g.

Considerations: thermometer code.
. . . . (Taken from Chris’s slides,
* Sample without replacement for the bit flipping. module 8)

* Need to store the HD vectors for all levels.



Similarity preserving discrete mapping

Linear similarity preserving mapping:

Example: accelerometer data
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Figure taken from Zhou, A., Muller, R., & Rabaey, J. (2021, March). Memory-Efficient, Limb Position-Aware Hand
Gesture Recognition using Hyperdimensional Computing. In Research Symposium on Tiny Machine Learning.
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Similarity preserving discrete mapping

Approximately linear similarity preserving mapping™:

|. Discretize real-valued input into m+1 levels.
2. Randomly assign HD vectors to the first and last levels HV, and HV_

3. Construct intermediate levels by concatenating sections of HV, and
HVm+|.

Considerations:

* Might only need to store first and last level.
* Linear similarity preservation not guaranteed.

*Based on the “encoding by concatenation” from Rachkovskiy, Dmitriy A., et al. "Sparse binary distributed encoding of scalars." Journal of
Automation and Information Sciences 37.6 (2005).



Similarity preserving discrete mapping

Approximately linear similarity preserving mapping:

Example: accelerometer data
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Figure taken from Zhou, A., Muller, R., & Rabaey, J. (2021, March). Memory-Efficient, Limb Position-Aware Hand
Gesture Recognition using Hyperdimensional Computing. In Research Symposium on Tiny Machine Learning.
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Similarity preserving discrete mapping

Approximately linear similarity preserving mapping:

Example: accelerometer data
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Figure taken from Zhou, A., Muller, R., & Rabaey, J. (2021, March). Memory-Efficient, Limb Position-Aware Hand
Gesture Recognition using Hyperdimensional Computing. In Research Symposium on Tiny Machine Learning.
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Random projection

* Scalar multiplication of real value and HD vector.
* Useful when most appropriate quantization is unknown.

* Can be used as an intermediate representation, and normalized back to

{-1,1} or {0,1} at a later step™.

0.875x|1]0

0.7x|1]0

0.25x|1]0

0.125x|1]0

* See also Rachkovskij, D.A,, I. S. Misuno, and S.V. Slipchenko. "Randomized projective methods for the construction of binary sparse vector

representations.” Cybernetics and Systems Analysis 48.1 (2012): 146-156.

0.875 0.875 0

0.7 0.7 0

0.25 0.25 0

0.125 0.125 0
36




Classification with HD computing/VSAs

2. Encoding

Input processing
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Raw input | , N\ ;fMapping to HD
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Encoding

* Exploit the properties of HD computing/VSAs, for example:
* High capacity of HD vectors.
* Binding: {key:value} / (variable:value) pairs.
* Construction of data structures: sets, sequences, histograms, etc.

Refer to Module 4: Representation and Manipulation of data
structures by Denis.



Spatial encoding

* Combine inputs available at a given time-alighed sample into a single HD vector.

* Set of key-value pairs (refer to Module 4 on data structures by Denis).

S =

n
Z key;Qualue;
i=1

key, inout
>® input,

value,

- = -

Re-normalize to
key2 {-1,1}Or {0,1} S

>® |nput2 .+ . []
value,
ke
Yn > input,,
®

value,,

[ A ——
N

_______________

P. Neubert and P. Protzel,“Towards HypervectorRepresentations for Learning and Planning with Schemas,” Joint German/Austrian Conference on Artificial Intelligence, 2018



Sensor ID |.M.

N

S
E
W

Spatial encoding

* Example: 2D robot navigation
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Temporal encoding

* Represent time dependencies of the inputs through sequences or n-grams over
a specific window of length k.

* Sequence (of key-value pairs). Refer to Module 4.

k
T = Hpk_i(iHPUtt=i)
=1

value
1 input-4 input;=, inputi=; input-
pk—l pk—z pk—3 pO
| i |
> X » QR — > >




Temporal encoding

* Example: 2D robot navigation
t=1 t=2 t=3

Sensor ID .M. x

N |1({o|o|1]OofO|O|1[1]1

ol1(1|olol1]ol1]0]0 ‘

S
E |of1|0|O|1|[1]|1]|1|0]1
W

111]10(1[(0]J0|1]1[0fO0

Si=1=[N®F + SQF+EQ®T +WQT] Si-o=[N®F + SQF+EQF +W®T] Si-3=[N®F + SQT+EQF +W®F]
\ y
\

T= p2(8t=1) X P(St=2) ® St=3

Sensor value |.M.
True (010|011 1]1]0]1

False|1|1|o0|1]|0|0[1]|1]0]0




Histogram encoding

* Some applications may benefit from frequency distribution
representations. n
H = 2 input;
i=1

