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Outline
• Motivation and goals
• Background
• Classification with HD computing/VSAs
• Application Examples
• Useful resources and questions
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Motivation and goals
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Why should we discuss classification problems?

• Classification is a widely used task in many application domains.
• Amenable to the practical implementation of many of the 

concepts studied so far.
• Variety of implementations and compelling results are the 

outcome of interdisciplinary interest in the topic of HD 
computing/VSAs.
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Goals for this lecture

• An overview of how HD computing/VSAs can be used to solve a 
classification problem.
• Highlight the different approaches available in the literature for 

each step of the “classification pipeline”.
• Encourage you to think of how other properties or traits of HD 

computing/VSAs can be exploited in the classification realm and 
beyond.
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Background
The “classification pipeline”
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The classification pipeline in Machine Learning
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Features

Learning 
algorithm

Model
Data

Training data

Learning problem

Output
classRaw input

Feature extraction

Classification task

Based on Flach, P. (2012). Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press and  
Galindez Olascoaga, L. I.. Meert, W., & Verhelst, M (2021). Hardware-Aware Probabilistic Machine Learning Models. Springer, Cham. 

Data → output class
mapping 

Measurable properties or 
characteristics of the raw input



Basic linear classifier
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Basic linear classifier
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Decision boundary (DB)

Centroid 

Centroid 
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Learning algorithm

Model

Line halfway intersecting the 
training example centroids

Example from Flach, P. (2012). Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press. 



Basic linear classifier
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Types of approaches/models*
• Geometric
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Linear classifier

*Non exhaustive and non mutually exclusive list based on Flach, P. (2012). Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press. 



Types of approaches/models*
• Geometric
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Decision boundary
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Support Vector 
Machine

Finds the decision 
boundary that 
maximizes the distance 
to all support vectors 

*Non exhaustive and non mutually exclusive list based on Flach, P. (2012). Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press. 



Types of approaches/models*
• Geometric
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(Multilayer) perceptron,
Deep neural networks

Decision boundary

Non-linearly 
separable data

*Non exhaustive and non mutually exclusive list based on Flach, P. (2012). Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press. 



Types of approaches/models*
• Geometric
• Distance based (geometric)
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Feature 1

Nearest neighbor classifiers
(e.g. K nearest neighbors)

*Non exhaustive and non mutually exclusive list based on Flach, P. (2012). Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press. 

Majority vote from the 
k(=3) nearest neighbors 



Types of approaches/models*
• Geometric
• Distance based (geometric)
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Centroid 

Centroid 
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Feature 1

distance(   ,   ) < distance(   ,   )

Nearest neighbor classifiers
(e.g. nearest centroid)

*Non exhaustive and non mutually exclusive list based on Flach, P. (2012). Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press. 



Types of approaches/models*
• Geometric
• Distance based (geometric)
• Logical
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Taken from Galindez Olascoaga, L. I.. Meert, W., & Verhelst, M (2021). 
Hardware-Aware Probabilistic Machine Learning Models. Springer, Cham. 

Decision tree

*Non exhaustive and non mutually exclusive list based on Flach, P. (2012). Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press. 



Types of approaches/models*
• Geometric
• Distance based (geometric)
• Logical
• Probabilistic, etc.
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Taken from Galindez Olascoaga, L. I.. Meert, W., & Verhelst, M (2021). 
Hardware-Aware Probabilistic Machine Learning Models. Springer, Cham. 

Bayesian network classifiers

*Non exhaustive and non mutually exclusive list based on Flach, P. (2012). Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press. 



Types of approaches/models*
• Geometric
• Distance based (geometric)
• Logical
• Probabilistic, etc.

• What kind of classification can HD computing/VSAs enable? 

19
*Non exhaustive and non mutually exclusive list based on Flach, P. (2012). Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press. 



Classification with HD computing/VSAs
Overview
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Main components of HD computing/VSAs

• High-dimensional vectors (HD vectors, hypervectors, HV) are 
approximately orthogonal to each other.
• Hyperdimensional arithmetic comprises three simple operators:
• Bundling or superposition +
• Binding: typically, a multiplicative operation ⨂
• Permutation 𝜌

• Similarity metrics: dot product, Hamming distance, etc.  distance( . )

• Associative memory and item memory (codebook).
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Role of HD computing/VSAs in classification pipeline

Module 9: Solving classification problems 22

Features Model
Data OutputRaw input

Feature extraction

Input processing

Mapping to 
HD space

HD vector generation

HD 
encoding

Inference

Can be done with HD computing/VSAs or 
within a hybrid scheme with other models.
E.g. Module 10 on Relations to Neural 
Networks by Denis.

