
A RANDOM WALK IN HAMMING SPACE 

Derek Smith and Paul Stalgford 

Texas Instruments, Dallas, TX, 75265 

Abstract 
In this paper we describe the scatter code, a new technique for mapping sensor data into a form suitable for process- 
ing by associative neural networks. By overthrowing the assumption that the sensor mapping must preserve order in 
addition to closeness, a mapping can be generated that has much more capacity and flexibility than previous 
mappings. The fitst advantage is the practically limitless number of points in the new mapping, which eliminates 
the need to compress sensor information and lose resolution. The second advantage is the ability to control the 
radius of association in the mapped sensor data by varying the rate at which points in the hamming space become or- 
thogonal. The radius of association can be varied within the mapping to take advantage of special cases when 
information about the sensor or about the expected data points is known. 

Introduction 
Some form of mapping between sensor data and associative neural networks [Kanerva88, Albus81, Hopfield821 is 
required because sensor data typically forms a range of real numbers or integers, whereas associative neural 
networks typically work in the equivalent of hamming space. Simple mappings from linear space into hamming 
space, such as binary encodings, fail because they do not preserve closeness in hamming space. Codes such as the 
thermometer [Hancock88] and bar codes Ipenz871 preserve closeness, but can only map a resmcted number of 
points. The scatter code preserves closeness and can map a very large number of points. 

Terminology 
We use n for the number of bits in the hamming space, b for the number of bits to flip at each step in the scatter 
code, and s for the proportion bln. Two points are close or associate if their hamming distance is less than about 
n/4. Two points are effectively orthogonal if their hamming distance is about n/2; most randomly selected points 
are orthogonal [Kanerva88]. For a given point, only those points within its radius of association can associate. 

How the scatter code is generated 
A sequence of codes to correspond with a range of points in the linear space is generated as follows. The first code 
is chosen randomly. The second code is generated from the first by randomly choosing b bit locations (not necessar- 
ily distinct) and flipping the bit in that location, changing a zero to a one, or a one to a zero. The third code is 
generated from the second in the same way as the second was generated from the first, and so on for all subsequent 
codes until the sequence is long enough to cover the range of the linear space. 

Figure 1: This figure illustrates the expected hamming distance between pairs of 
circled sensor data points, mapped using s 4 . 1  and n=100. 
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If the neural network for which the code is to be generated associates pints that are within n/4 of each other, then 
with the above encoding points within 3 in the linear space will associate. Reducing s to 0.05 causes points within 7 
in the linear space to associate. Thus by varying s the radius of association in the linear space can be controlled. 
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Expected behavior of the scatter code 
The formula n12 * (I - ( I  - 2ln)**(s*r)) gives the expected hamming distance for points t apart in the linear space. 
The expected hamming distance asymptotically approaches n12 bits, where the probability of flipping a 1 to a 0 is 
equal to that of flipping a 0 to a 1. 
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Figure 2: This graph illustrates that by varying s, the linear radius of association can be varied. 
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The formula log(1 - 2*rln) I log(1 - 2ln) gives the expected number of bit flips it takes to be hamming distance r 
from the origin. The required linear radius of association, Ira, of the sensor data can be achieved for a given ham- 
ming radius of association, hru, of the associative memory, by selecting s according to the following equation. 

s = {log(l - 2hraln) I log(1 - 2ln)J/(n.lra) 

Figure 3: This graph shows the relationship between the desired linear radius of association and the scatter ratio. 
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Figure 4: Because scatter codes are randomly generated the above equations only give expected values. 
The following table shows expected hamming distance, and actual hamming distance for n=100 ~ 0 . 1 .  

Integer distance 0 1 2  3 4 5 6 7 8 9 1 0  
Expectedhammingdistance 0 9 17 23 28 32 35 38 40 42 43 
Actualhammingdistance 0 9 15 23 27 31 35 39 39 41 41 
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The variance of the scatter code is given by the equation: 
f 
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where p$r) is the probability of being r from the origin afterfbit flips, given by: 

p(0,O) = 1; p(O,r+l) = 0; 
p(f+l,r) = p(f,r-l).(n-r+l)/n + p(f,r+l).(r+l)/n 

and ed(f) is the expected hamming distance from the origin afterfbit flips, given by: 
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Figure 5: This graph shows sigma bounds on the expected hamming distance (n=100). 
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The following graph shows that the variance is quite high when n is less than 50. Its use. on such short codes will 
only be useful if the problem can withstand this variance. At 100 bits the variance is better and at 250 bits better 
still. We typically use codes of 100 or 256 bits length, on a sparse distributed memory [Kanerva88]. 
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Capacity 
The limit to capacity for a scatter code is the risk that widely separate linear points will map to close hamming 
points. If risk denotes an acceptable probability of scatter collision and the hamming threshold is h.n then the capac- 
ity is approximately: 

(2hh)nn.d(risk/n) 

A typical value of h is approximately 0.25 for sparse distributed memory [KanervaSS], giving a capacity of approxi- 
mately: 

2d4 .d(risk/n) 

Figure 7: This table gives the estimated capacity of the scatter encoding for typical values of risk and n. 

n 100 200 256 256 

Risk lo4 10-l2 

Capacity 17,000 1o1O 10l2 

The number of bits in a binary representation with the same capacity as a scatter code with risk 2-p is approximately 
n14 - pt2. 

