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The traps of theoretical neuroscience

Problems with reverse engineering the brain:

“Neuromimicry” — looks brain-like but does not explain brain
function

Normative models often too simple and single minded

Neural network models are black boxes themselves — limited
explanatory value

Neuroscience data are complicated and spotty — models do not just
emerge from data analysis

Kuhn cycle between experiment and theory still not productive in
neuroscience



VSA

Structured computing with distributed representations:
- Can represent data structures by vectors

- Data structures represented by vectors of same dimension — this
has to be lossy

- Compute in superposition i.e., search set of items simultaneously
- Binding is also lossy

- Memory-based error correction interspersed with computation

Open questions we faced around 2017:

- Capacity: How many items can be superimposed in VSA vector !
- How different are different VSA models ?

- Connections between VSA algorithms and neural networks ?



Mapping data to vector spaces
Source coding (remove redundancy in data)

Data lie in subspace (SS) Learning method Coordinates in SS
Linear low-D SS PCA Axes of covariance matrix
Nonlinear low-D SS Manifold learning location on manifold
Clusters Cluster analysis Cluster number (+ loc.)

Union of lin. low-D SS Sparse coding Axes of Indep. Comp.

Union of nonlin. Low-D SS Manifold learning  Manifold number + loc.

Vector encoding of the new coordinates
Feature local: a neuron’s activity encodes a coordinate: PCA, ICA,...

Distributed: values of a coordinate are represented by many neurons:
VSA



Hashing vs. VSA

Data indexing: =00l @ |as

) 01

' : . Lisa Smith 0z

Hash function: data points -> index space ?gj
Properties: uniformity

efficiency: computational complexity and collision handling vs.
compactness of indices

avalanche criterion: Single bit flip in input -> each output bit
changed with p=0.5

In VSA: symbols -> i.i.d. random vectors ~ P(x)
Requires lookup table of assigned vectors in memory

In VFA: LPE: data points -> randomized representations with kernel
property



Encoding sequences of vectors in VSA

“write” “read”
(al,ag) — X =a1P1 + axP; a; = ((I’i)TX

In high dimension random vectors are almost orthogonal
Forming unique encoding vectors for each time step:
(G,l(t), as (t)) — X(t) — a1Wt<I)1 + a2Wt<I>2

with W orthogonal matrix.

Encoding of entire time series: X = Zi\io X (1)

Readout: a;(t) = (Wid;) " x



VSA sequence encoding network model

Network for “write* Network for “read”
—D— = 1,..., x(M)
a(m) OOOO T Q. - VSA model:
S V)
N - E 5 =
i - O O W B )

5w x(m WQ(M-K)

Encoding Readout

with @ pseudorandom, and W orthogonal with long cycle length

Cases considered: memory type

bits )
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Reservoir network

Network for “write" Network for “read”
(m) Optimal readout:
a(m
m=1..,M XM} Linear regression
e -0 8); . between a and x:
Asm —0—0O- O+
i OO O a(M — K)
W f x(m)
Encoding Readout

Echostate networks (Jaeger), Liquid state networks (Maass),

State-dependent Networks (Buonomano)

Questions: How to Dissect dynamics into computational operations!?
How accurately can memory items be accessed?
How much bits/neuron can be stored!?

What are nonlinear neurons good for?



Predicting readout in Reservoir network

Encoding:  x(m) = f(AWx(m — 1) + ®a(m) + n(m)) (1)
Readout: AM — K) = g(V(K)Tx(M)) (2)

The effect of one iteration of equation (1) on the probability distribution of the net-

work state x(m) is a Markov chain stochastic process, governed by the Chapman-
Kolmogorov equation (Papoulis, 1984):

p(x(m+ 1)|a(m)) = /p(x(m + 1)|x(m),a(m)) p(x(m)) dx(m) (3)

with a transition kernel p(x(m + 1)|x(m), a(m)), which depends on all parameters and
functions in (1). Thus, to analyze the memory performance in general, one has to iterate
equation (3) to obtain the distribution of the network state.



Analysing decoding performance for

x(M) symbolic sequences
[ O-1 171 .
O g
N O V(K)=c 'WE®
Q- a
WTA ‘ — ha(K) := Vg(K) ' x(M) (8)
5566 a0HK)
: D |
ha(K) = Z (Va(K) x(M)), = ¢ Z(@")i (WEx(M)), = ! Z v (30)

1(hg) = ¢ Nu(zq;) and 0%(hg) = ¢ No*(zq,)
Concentration of measure phenomenon (Ledoux, 2001):
ha(K) — ¢~ Np(24,)
Convergence fast in N — Hoeffding’s inequality (Plate 1993, Thomas et al, 2020)
But what happens at some fixed finite N ?



Detection theory

Accuracy (d’ is index of correct component):

Linear readout: hy(K) = ag(M — K) + ng
with n describing network and crosstalk noise

Peorr (K) = p (ha' (K) > hg(K) ¥d # d')
= /00 plha(K) =h) |p(hq(K) < h.)]D_1 dh (10)

h'

o D-1
— / N (W5 j(ha), o*(ha)) { N (h; j(hg), 0% (hg)) dh} dh’'

— 00

h'

D—1
— / N (W ag,0%(ng)) { N (}z:a(haQ(rzd))(]iz} dh’

— 00



The Gaussian variables h and A" in (10) can be shifted and rescaled to yield:

* dh _12 | [ o(hg) plha) — p(ha) o
R e ]

:/m dh e_%hQ _(I) (nd)h Aqg — Qg b=l
oz S \o(ne) o(na) (1)

where @ 1s the Normal cumulative density function.

Further simplification can be made when o (ngs) =~ o(nyg).