• Input data representation and encoding.



Role of HD computing/VSAs in classification pipeline
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Features Model

Query
HD vectors OutputRaw input

Feature extraction

Input processing

Mapping to 
HD space

HD vector generation

HD 
encoding

Similarity based classification

Prototype 
generation

Model formulation

FeaturesRaw input

Feature extraction

(Training) Input processing

Mapping to 
HD space

HD vector generation

HD 
encoding

Training 
HD vectors

• Model formulation with HD computing/VSAs.



Classification with HD computing/VSAs
1. Mapping inputs to HD space
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Mapping inputs to HD space
Determined by the type of input:

• Symbolic or categorical:  Can be described by a finite 
alphabet of independent values or symbols. For example, 
letters in the alphabet (examples from Modules 1 by Pentti and 
Module 3 by Ryan).

• Real-valued: Continuous input data or discrete variables with 
correlated values. For example, accelerometer signals (see also 
Module 8 by Chris).
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• Orthogonal mapping: a unique HD vector, randomly chosen, is 
assigned to each symbol.
• These unique HD vectors are saved in an item memory (I.M.) 

and remain fixed for the rest of the system execution. 

Mapping symbolic inputs to HD space



Mapping symbolic inputs to HD space
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Each pixel is 
treated as a 

feature.
Features are 

assumed to be 
uncorrelated.

Values can be represented by shifting the pixel ID HD 
vector: 0 bits for black and 1 bit for white.

1 0 0 1 0 0 0 1 1 1

1 1 0 0 1 0 0 0 1 1

Black

White

Each feature is assigned a randomly generated 
binary HD vector, these are saved in I.M.

Pix1 1 0 0 1 0 0 0 1 1 1

Example 1: character recognition

Kleyko, D., Osipov, E., Senior, A., Khan, A. I., & Şekerciogğlu, Y. A. (2016). Holographic graph neuron: A bioinspired architecture for pattern 
processing. IEEE transactions on neural networks and learning systems, 28(6), 1250-1262.



Mapping symbolic inputs to HD space
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Encoding as {Pixel ID: value} pair: Pix1⨂White

1 1 0 0 0 1 1 0 1 0

0 1 1 0 0 1 0 1 0 1

Black

White

Pix1 1 0 0 1 0 0 0 1 1 1

Each value is assigned a randomly generated 
binary HD vector, these are saved in the Color I.M.

Example 1: character recognition
(key-value pair approach)

Kleyko, D., Osipov, E., Senior, A., Khan, A. I., & Şekerciogğlu, Y. A. (2016). Holographic graph neuron: A bioinspired architecture for pattern 
processing. IEEE transactions on neural networks and learning systems, 28(6), 1250-1262.

Each feature is assigned a randomly generated 
binary HD vector, these are saved in PixID I.M.

Each pixel is 
treated as a 

feature.
Features are 

assumed to be 
uncorrelated.



Mapping symbolic inputs to HD space
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Example 2: 2D robot navigation

Agent navigating in 
2D grid must reach 
goal while avoiding 

obstacles.

Sensors: presence or absence of obstacles in each cardinal direction

N

S
EW

Actuation: the robot can move up, down, right or left

Sensor ID I.M.

N 1 0 0 1 0 0 0 1 1 1 1 0 1 0 0 1 0 0 1 0

Sensor value I.M.

W…

true 0 1 1 1 0 1 0 1 0 0 1 1 0 0 0 1 0 1 0 1false

Actuation I.M.

UP 1 1 1 0 0 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0LEFT…

Related works: 
Levy, Simon D., Suraj Bajracharya, and Ross W. Gayler. "Learning Behavior Hierarchies via High-Dimensional Sensor 
Projection." AAAI Workshop: Learning Rich Representations from Low-Level Sensors. 2013.
P. Neubert, S. Schubert, and P. Protzel, “Learning vector symbolic architectures for reactive robot behaviours,” IROS 
Workshop: Machine Learning Methods for High-Level Cognitive Capabilities in Robotics, 2016.



Mapping real-valued inputs to HD space
Real-valued inputs call for locality preserving encodings (LPEs). Introduced in 
module 8 by Chris.