E.g. Language identification (Lecture | by Pentti)

Trigrams from letter seed vectors THE = r(r(mM)) * r(H) * E

Accumulate to form language profile Engl += THE + HE# + E#Q + #QU + QUI + UIC +

(histogram of trigrams) N

Compare to other language profiles Query most likely letter after e.g. TH

Joshi, Aditya, Johan T. Halseth, and Pentti Kanerva. "Language geometry using random
indexing." International Symposium on Quantum Interaction. Springer, Cham, 201 6.



Histogram encoding

* Example: 2D robot navigation, anomaly detection

Actuation |.M.

Up|1]|0]0]|1]0

0

Down|o|1|1]0]0

1

Right [0 |[1]0]0 |1

1

Left|1{1]|0f1]0

0

2-step sequences (bi-grams)

S1=p(L)BL
S, = p(L)®R
Sz = p(L)®U
St = p(L)®D
S16 = p(D)®D

Histogram over x time steps

X
H == 2 Sti
=1
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Frequency counts
pre . . n [ w
c 8 8 8 8 8
T T T T

o

Frequency counts
- N w = wn [+7]
8 8 8 8 8 B8

o

Training data

LL|LR LU L-D RL |R-R| R-U R-D UL UR|UU UD DL D-R DU |D-D
2-step sequence

Validation data, stuck instances

LL l-R /LU LD RL RR RU RD UL UR UU UD DL DR DU DD
2-step sequence
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Classification with HD computing/VSAs

3. Model formulation and classification

Similarity based classification

Module 9: Solving classification problems
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Model formulation

* Class prototype HD vector generation.

* Multiple approaches:
* Centroid based prototype generation
* One-shot prototype generation
* Learning Vector Quantization (LVQ) family of representations
* Multiple prototypes per class
* Storing models in superposition



Class prototype generation (centroid computation)

* A prototype HD vector for each class is
formed by computing the class centroid.

* For binary and

bipolar HD vectors, this

amounts to finding the majority of each
element across all training examples.

Class == training examples

1 1 -1 1 -1 -1 1 1

1 -1 -1 1 -1 -1 1 1

1 -1 -1 -1 1 -1 1 -1

Class© training examples

1 1 1 1 1 -1 1 1

1 1 1 -1 -1 -1 1 1

A

, b
+ aln
+ T4
4+ +
o . Centroid
o ©/  prototype
(o) @ (o)
(o) o) o

1 -1 -1 -1 1 -1 1 -1

A *This 2-dimensional depiction is for illustrative
purposes.
—@—0—
/ Model
. Class labels | Prototype HD vectors
——| Label -{Iﬁ 1 (1] O I I 1 I I I

—> —>

@ @L Label @ 1l alafala ] 1]
J

Module 9: Solving classification problems
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Classification |

+
* Query HD vectors are formed using the o o
same encoding as the training ones. N . M R
» Classification takes place by finding the o o
nearest neighboring prototype to this query © o o
HD vector. ° ° o ‘

*This 2-dimensional depiction is for illustrative

* Akin to a nearest centroid classifier in ML iy
(https://en.wikipedia.org/wiki/Nearest_centroid_classifier)

Model Query HD vector

1 1 1 1 1 1 1 1 -1

Class labels | Prototype HD vectors

Label '=||}- tfalal e afala ] a] \; diStance(A,+) . o
. 4>‘ argmin |—> Prediction ©
Label © > distance(A,0) —

1 1 1 -1 1 -1 1 1 1 -1




One-shot classification

* Single training sample constitutes the class

prototype.

* Classification proceeds as usual.

* Works well with HD computing/VSAs because
of information-rich representations enabled by

HD vectors + encoding.

Class == training example

1

1

-1 1] 1 1 Model

»

*This 2-dimen
purposes.