Comparison with other codes 
For purposes of unification, b, and thus s, can be can be given an interpretation for the thermometer and bar codes as 
well as the scatter code. For the thermometer code b bits are flipped on each step. However they are not chosen at 
random: they are always bits that have not previously been flipped. Similarly for the bar code b bits are flipped on 
each step. Again the bits are not chosen at random: bt2 are bits that were previously flipped, and bt2 m bits that 
were not flipped? 

Figure 8: This is a pictorial representation of the thermometer, bar and scatter codes 
in the (unrealistic, but drawable) case of n=3. 

Thermometer code @ = I )  Bar code (b=2) 
O O O O O  0 <> 001 
1 0 0 0 1  1 <> 010 
2 0 011 2 0  100 
3 0 111 

Example Scatter code (b=2) 
O O O O O  
l o 0 1 1  
2 0  110 
3 0 101 

1. An efficient mapping is important in cases where the associative memory has exponential storage capacity [Chou87]. 
2. A middle ground between the scatter and bar codes could be a scatter code that keeps the number of ones constant. Such a 

code would have less capacity than the unrestricted scatter code but could be used to generate the sparse codes which are 
prefmed by some associative memories [Marr69]. 
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The thermometer code orders points along a chain from OOO to 11 1. The bar code orders points around a circle 
centered at the origin, radius one, in this case. The scatter code is not restricted to preserving order and scatters suc- 
cessive points moderate distances in random directions. 

No need for compression 
In the case of the thermometer code the maximum number of distinct codes is equal to n + l ,  the number of bits in the 
code plus one. In the bar code the number of codes is equal to n, the number of bits in the code? In the scatter code 
the number of possible codes is exponential in the number of bits in the code, approximately (2**(n/4)).$risk/n). 
This gives the scatter code the huge advantage that data does not have to be compressed to fit into the restricted 
number of codes available, avoiding the loss of resolution caused by such a compression. 

For example, in the actual data below there are integers ranging from 40 to 700. If this data is to be mapped into a 
100 dimensional hamming space then previous codes would restrict the mapping to 100 points. Thus the data must 
be compressed into the range 0 to 99 as shown below. 

Figure 9: This table shows an example of loss of resolution caused by data compression. 

1 
Actual data 40 41 43 140 143 170 220 700 
Compresseddata 0 0 1 16 17 20 28 99 

I I 

This compression has disastrous results. Because of the extreme point 700, the rest of the data (between 40 and 220) 
is squashed together resulting in loss of resolution. Compression is not necessary for the scatter code because of its 
large capacity. 

Randomness 
With the non-random thermometer and bar codes the hamming distances are exact and a simple algorithm can be 
used to map between the linear space and the hamming space. Because the scatter code is randomly generated, ham- 
ming distances are probabilistic and look-up tables are required for the encode and decode operations. The size of 
the tables grows linearly with the number of points encoded. 

Closeness, not order and closeness 
Thermometer and bar codes preserve the ordering of the linear space in the hamming space. This order is 
superfluous as ordering is irrelevant for hamming distance. The scatter code preserves only closeness, and it is this 
relaxation that is exploited in the scatter code to produce an exponentially more efficient encoding. 

The special case of knowing the expected data 
If the problem to be solved were the classification of noisy sensor information, and it was known that the accuracy 
of the sensor was not constant over the range of operation, then modifications to the scatter code could take this into 
account. As the scatter code is generated sequentially, the scatter at each step does not have to be constant. Because 
increasing the scatter decreases the radius of association, the code could be tuned to have a larger radius of 
association in regions of low resolution in the Sensor and low radius of association in the regions of high resolution. 

Similarly, if it is known that the data in one part of the range comprises many data points with little noise, then the 
code for that range can have small linear step size and a low radius of association. If in other parts of the range there 
are few data points but a lot of noise, then the linear step size can be increased, and the radius of association will 
also be large. 

3. A technique can be used to increase the capacity of the thermometer and bar codes to (n**2)/4 [Penz87]. However, by 
introducing exponential significance into the mapping this technique requires a more complex metric to be used in place of 
hamming distance in the underlying associative memory. The scatter code achieves its high capacity without introducing 
exponential significance. 



There is no need to generate the code in a range which is known to be devoid of interesting data. Restarting the 
code from a random point at the next interesting part of the linear space is valid, because the result of several (un- 
used) steps in the random walk is effectively independent of its starting point. A code can be fragmented many 
times in this way; the only consequence will be the reduction of look-up table size for mapping between the linear 
and hamming spaces. 

Summary 
Simple mappings from linear space into hamming space, such as binary encodings, fail because they do not preserve 
closeness in hamming space. Codes such as the thermometer and bar codes preserve closeness, but can only map a 
restricted number of points. By overthrowing the assumption that the sensor mapping must preserve order in addi- 
tion to closeness, a mapping can be generated that has much more capacity and flexibility than previous mappings. 
The fist advantage is the practically limitless number of points in the new mapping, which eliminates the need to 
compress sensor information and lose resolution. The second advantage is the ability to control the radius of 
association in the mapped sensor data by varying the rate at which points in the hamming space become orthogonal. 
The radius of association can be varied within the mapping to take advantage of special cases when information 
about the sensor or about the expected data points is known. 
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