Approaches I will discuss today:
• Discrete mapping: discretize the real-valued input and assign HD vectors such 

that they preserve relevant correlations.
• Random projection: directly project real-valued inputs to HD space by means 

of scalar multiplication. Often used as an intermediate representation.

Other powerful approaches, still largely unexplored for practical applications:
• Vector Function Architectures (VFAs), kernel LPEs (in the context of HD 

computing/VSAs).
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Similarity preserving discrete mapping
Linear similarity* preserving mapping:

1. Discretize real-valued input into m+1 levels.
2. Randomly assign HD vector to level 0 (HV0).
3. Gradually flip a predefined number of bits starting 

from HV0 such that HV0 and HVm+1 are 
uncorrelated.

Considerations:
• Sample without replacement for the bit flipping.
• Need to store the HD vectors for all levels. 
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*Linear similarity also 
preserved by e.g. 
thermometer code. 
(Taken from Chris’s slides, 
module 8)



Similarity preserving discrete mapping
Linear similarity preserving mapping:
Example: accelerometer data
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1 0 0 1 0 0 0 1 1 1 0 1

1 0 0 1 1 0 0 0 1 1 0 1

0 0 0 1 1 0 0 0 1 1 1 1

0 0 1 1 1 0 0 0 1 1 1 0

d=2

d=2

d=2

Store all in I.M.

dmax=6

Figure taken from Zhou, A., Muller, R., & Rabaey, J. (2021, March). Memory-Efficient, Limb Position-Aware Hand 
Gesture Recognition using Hyperdimensional Computing. In Research Symposium on Tiny Machine Learning.



Similarity preserving discrete mapping
Approximately linear similarity preserving mapping*:

1. Discretize real-valued input into m+1 levels.
2. Randomly assign HD vectors to the first and last levels HV0 and HVm+1
3. Construct intermediate levels by concatenating sections of HV0 and 

HVm+1.

Considerations:
• Might only need to store first and last level. 
• Linear similarity preservation not guaranteed.

33*Based on the ”encoding by concatenation” from Rachkovskiy, Dmitriy A., et al. "Sparse binary distributed encoding of scalars." Journal of 
Automation and Information Sciences 37.6 (2005). 



Similarity preserving discrete mapping
Approximately linear similarity preserving mapping:
Example: accelerometer data
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1 0 0 1 0 0 0 1 1 1 0 1

0 0 1 1 0 0 0 1 1 1 0 1

0 0 1 1 1 0 0 0 1 1 0 1

0 0 1 1 1 0 0 0 1 1 1 0

Only store HV0 and HV3 in IM

d=2

d=2

d=2

dmax=6

Figure taken from Zhou, A., Muller, R., & Rabaey, J. (2021, March). Memory-Efficient, Limb Position-Aware Hand 
Gesture Recognition using Hyperdimensional Computing. In Research Symposium on Tiny Machine Learning.



Similarity preserving discrete mapping
Approximately linear similarity preserving mapping:
Example: accelerometer data
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1 0 0 1 0 0 0 1 1 1 0 1

0 0 0 1 0 0 0 1 1 1 0 1

0 0 0 1 1 0 1 0 1 1 0 1

0 0 0 1 1 0 1 0 1 1 1 0

d=2

d=3

d=1

Figure taken from Zhou, A., Muller, R., & Rabaey, J. (2021, March). Memory-Efficient, Limb Position-Aware Hand 
Gesture Recognition using Hyperdimensional Computing. In Research Symposium on Tiny Machine Learning.

dmax=6

Only store HV0 and HV3 in IM



Random projection
• Scalar multiplication of real value and HD vector.
• Useful when most appropriate quantization is unknown. 
• Can be used as an intermediate representation, and normalized back to   

{-1,1} or {0,1} at a later step*.
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1 0 0 1 0 0 0 1 1 1 0 1

0

1

0

0.25

0.75
×

×

×
×

1 0 0 1 0 0 0 1 1 1 0 1

1 0 0 1 0 0 0 1 1 1 0 1

1 0 0 1 0 0 0 1 1 1 0 1

0.875 0 0 0.875 0 …0.875 ×

0.7 ×

0.25 ×

0.125 ×

0.7 0 0 0.7 0 …

0.25 0 0 0.25 0 …

0.125 0 0 0.125 0 …

* See also Rachkovskij, D. A., I. S. Misuno, and S. V. Slipchenko. "Randomized projective methods for the construction of binary sparse vector 
representations." Cybernetics and Systems Analysis 48.1 (2012): 146-156.