Query HD vector

»

sional depiction is for illustrative

— -1 1 1 -1 1 -1

1 Class labels | Prototype HD vectors

Label == 1

1

-1

1

-1

-1

\ )
—distance(A,+)

1

1

1

1

-1

—\:distance(A, 0) —

1

Class© training example j’ Label © 1

1

1 1 1 -1 1 1

Example: Rahimi, A,, Tchouprina, A., Kanerva, P, Millan, J. D. R. & Rabaey, |. M. Hyperdimensional Computing for Blind and
One-Shot Classification of EEG Error-Related Potentials. Mob. Networks Appl. |-12 (2017)

w Prediction ©



Learning Vector Quantization approaches

* Prototypes represent class regions.

* These prototypes are learned iteratively.

midplane

Heuristic approach:

+

wr=wt—alx—-w?)

wo=w +a(x—w")

/

Learning rate

window

Diao, Cameron, et al. "Generalized Learning Vector Quantization for Classification in Randomized Neural Networks and Hyperdimensional
Computing." arXiv preprint arXiv:2106.09821 (2021). 50
Nova, David, and Pablo A. Estévez. "A review of learning vector quantization classifiers." Neural Computing and Applications 25.3 (2014):511-524.



Learning Vector Quantization approaches

Margin maximalization approaches (e.g. @ ’W’ “_ =
Generalized LVQ): ‘  my

Define a cost function from which the
learning rule is derived via gradient descent.

Cost function Relative

A/A/distance (b) ‘
wt = wt — 2¢ g_:z'u_ (x B W+) difference w.}d'

=
I
=
_|_
DN
K
|
=

Diao, Cameron, et al. "Generalized Learning Vector Quantization for Classification in Randomized Neural Networks and Hyperdimensional
Computing." arXiv preprint arXiv:2106.09821 (2021).
Nova, David, and Pablo A. Estévez. "A review of learning vector quantization classifiers." Neural Computing and Applications 25.3 (2014):511-524.
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Classification with HD computing/VSAs

4. Performance trade-offs

Module 9: Solving classification problems
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Energy efficiency

* Departure from traditional von Neumann architectures with inefficient
memory exchanges.

* Enables bit-wise operations when using Binary Spatter Codes model.
* Robustness under low SNR and sparsity can enable resource efficiency.

* Will be discussed in detail by Mohamed in Module | |: Hardware
implementations.

Serial
In Address
> In

SERIALIZER

3:1:4
m| [m)
=] =] |=]
wl [V |-

At

T2 psp

ITEM MEMORY
Address

2
{ l 1
& 1+ DPU [ DPU |+ DPU |
= 3 3 3
g +{ DPU }o{ DPU |+ DPU |
= 3 3 3
dre: st ], S [+[DPU W DPU W{DPU |
l, i '

2
g LT |
<4t (G} H LA
QUTRUT Zt g CLASS 3 |

ASSOCIATIVE MEMORY

HD MAPPER

0
o)
(vl
[N)

ENCODER

Datta, Sohum, et al. "A programmable hyper-dimensional processor architecture for human-centric loT." IEEE Journal on Emerging and Selected Topics in
Circuits and Systems 9.3 (2019): 439-452.



Application examples

ExG signal classification, Robotics

Module 9: Solving classification problems
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EMG-based hand gesture recognition

HD mapping and

C Spatial encodin
Array of 64 electrodes P &
foulf) Feature vector
4. Spatial
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= A electrode ID | £ vectors +
o v e normalization)
3. Random
Ch.1 32 . .
. |. Feature extraction : . projection
Ch.63 \N‘\I\l\l Vv I\/\’\\/U\/ . 0
MAV H
el 4 Temporal encoding
b IWindow t-1 !
Window g £ (sShshs%sY

\ 5.Sequence of spatial 9,
q p %

ector er wind
vectors over window G ,. > x> G

55
A.Moin, et al. "A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition." Nature Electronics 4.1 (2021): 54-63.



EMG-based hand gesture recognition

@ 5. Centroid based model and similarity-based classification Query hypervector

Gesture labels  Prototype hypervectors [‘-] m-] P]rll [-l [.I[m
' :

Gesture G training examples

[”["[']I"['“LII ]I' ]l’ ‘j ’O >@ »| Gesture G [ﬂlw_]tﬂﬂ_] ’ T~ 9\}

argmin Prediction
: Gesture G+1 | O[] L 30)
[ ][] ] - - ‘
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A. Moin, et al. "A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition." Nature Electronics 4.1 (2021): 54-63.