"The accuracy then becomes:

Peom(5(K)) = / ) js_ﬂe—%hz @ (h+ () (12

where the sensitivity for detecting the hot component d’ from h(K’) is defined:

o) o M) —plha) _aw —aq 1 (13)
) ==l o(ng)  o(m) )




Computing accuracy for a particular VSA

model
ha(K) =) (Va(K) ' D (@ x(M)i = ¢y 2 (30)

The quantity z,; in (30) can be written:

Zai = (®g); (W Ex(M));

(@) @a)i + M s (@) (WHE=®,), ifd=d (D)
Zf\nf (®g);(WME=mP ), otherwise
Given the conditions (4)-(7), the moments of z,;,; can be computed: depend on
Eo (2 VSA model
P
1(2ai) = (32)
ME@ (:13)
Va (22 M
(e = 4 2T (33)
MVg(x)? otherwise



For networks with N large enough, p(hy(K)) ~ N(c ' Nu(zq4;),c ' No?(zq;)). By
inserting s.(hg) and o(hg) into (11), the accuracy then becomes:

/°° LT
corr — €
b oo V2T

D-1  (34)
® a h + al
M — 11 Vg(a2)/Va(z)? M — 11 Vg(a?)/Va(z)?

Analogous to (12), for large M the expression simplifies further to:

D\ OO dh —1p2 \D-1 . o N
pc"”('s)_/_oo Nord 2" [D (h + s)] with s = /= (35)




Capacity for existing VSA models

HDC: Hyperdimensional Computing — binary/bipolar (Kanerva)
HRR: Holographic reduced representations - real-valued (Plate)
FHRR: Fourier HRR - complex-valued (Plate)

A HDC
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Same performance!



Accuracy

Relation to previous VSA theory
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I total / N

Information capacity of reset memories
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- High-fidelity regime: 0.3 bits/neuron, not 0.1 bits/neuron

- Total maximum of capacity at lower fidelity

- Higher capacity for larger alphabet sizes

2.0



Memory buffer

Always store recent sequence by replacing hard reset by
gradual forgetting mechanism

- Implements in VSA volatile data structure in which time
stamped data are exchanged continuously

- Working memory in the brain? Recency effect

Questions:

- Performance of different forgetting mechanisms:
linear contraction, different types of neural nonlinearity !

- Capacity comparision to static reset network !

- Does the theory still work ?



Accuracy

Memory buffer with linear contraction

Sensitivity (for reset \=1): s(K) = % )

for buffer (M=wg A<I): s(K) = A\?)
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Theory works! Capacity somewhat lower

(70%) than for reset memory



Memory buffers with non-linear neurons

Chapman-KoImogorov equation:
p(x(m +1)|a(m)) = [ p(x(m +1)|x(m),a(m)) p(x(m)) dx(m)

clipped-linear neurons tanh neurons
f(z) =~ tanh(z /7)

K
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Forgetting time constants

Linear contraction:

r(A) = —1/log A

Clipped-linear neurons:

T(K) = ‘
)

. 3
log (1 ~ R(etD)

Tanh neurons:
no analytic expression (numerical estimation)



Accuracy

Comparison of memory buffers
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Buffers with different decay mechanisms behave quite similarly!



Readout of sequences with analog numbers

x(M)
O+ 1717 ,
O i
N O- V(K)=c 'WE®
Q- s
Identity ‘ o ha(K) := Va(K) x(M) (8
5085 4K
| D :
ha(K) =) (Va(K)'x(M)), = ¢ 12 (®,): (W Ex(M)); = ¢~ sz (30)



Analysis for continuous Gaussian inputs

(@a)i(W " x(M)),
(®ar)i [(Par)ittar (M — K]

+(®a)i | D (Ra)iaa(M — K) + Z (WM_K_"’“ (Z (I)dad(m))>

Zd i

d#d! m#(M—K)
(52)
The signal and the noise term are split onto two lines. In the expression ¢~ 'zy ;, the
fvariance of the signal term is unity, and the resulting SNR is: )
- OQ(CLd/) B NO'Q(CLd/)
"= o2(ng) 201, 2
(Zd;éd’ ag(M — K) + Zm#J\J—K) D ad(m)) (53)
N N

—_— Y
_— Y

(MD—1)  MD

When neuronal noise is present, the SNR becomes:

N 1
"TMD (1 + 072,/(DV<1,)> (54)




Capacity for continuous input (Gaussian)
with standard VSA readout

Signal-to-noise-ratio: r = LD
Analytic bounds
reset memory: ftetal (p* ) = -1 — (.72.. bits/neuron
7 ON 2 In(2)

buffer (r>r*): M(’r* — 0) = élrf@) = (.46.. bits/neuron
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VSA buffer with optimized readout ”a la

reservoir computing”
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VSA readout vs. optimal readout
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Lessons for VSAs

- Previous theories underestimate capacity of sequence
representations

- Theory valid for VSA representation of data structures other
than sequences

- Capacity for superposition is universal across different VSA models:
M proportional N

- For sequences of analog vectors,VSA readout is noisy
(recoding with VFA principles might help)

- Memory buffers are interesting new concept for VSA, not much
explored so far.

- Reservoir computing just a first example how VSA can help dissect

opaque neural networks (see new paper on predicting deep nets with
VSA)



Lessons for Reservoir Computing

- Reservoir network with pseudo-random input weights and
orthogonal W can be dissected into VSA operations:
binding with time stamp and superposition

- MMSE readout has higher capacity than VSA method:

. its VSA opt. readout
bits
Capacity ("‘3“”’") reset | buffer | reset | buffer
symbolic ~ 0.5 | ~0.3 1 1
analog 0.72 | 0.46 00 00

(Bounds for vanishing intrinsic noise)

- different forgetting mechanisms behave quite similar