Classification with HD computing/VSAs
2. Encoding
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Encoding

• Exploit the properties of HD computing/VSAs, for example:
• High capacity of HD vectors.
• Binding: {key:value} / (variable:value) pairs.
• Construction of data structures: sets, sequences, histograms, etc.  

Refer to Module 4: Representation and Manipulation of data 
structures by Denis.
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Spatial encoding
• Combine inputs available at a given time-aligned sample into a single HD vector.
• Set of key-value pairs (refer to Module 4 on data structures by Denis).

39

key1

value1

key2

value2

keyn

valuen

⨂

⨂

⨂

+

input1

input2

inputn

…

[.]

Re-normalize to 
{-1,1} or {0,1}

…

𝑆 = $
!"#

$

𝑘𝑒𝑦!⨂𝑣𝑎𝑙𝑢𝑒!

𝑺

P. Neubert and P. Protzel, “Towards HypervectorRepresentations for Learning and Planning with Schemas,” Joint German/Austrian Conference on Artificial Intelligence, 2018



Spatial encoding
• Example: 2D robot navigation
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Sensor ID I.M.
N 1 0 0 1 0 0 0 1 1 1

Sensor value I.M.

S 0 1 1 0 0 1 0 1 0 0

E 0 1 0 0 1 1 1 1 0 1

W 1 1 0 1 0 0 1 1 0 0

True 0 1 0 0 1 1 1 1 0 1

False 1 1 0 1 0 0 1 1 0 0
St=1=[N⨂F + S⨂F+E⨂T +W⨂T] St=2=[N⨂F + S⨂F+E⨂F +W⨂T] St=3=[N⨂F + S⨂T+E⨂F +W⨂F]

t=1 t=2 t=3



Temporal encoding
• Represent time dependencies of the inputs through sequences or n-grams over 

a specific window of length k.
• Sequence (of key-value pairs). Refer to Module 4. 
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inputt=1 inputt=2 inputt=kinputt=3 …

𝜌%&# 𝜌%&' 𝜌%&( 𝜌)

𝑇 =/
!"#

%

𝜌%&!( input*"!)

⨂ ⨂ ⨂… 𝑻

key1

value1
⨂



Temporal encoding
• Example: 2D robot navigation
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Sensor ID I.M.
N 1 0 0 1 0 0 0 1 1 1

Sensor value I.M.

S 0 1 1 0 0 1 0 1 0 0

E 0 1 0 0 1 1 1 1 0 1

W 1 1 0 1 0 0 1 1 0 0

True 0 1 0 0 1 1 1 1 0 1

False 1 1 0 1 0 0 1 1 0 0

St=1=[N⨂F + S⨂F+E⨂T +W⨂T] St=2=[N⨂F + S⨂F+E⨂F +W⨂T] St=3=[N⨂F + S⨂T+E⨂F +W⨂F]

t=1 t=2 t=3

T= 𝜌!(St=1)⨂ 𝜌(St=2) ⨂ St=3



Histogram encoding
• Some applications may benefit from frequency distribution 

representations.

43

𝐻 =$
!"#

$

𝑖𝑛𝑝𝑢𝑡!

E.g. Language identification (Lecture 1 by Pentti)

Trigrams from letter seed vectors

Accumulate to form language profile 
(histogram of trigrams)

Compare to other language profiles Query most likely letter after e.g. TH

Joshi, Aditya, Johan T. Halseth, and Pentti Kanerva. "Language geometry using random 
indexing." International Symposium on Quantum Interaction. Springer, Cham, 2016.



Histogram encoding
• Example: 2D robot navigation, anomaly detection

44Module 9: Solving classification problems

Actuation I.M.
Up 1 0 0 1 0 0 0 1 1 1

Down 0 1 1 0 0 1 0 1 0 0

Right 0 1 0 0 1 1 1 1 0 1

Left 1 1 0 1 0 0 1 1 0 0

𝑆! = 𝜌(𝐿)⨂𝐿
𝑆" = 𝜌(𝐿)⨂𝑅
𝑆# = 𝜌(𝐿)⨂𝑈
𝑆$ = 𝜌(𝐿)⨂𝐷
…
𝑆!% = 𝜌(𝐷)⨂𝐷

2-step sequences (bi-grams)

Histogram over x time steps

𝐻 =$
!"#

+

𝑆*!