EMG-based hand gesture recognition

* Results: high accuracy and robustness to variations from different users.
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EMG-based hand gesture recognition

* Adaptive learning without significant overhead.
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EMG-based hand gesture recognition

* Sensor fusion and storing context-specific models in superposition.

a) Direct superposition
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Zhou, A., Muller, R., & Rabaey, J. (2021, March). Memory-Efficient, Limb Position-Aware Hand Gesture Recognition using
Hyperdimensional Computing. In Research Symposium on Tiny Machine Learning
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EMG-based hand gesture recognition

mmm Position 0 msm Position 1

* Results: the proposed orthogonal
context encoding improves
accuracy with respect to direct
superposition and is significantly
more efficient than dual-stage
classification.
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A.Moin, et al. "A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition." Nature Electronics 4.1 (2021): 54-63.

+ Limb position SVM
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iEEG-based Seizure Detection
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hyperdimensional computing. In 2018 IEEE Biomedical Circuits and Systems Conference
(BioCAS) (pp. 1-4). IEEE..



iEEG-based Seizure Detection

* HD computing/VSAs can be used to represent the LBP and encode
histograms over a pre-determined window. Similarity metrics are used to
infer whether the current brain state is ictal or interictal.
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Burrello,A., Schindler, K., Benini, L., & Rahimi,A. (2018, October). One-shot learning for iEEG seizure detection using end-to-end binary operations: Local binary patterns 62
with hyperdimensional computing. In 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS) (pp. |-4). IEEE..

s HD Computing: Encoding and Associative Memory N // Postprocessing A
H:{0,1 ) |
o1 :I 1:Ictal 1
1 - |
0: Interictal
< 40 seconds ¥ (1/0'} !
! 1
¥ '
1
: : v -
1
| : pl \ |
| = '
1 |
Associative Memory (AM) : : Pros ™ Detection :
{01y L : /o
Ictal " "' . X
ﬁ . X : = :
d Comparing T ° M
with Iy ‘ % i
Hamming Iy A :
distance : 1 P :
Interictal E \
Iy !
1y !
U /



Robotics (vision)

Object recognition from
multiple viewpoints

* Exploit bundling to combine
multiple viewpoints in
superposition.

* Then the comparison of a query
vector to all views can be made
with a single vector comparison.

* Straightforwardly update the
representation of an object
during online execution.
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Neubert P, Schubert S., Protzel P."An introduction to hyperdimensional computing for robotics." Ki-Kiinstliche Intelligenz 33.4 (2019): 319-330.
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Robotics (vision)

Sequence processing for place recognition

* Individual scenes are represented by binding their
vector representation to their current position.

* Sequences of scenes are formed by bundling a set
of the representations above.

* Prototype encodings are then compared to query
ones to infer the scene.

* This representation is robust even through
seasonal changes.

Neubert P, Schubert S., Protzel P."An introduction to hyperdimensional computing for robotics." Ki-Kiinstliche Intelligenz 33.4 (2019): 319-330.
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Robotics

* Learning and recall of reactive behavior:

* Learn from demonstrations a representation that encodes sensor-action pairs

* This behavior can be resembled at run-time by extracting the action corresponding
to the current sensor value through an unbinding operation
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Neubert P, Schubert S., Protzel P. Learning vector symbolic architectures for reactive robot behaviours. Universitatsbibliothek Chemnitz, 2017
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Other applications of HD computing/VSAs

* Survey papers:

Module 9 (10/27): Solving classification problems
e Focus paper: Rahimi, Kanerva, Benini, Rabaey: Efficient Biosignal Processing Using Hyperdimensional Computing: Network Templates for Combined
Learning and Classification of ExG Signals

e Further recommended reading:
o Ge, Parhi: Classification using Hyperdimensional Computing: A Review
o Neubert, Schubert, Protzel: An Introduction to Hyperdimensional Computing for Robotics
o Joshi, Halseth, Kanerva. Language Geometry Using Random Indexing
o Rahimi, Benatti, Kanerva, Benini, Rabaey: Hyperdimensional Biosignal Processing: A Case Study for EMG-based Hand Gesture Recognition

o Kleyko, Rahimi, Rachkovskij, Osipov, Rabaey: Classification and Recall with Binary Hyperdimensional Computing: Tradeoffs in Choice of Density and
Mapping Characteristic

L] L]
* Comprehensive list of VSA/HD
. We strive to keep this collection up-to-date but please let us know if some publications are currently missing and should be added to this list. We will take
C O m P u t I n g Wo r ks care of updating it.

This page lists VSAs/Hyperdimensional Computing publications in the chronological order
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Questions!
Thank you!

Module 9: Solving classification problems
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