Classification with HD computing/VSAs
3. Model formulation and classification 
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Model

Query
HD vectors Output

Similarity based classification
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Model formulation

Training 
HD vectors



Model formulation
• Class prototype HD vector generation.
• Multiple approaches:
• Centroid based prototype generation
• One-shot prototype generation
• Learning Vector Quantization (LVQ) family of representations
• Multiple prototypes per class
• Storing models in superposition
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Class labels Prototype HD vectors

Label

Label

Class prototype generation (centroid computation)

• A prototype HD vector for each class is 
formed by computing the class centroid. 
• For binary and bipolar HD vectors, this 

amounts to finding the majority of each 
element across all training examples. 
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Centroid 
prototype

Centroid
prototype 

1 1 -1 1 -1 -1 1 1 -1 -1

1 -1 -1 1 -1 -1 1 1 -1 -1

1 -1 -1 -1 1 -1 1 -1 -1 1

… +

1 -1 -1 1 -1 -1 1 1 -1 -1

[.]

1 1 1 1 1 -1 1 1 1 -1

1 1 1 -1 -1 -1 1 1 -1 -1

1 -1 -1 -1 1 -1 1 -1 1 1

… + [.]
1 1 1 -1 1 -1 1 1 1 -1

Class     training examples

Class     training examples
Model

*This 2-dimensional depiction is for illustrative 
purposes. 



distance(   ,   )
Class labels Prototype HD vectors

Label

Label

Classification
• Query HD vectors are formed using the 

same encoding as the training ones.
• Classification takes place by finding the 

nearest neighboring prototype to this query 
HD vector.
• Akin to a nearest centroid classifier in ML 
(https://en.wikipedia.org/wiki/Nearest_centroid_classifier)
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1 -1 -1 1 -1 -1 1 1 -1 -1

1 1 1 -1 1 -1 1 1 1 -1

Model

*This 2-dimensional depiction is for illustrative 
purposes. 

-1 1 1 -1 1 -1 1 1 1 -1

Query HD vector

distance(   ,   )
argmin Prediction



Class labels Prototype HD vectors

Label

Label

One-shot classification
• Single training sample constitutes the class 

prototype.
• Classification proceeds as usual.
• Works well with HD computing/VSAs because 

of information-rich representations enabled by 
HD vectors + encoding. 

49

1 1 -1 1 -1 -1 1 1

1 1 1 1 1 -1 1 1

Class     training example

Class     training example

Model

1 1 -1 1 -1 -1 1 1

1 1 1 1 1 -1 1 1

distance(   ,   )

-1 1 1 -1 1 -1 1 1

Query HD vector

distance(   ,   )
argmin Prediction

Example: Rahimi, A., Tchouprina, A., Kanerva, P., Millán, J. D. R. & Rabaey, J. M. Hyperdimensional Computing for Blind and 
One-Shot Classification of EEG Error-Related Potentials. Mob. Networks Appl. 1–12 (2017)

*This 2-dimensional depiction is for illustrative 
purposes. 



Learning Vector Quantization approaches
• Prototypes represent class regions. 
• These prototypes are learned iteratively.
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w= = w= − 𝛼(𝑥 − w=)
w> = w> + 𝛼(𝑥 − w>)

Heuristic approach:

Learning rate

Diao, Cameron, et al. "Generalized Learning Vector Quantization for Classification in Randomized Neural Networks and Hyperdimensional 
Computing." arXiv preprint arXiv:2106.09821 (2021).
Nova, David, and Pablo A. Estévez. "A review of learning vector quantization classifiers." Neural Computing and Applications 25.3 (2014): 511-524.



Learning Vector Quantization approaches
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Margin maximalization approaches (e.g. 
Generalized LVQ):

Define a cost function from which the 
learning rule is derived via gradient descent.

w= = w= − 2𝛼
𝛿𝑔
𝛿𝜇
𝜇> (𝑥 − w=)

w> = w> + 2𝛼
𝛿𝑔
𝛿𝜇 𝜇

= (𝑥 − w>)

Cost function Relative 
distance 
difference

Diao, Cameron, et al. "Generalized Learning Vector Quantization for Classification in Randomized Neural Networks and Hyperdimensional 
Computing." arXiv preprint arXiv:2106.09821 (2021).
Nova, David, and Pablo A. Estévez. "A review of learning vector quantization classifiers." Neural Computing and Applications 25.3 (2014): 511-524.



Classification with HD computing/VSAs
4. Performance trade-offs
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Energy efficiency
• Departure from traditional von Neumann architectures with inefficient 

memory exchanges.
• Enables bit-wise operations when using Binary Spatter Codes model.
• Robustness under low SNR and sparsity can enable resource efficiency.
• Will be discussed in detail by Mohamed in Module 11: Hardware 

implementations.
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Datta, Sohum, et al. "A programmable hyper-dimensional processor architecture for human-centric IoT." IEEE Journal on Emerging and Selected Topics in 
Circuits and Systems 9.3 (2019): 439-452.



Application examples
ExG signal classification, Robotics
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EMG-based hand gesture recognition

55
A. Moin, et al. "A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition." Nature Electronics 4.1 (2021): 54-63.

1. Feature extraction

2. HD vectors 
for each 
electrode ID

HD mapping and
Spatial encoding

Temporal encoding

3. Random 
projection

4. Spatial 
encoding (set 
of scaled 
vectors + 
normalization)

5. Sequence of spatial 
vectors over window

Array of 64 electrodes



EMG-based hand gesture recognition

56
A. Moin, et al. "A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition." Nature Electronics 4.1 (2021): 54-63.

Feature extraction

HD vectors 
for each 
electrode ID

HD mapping and
Spatial encoding

Temporal encoding

Random 
projection

Set and 
normalize

Sequence of spatial 
vectors over window

5. Centroid based model and similarity-based classification



EMG-based hand gesture recognition
• Results: high accuracy and robustness to variations from different users. 

57
A. Moin, et al. "A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition." Nature Electronics 4.1 (2021): 54-63.



EMG-based hand gesture recognition
• Adaptive learning without significant overhead.

58
A. Moin, et al. "A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition." Nature Electronics 4.1 (2021): 54-63.



EMG-based hand gesture recognition
• Sensor fusion and storing context-specific models in superposition.

59Zhou, A., Muller, R., & Rabaey, J. (2021, March). Memory-Efficient, Limb Position-Aware Hand Gesture Recognition using 
Hyperdimensional Computing. In Research Symposium on Tiny Machine Learning



EMG-based hand gesture recognition
• Results: the proposed orthogonal 

context encoding improves 
accuracy with respect to direct 
superposition and is significantly 
more efficient than dual-stage 
classification.

60
A. Moin, et al. "A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition." Nature Electronics 4.1 (2021): 54-63.



iEEG-based Seizure Detection
• Interictal (precede seizure) and 

ictal (during seizure)  states of 
brain activity have distinct 
pattern frequency distributions.
• These patterns can be captured 

through short bit strings or 
local binary patterns (LBPs).
• The two brain states can be 

identified by comparing the 
frequency distributions. 

61

Burrello, A., Schindler, K., Benini, L., & Rahimi, A. (2018, October). One-shot learning for iEEG
seizure detection using end-to-end binary operations: Local binary patterns with 
hyperdimensional computing. In 2018 IEEE Biomedical Circuits and Systems Conference 
(BioCAS) (pp. 1-4). IEEE..



iEEG-based Seizure Detection
• HD computing/VSAs can be used to represent the LBP and encode 

histograms over a pre-determined window. Similarity metrics are used to 
infer whether the current brain state is ictal or interictal. 

62Burrello, A., Schindler, K., Benini, L., & Rahimi, A. (2018, October). One-shot learning for iEEG seizure detection using end-to-end binary operations: Local binary patterns 
with hyperdimensional computing. In 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS) (pp. 1-4). IEEE..



Robotics (vision)
Object recognition from 
multiple viewpoints
• Exploit bundling to combine 

multiple viewpoints in 
superposition.

• Then the comparison of a query 
vector to all views can be made 
with a single vector comparison.

• Straightforwardly update the 
representation of an object 
during online execution.
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Robotics (vision)
Sequence processing for place recognition
• Individual scenes are represented by binding their 

vector representation to their current position.
• Sequences of scenes are formed by bundling a set 

of the representations above.
• Prototype encodings are then compared to query 

ones to infer the scene.
• This representation is robust even through 

seasonal changes.
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Robotics
• Learning and recall of reactive behavior:
• Learn from demonstrations a representation that encodes sensor-action pairs. 
• This behavior can be resembled at run-time by extracting the action corresponding 

to the current sensor value through an unbinding operation.

65
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Other applications of HD computing/VSAs
• Survey papers:

• Comprehensive list of VSA/HD 
computing works
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Questions?
Thank you!
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